
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Open to a fault: On the passive compromise
of TLS keys via transient errors

George Arnold Sullivan, University of California, San Diego; Jackson Sippe,
University of Colorado Boulder; Nadia Heninger, University of California, San Diego;

Eric Wustrow, University of Colorado Boulder
https://www.usenix.org/conference/usenixsecurity22/presentation/sullivan

Open to a fault: On the passive compromise of TLS keys via transient errors

George Arnold Sullivan
UC San Diego

Jackson Sippe
CU Boulder

Nadia Heninger
UC San Diego

Eric Wustrow
CU Boulder

Abstract
It is well known in the cryptographic literature that the most
common digital signature schemes used in practice can fail
catastrophically in the presence of faults during computation.
We use passive and active network measurements to analyze
organically-occuring faults in billions of digital signatures
generated by tens of millions of hosts. We find that a persistent
rate of apparent hardware faults in unprotected implementa-
tions has resulted in compromised certificate RSA private
keys for years. The faulty signatures we observed allowed us
to compute private RSA keys associated with a top-10 Alexa
site, several browser-trusted wildcard certificates for organiza-
tions that used a popular VPN product, and a small sporadic
population of other web sites and network devices. These
measurements illustrate the fragility of RSA PKCS#1v1.5
signature padding and provide insight on the risks faced by
unprotected implementations on hardware at Internet scale.

1 Introduction

During 2009-2011, Toyota issued multiple vehicle recalls
after hundreds of crashes had been reported relating to un-
intended acceleration. Initially, Toyota placed the blame on
driver error, shifting floor mats, and sticky accelerator pedals.
In 2013 expert witness Michael Barr testified in the Bookout
v. Toyota Motor Corp. case that a single bit flip sufficed to
kill a throttle monitoring task, resulting in uncontrolled accel-
eration [4, 55]. Toyota lost the case and began settling with
crash victims out of court.

The exact cause of the memory corruption in Toyota ve-
hicles was never established: it could have been buffer over-
flows, cosmic rays, or hardware faults. No matter the underly-
ing cause, the existing hardware protections were insufficient,
and the software was brittle in the face of hardware errors.

Cryptographic software engineering is—fortunately—less
often considered to be a matter of life or death. Nonetheless,
faults can have similarly catastrophic impact on cryptographic
systems. As prior work has shown, attacker-induced or natu-

rally occurring bit flips can corrupt cryptographic computa-
tions, causing them to produce incorrect results, or even leak
secret information or keys [12].

In this paper, we show that these attacks can be applied
entirely passively, allowing a network adversary to derive
TLS RSA private keys by observing network traffic. When
errors occur1 during a server’s RSA signature computation,
the resulting failed handshake can give an attacker sufficient
information to derive the server’s long-term private key.

We demonstrate these attacks by collecting 5.8 billion TLS
handshakes from two different university networks. These
handshakes included 3.3 billion connections using TLS 1.2 or
below and 2.7 billion server signatures. Over a few months,
we found nearly 2,000 non-validating digital signatures from
failed handshakes. Some of these failed handshakes allowed
us to compute three RSA private keys associated with Baidu,
a multinational technology company and top 10 Alexa site.
These keys were used to secure more than a million connec-
tions to hundreds of hosts in our dataset corresponding to
dozens of Baidu’s cloud-based services.

This passive attack is particularly concerning in the con-
text of nation-state adversaries conducting mass surveillance.
Unlike active attacks or remote compromise, which risk leav-
ing evidence of tampering, passive fault analysis leaves no
trace on either client or server. A network adversary only
need observe network traffic passively and perform simple
cryptographic calculations, capabilities that modern nation
states are known to posses and employ for the purposes of
network surveillance. This attack is exacerbated when TLS
servers and clients negotiate non-forward secure ciphers, al-
lowing the network attacker to passively decrypt encrypted
TLS payloads using the server’s private key, without leaving
any trace of compromise.

In addition to demonstrating passive fault attacks, we also
carried out active scans of TLS hosts, and performed a retro-
spective analysis of historical TLS scan data between 2015
and 2022 that included tens of thousands of non-validating

1perhaps due to bit flips, faulty hardware, memory corruption, or disk failure

USENIX Association 31st USENIX Security Symposium 233

signatures. In total, we computed 127 private keys from these
active scans.

We compare our results to active scans from a 2015 techni-
cal report by Weimer [53], who appears to have been the first
to observe that active scans could be used to detect or trigger
these types of RSA signature faults at scale. He found that
several open-source TLS libraries did not implement counter-
measures against signature faults, and performed active TLS
scans over a period of months that resulted in a few hundred
invalid signatures that successfully compromised private keys,
mostly from devices from several vendors.

Our passive analysis and recent active scans show that
these problems are still present in current implementations.
We were able to compute the browser-trusted private keys
for a handful of user-facing web sites from sporadic faults,
as well as observing dozens of certificate private keys com-
promised by devices. These certificates span from untrusted
device default certificates to CA-signed browser-trusted wild-
card certificates for entire organizations. Although all of the
open source libraries we inspected have implemented counter-
measures, it appears some proprietary TLS implementations
are still vulnerable to this attack.

From signature faults to key recovery. The flaw we ex-
ploit is well known in the cryptographic side channel literature.
Boneh, DeMillo, and Lipton describe in their 1997 paper [11]
an RSA key recovery attack: Almost all RSA implementations
use the Chinese Remainder Theorem (CRT) optimization for
modular exponentiation in RSA signing, but errors that occur
in one of the half-exponentiations in this algorithm can result
in leaking information that can be used to derive the RSA
private key. Lenstra improved the attack to require only one
signature when the message is known [12, 39]. This attack
works against any deterministic RSA signature scheme using
the CRT optimization. The countermeasure to these attacks is
to validate the RSA signature before sending it.

Prior to Weimer’s work in 2015 [53], almost no implemen-
tations validated RSA signatures before sending. Following
the report, all of the software TLS libraries Weimer contacted
implemented countermeasures, and Cavium issued a patch
for their cryptographic accelerators, which appeared to be at
fault for several of the vulnerable devices he discovered.

In this work, we find that spontaneous faults compromising
RSA keys through PKCS#1v1.5 signatures continue to be
present as a low but persistent rate in both passive and active
network measurements over time, despite the attention drawn
to this vulnerability in 2015 [53]. In the present era in 2022,
we find that this flaw is not just present in the types of network
devices that have already been observed to suffer from crypto-
graphic implementation flaws in previous studies [29, 30, 53],
but that it also affects user-facing websites and infrastructure
that receive significant amounts of network traffic.

These vulnerabilities are due to a hazardous combina-
tion of cryptographic libraries vulnerable in the face of

computational errors, and the brittle nature of the RSA
PKCS#1v1.5 signature padding scheme as used in TLS 1.0–
1.2. PKCS#1v1.5 signature padding makes key compromise
trivial in the presence of CRT faults. Prior to TLS 1.3, hand-
shakes take place in plaintext, providing all the information
a passive network adversary needs to validate signatures on
observed connections, or derive keys when errors occur.

On a more positive note, TLS 1.3 provides multiple coun-
termeasures against these issues, including moving the key
exchange earlier in the handshake in order to ensure that
certificates and signatures are sent encrypted, and using RSA-
PSS signature padding, which prevents this type of key com-
promise if implemented correctly.

Contributions Our contributions are as follows:
• We study the first passively-collected dataset of 2.7 bil-

lion server-generated TLS signatures on real-world net-
work traffic from two universities.
• We investigate the impact of hardware faults in several

signature schemes in practice, including RSA PKCS#1
v1.5, RSA-PSS, and ECDSA
• We demonstrate both the feasibility and the impact of

passively monitoring for cryptographic hardware faults.
• We perform a retrospective analysis of historical TLS

scan data and supplement with current TLS scan data to
examine the impact of this vulnerability over time.
• We discuss defenses to this attack at the application,

library, and protocol level.

Ethical considerations

Passive measurement of real network data invokes natural
privacy concerns. The network measurement and processing
infrastructure we use was developed in consulation with our
campus institutional review boards (IRBs) and network oper-
ations and cybersecurity staff. The tap infrastructure and data
processing protocols we use have been evaluated as exempt
by our respective IRBs.

We have taken several steps to minimize the potential ex-
posure of personally identifiable information from the human
network users whose data we analyze. Campus IP addresses
and MAC addresses that are present in the packets captured
by our infrastructure are discarded during parsing and before
storage. At UCSD, these fields are encrypted with a keyed
format-preserving encryption scheme, and at CU Boulder we
chose not to log source IP addresses at all. All content data
was discarded: we parse only the cryptographic handshakes.
In any case, because we focus on TLS, the content is all en-
crypted. We did not attempt to deanonymize any connections
or decrypt any traffic using the private keys we computed.

The active scans that we performed were rate-limited to
avoid excessive burden on the hosts we connected to, and we
followed best practices for active network scanning including

234 31st USENIX Security Symposium USENIX Association

scanning from an identifiable host with information on our
project, and maintaining an opt-out blocklist.

Disclosure
We disclosed to Baidu on January 26, 2022 and worked with
their team to verify the exposure. Baidu has acknowledged
the problem and corrected the issue. They updated their keys
in late February, 2022. We disclosed to Xerox on May 6, 2022
and have received an acknowledgement. We disclosed a his-
torical vulnerability to doi.gov on May 11, and have received
a confirmation that the vulnerable site has a new certificate
and is no longer public facing. We disclosed to Cisco on May
13, 2022, and have received an acknowledgement. We com-
municated with Microsoft on May 21, 2022 and with Alibaba
Cloud on May 22, 2022. We have included more information
as available below.

2 Background and related work

RSA public keys remain overwhelmingly popular for signa-
ture usage in TLS; in our passive dataset around 90% of TLS
connections used an RSA signature. (See Table 3.)

2.1 RSA signatures
A textbook RSA public key is a pair of integers (N,e) where
N is a public modulus that is the product of two equal-sized
primes p and q, and e is the public signature verification
exponent, nearly always set to 65537 in TLS. The private key
is the pair (N,d) where d = e−1 mod (p− 1)(q− 1) is the
secret signing exponent.

A textbook RSA signature s on a message m is the value s=
md mod N. To verify a textbook RSA signature, the verifier
checks whether m ?

= se mod N.

2.1.1 Padding and Optimizations

Textbook RSA signatures as described above are vulnerable
to a number of elementary signature forgery attacks [13], so
RSA signatures are generally padded and hashed.

PKCS#1v1.5 The most common RSA signature padding
scheme historically has been PKCS#1v1.5 padding [37]. For
signatures, this padding takes the form
pad(m) = 00 || 01 || FF .. FF || ASN.1 || H(m)
where ASN.1 is an algorithm identifier specifying the hash
function used in the signature, and H(m) is a cryptographic
hash of the message m using the specified hash function. In
typical modern usage, N is 2048 bits, and H is SHA-256 or
SHA-512. The length of the ASN.1 algorithm identifier, null
spacing bytes, and ASN.1 length encoding for the hash is 20
bytes. The FF bytes occupy the remaining space to fill the
padded message to the byte length of the modulus N. The

value pad(m) is exponentiated and validated as in textbook
RSA described above.

RSA PKCS#1v1.5 signature padding has been proven to be
secure in the random oracle model [32]. (This is in contrast
to the case of RSA PKCS#1v1.5 encryption padding, which
is not secure against chosen ciphertext attacks [8] and has
resulted in numerous real-world vulnerabilities [3, 10].)

RSA-PSS RSA-PSS is an alternative randomized RSA
signature padding scheme [5]. A modified version of
RSA-PSS (often referred to as RSASSA-PSS) appears in
PKCS#1v2.1 [35] and 2.2. Unlike PKCS#1v1.5 padding, PSS
padding is randomized using a salt. The input to RSASSA-
PSS is a message hash mHash, which is then hashed together
with padding and the salt s to obtain a string H. H is then pro-
cessed through a mask generating function MGF and xored
with padding and the salt value to obtain a value maskedDB.
The encoded message to which RSA signing is applied is then
pad(mHash) = maskedDB || H || BC
where BC is the hexadecimal byte value. To verify the signa-
ture, the verifier must know the message hash that is being
signed. The verifier inverts RSA signing, parses pad(mHash)
from the padded message, recovers the salt, and then verifies
the salted hash H.

TLS 1.3 specifies the use of PSS padding for RSA. How-
ever, historically RSA-PSS has remained less popular than
PKCS#1v1.5 padding. Gutmann has criticized standardiza-
tions of PSS as potentially being vulnerable to parameter
substitution and malleability attacks [28].

Although PSS is typically described as randomized,
PKCS#1v2.1 contains a note that “randomness is not crit-
ical to security” for PSS, and suggests that “In situations
where random generation is not possible, a fixed value or a
sequence number could be employed instead, with the result-
ing provable security similar to that of FDH” (Full-Domain
Hashing [5]).

CRT Implementations often use the Chinese Remainder
Theorem (CRT) to speed up the modular exponentiation com-
putations required for signing. To do this, an implementation
computes the CRT secret exponents dp = d mod (p−1) and
dq = d mod (q− 1), and the coefficient qinv = q−1 mod p.
Then the value s = md mod N can be computed by first com-
puting the half-exponentiations sp = mdp mod p and sq =
mdq mod q then recovering the full s using Garner’s formula:
s = spqqinv + sq(1−qqinv) = (sp− sq)qqinv + sq mod N.

Modular exponentiation The simplest efficient modular
exponentiation algorithm is the binary square-and-multiply
algorithm. However, textbook square-and-multiply is one of
the canonical examples of an algorithm that is vulnerable
to side-channel attacks, and modern implementations typi-
cally adopt multiple optimizations over textbook square-and-

USENIX Association 31st USENIX Security Symposium 235

multiply [26], as well as using countermeasures against side-
channel attacks. For instance, to protect against side-channel
attacks, implementations may blind the exponent (by adding
multiples of φ(N) for the full exponent, or p−1 or q−1 for
the half-exponents) or message using RSA blinding.

In Section 4.2 we discuss some of the implementation
choices made by popular TLS libraries in more detail. Mes-
sage blinding appears to be near-ubiquitous; exponent blind-
ing less so.

2.2 Fault Attacks against RSA
CRT-RSA RSA is vulnerable to an elementary key re-
covery attack if a fault occurs during the signing process
in an implementation that uses RSA-CRT, originally due
to Lenstra [12, 39]. Let m be the padded and hashed mes-
sage. Then a CRT-based signing implementation would com-
pute two half-exponentiations sp = mdp mod p and sq =
mdq mod q and use the CRT to recover the signature s.

Consider the scenario where a fault occurs during the com-
putation of one of the half-exponentiations, and the result-
ing faulty signature s f does not validate. However, s f has
the property that s f ≡ sp mod p while s f 6= sq mod q. Then
gcd(se

f −m,N) = p, revealing the factorization of N.
This attack requires that the attacker have access to one

faulty signature, and for the attacker to know the padded mes-
sage that was signed. For RSA PKCS#1v1.5, the determinis-
tically padded and hashed message is easy for an attacker to
construct from known hash inputs. In the case of TLS 1.2 and
below, the hash inputs are all parts of the handshake visible
to either a passive observer or active handshake participant.

Any deterministic or partially randomized RSA signature
scheme used with CRT computations is potentially vulnera-
ble [17]. It has been shown that randomized PSS padding is
provably secure against random fault attacks [18].

Other RSA Fault Attacks Lenstra [39] and Boneh, De-
Millo, and Lipton [12] also describe hypothetical key recov-
ery attacks that could apply if transient faults occur during
a non-CRT signing operation that uses a square and multi-
ply or similar exponentiation algorithm to do exponentiation
with the secret exponent d. These attacks both require a large
number of faulty signatures and a specific error pattern that
seems unlikely to arise given current modular exponentiation
implementations and the ubiquity of blinding.

Beyond modular exponentiation, Brier et al. [16] developed
a key recovery RSA fault attack exploiting injecting faults
into the modulus during the CRT reconstruction step, rather
than the modular exponentiation.

2.2.1 Practical fault attack demonstrations

Since the publication of the attacks described above, hardware-
based fault attacks have been extensively studied, mainly fo-

cused on active attackers in the context of smartcard and other
hardware implementations [2, 9, 38, 43].

In the software realm, the Rowhammer attack gave a plau-
sible route for an attacker to induce bit flips in cryptographic
computations. Razavi et al. [49] demonstrated a Rowhammer
attack against RSA that involved flipping bits in the RSA pub-
lic key modulus until the modulus was sufficiently composite
to be easy to factor, and Weissman et al. [54] demonstrated a
CRT-based Rowhammer fault attack against RSA.

Most similar to our work, Weimer [53] carried out active
network scans looking for RSA-CRT faults in TLS signatures
in 2015, and was able to factor more than 200 RSA keys, each
of which was associated with a hardware network device. Of
these keys, three were part of certificates that had been signed
by certificate authorities. (Incidentally, we note that there is a
significant overlap between the device manufacturers listed
by Weimer as producing faulty RSA signatures and the device
manufacturers listed by [29] as producing RSA moduli with
repeated prime factors.)

2.3 ECDSA signatures

ECDSA (elliptic curve digital signature algorithm) [34] is a
randomized digital signature scheme based on elliptic curves.
(ECDSA is based on the structure of DSA, a digital signature
algorithm based on the prime field discrete logarithm problem,
but DSA is almost never used for TLS, so we omit a discussion
here.)

An ECDSA public key consists of a set of curve parameters
together with a public curve point. The curve parameters are
almost always specified by naming a fixed, named curve over
some fixed finite field along with its associated generating
point G of a suitable group of points of prime order n. The
most commonly seen curves are three curves standardized by
NIST, called secp256r1, secp384r1, and secp521r1; the
first is by far the most popular in TLS. The private key is an
integer 0 < d < n, and the public curve point is dG.

To generate an ECDSA signature, let h be the integer rep-
resentation of the message hash h. The signer generates an
ephemeral private key 0 < k < n which is often referred to
as the nonce, and then generates the values r = x(kG) and
s = k−1(h+dr) mod n where the notation x() means to take
the x-coordinate of the curve point, and where the value of r
is interpreted as an integer modulo n in the second equation.
The signature is the pair (r,s).

ECDSA nonce generation ECDSA is well understood to
be fragile if ever used with an insecure random number gen-
erator [14, 15, 30]. If an adversary ever learns the nonce k
used to generate a single signature (r,s), it is simple to derive
the long-term secret signing key d by solving the equation
relating s and k for the secret d, assuming that the message
hash h for the signature is known.

236 31st USENIX Security Symposium USENIX Association

Even more problematic, if a signer ever reuses a nonce
k to sign two different messages with the same private key,
it is simple to recover k and thus the private signing key d.
Let (r1,s1) and (r2,s2) be vulnerable signatures on message
hashes h1 and h2 respectively, with r1 = r2. Then k = (h1−
h2)/(s1− s2) mod n and we can solve for d as above.

Because of this, many modern ECDSA implementations
generate signature nonces deterministically from the secret
signing key and the message to be signed [46].

These deterministic ECDSA nonce constructions will en-
sure that the private key will never be revealed by an insecure
random number generator, but they turn out to be more fragile
against fault attacks.

2.4 Fault attacks on ECDSA

Poddebniak et al. [45] describe efficient fault attacks against
ECDSA that require at least two signatures with the same
signature nonce, one correct and one with a fault.

Let (r,s) be an ECDSA signature as above on message hash
h. If the same message hash is signed a second time and a
fault happens during the computation of r but no errors occur
with the deterministically computed signature nonce k, the
algorithm may return the faulty signature (r f ,s f) with r f 6=
r and s f = k−1(h+ dr f) mod n. An attacker who observes
both the valid signature (r,s) and faulty signature (r f ,s f) can
subtract s f from s and rearrange to solve for k = d(r−r f)(s−
s f)
−1 mod n. This can then be substituted into the the relation

defining s to obtain d = h(s− s f)(s f r− sr f)
−1 mod n.

2.5 TLS

The internet is currently going through an algorithm tran-
sition from TLS 1.2 to TLS 1.3. TLS 1.3 is a significant
change to the TLS handshake compared to previous versions
of SSL/TLS.

TLS can use RSA signatures in two main ways: first, cer-
tificates can contain RSA public keys and signatures to verify
the identity of servers using a certificate authority (CA) public
key. Second, each TLS connection can contain a server key
exchange that carries a signature from the server’s correspond-
ing RSA key. We focus on the latter in this paper.

While certificate keys and associated certificate signatures
are long-lived, the signatures found in the server key exchange
message are generated per-connection. In TLS 1.2 and below,
this signature is over the server parameters (that is, the (el-
liptic curve) Diffie-Hellman key exchange values) as well as
the client and server random nonces that are sent as part of
the client and server hello messages. Servers use their private
key to generate a new signature as part of every handshake
that negotiates an ephemeral Diffie-Hellman (DHE) or ellip-
tic curve Diffie-Hellman (ECDHE) cipher suite. In TLS 1.2,
clients can provide a list of supported signature algorithms

(including padding formats) and hash functions using the sig-
nature_algorithm extension. The server chooses the signature
algorithm and hash function from the client’s list.

If a server computing the key exchange signature has an
error during the signing process, or the packet containing a
signature suffers a transmission error that is not caught by the
TCP checksum, the signature as received by the client will
fail to validate with the server’s public key contained in the
certificate. In this case, the client should send a TLS Alert
message, with a code dependent on implementation.

For our purposes in this paper, TLS 1.2 and below are no-
table compared to other common network protocols because
the server’s signature is over data that is entirely visible to a
passive network attacker: an observer needs only to collect the
client hello, server hello, certificate, and server key exchange
records in order to validate the signature. If the signature fails
to verify, the passive observer would also expect to see the
client send a TLS Alert and close the connection.

TLS 1.3. TLS 1.3 has made multiple major changes af-
fecting the security of RSA signatures. In particular, TLS
1.3 adds a default extension to encrypt the handshake mes-
sages following the client and server hello messages, and
mandates RSA-PSS signature padding for RSA signatures
in the handshake, although PKCS#1v1.5 padding is still al-
lowed for signatures in certificates. The server generates a
signature to validate every handshake, but it is encrypted, so
a passive adversary cannot observe the signature sent by the
server. Our passive analysis is thus not able to use TLS 1.3
handshake data. However, it is still possible to collect and
validate RSA-PSS signatures over TLS 1.3 handshakes using
active scans.

SSH and IPsec also use server signatures for authentication,
but a passive network observer will not be able to indepen-
dently validate the signature because the signature contains
data that a passive observer cannot easily compute, like the
shared Diffie-Hellman secret.

3 Passive Data Collection

Passive network analysis has several advantages over active
scans for measuring the prevalence of cryptographic flaws.
• Scalability. While network researchers commonly scan

using 1 Gbps connections [21], network taps can easily
be 40 or even 100 Gbps. In addition, active scanning for
TLS signature flaws requires checking every signature,
while a passive tap can rely on clients to do the check
for them.
• Realistic datasets. Network tap traffic can observe

servers that traditional active scanning would miss, such
as firewalled hosts, non-public SNI values, sites not in
popular lists, and IPv6 hosts that cannot be enumerated.

USENIX Association 31st USENIX Security Symposium 237

20
21

-10

20
21

-11

20
21

-12

20
22

-01

20
22

-02

20
22

-03

20
22

-04

20
22

-05

0

10M

20M

30M

Date

C
on

ne
ct

io
ns

by
D

ay
UCSD CU Boulder

Figure 1: TLS connections collected over time. Our data
collection process includes several idiosyncracies including
downtime and gaps affecting the data we observe; holiday
breaks and pandemic-related shutdowns have also affected
connection patterns.

• A shift in perspective. Statistics from active network
scans tend to be dominated by a large number of low-
quality devices that are not representative of the hosts
responsible for almost all real network traffic.
• Modeling nation-state adversaries. Nation states con-

ducting mass surveillance are certainly capable of similar
passive attacks, allowing them to decrypt traffic to or im-
personate popular sites without leaving any evidence;
our results demonstrate that a completely passive key
compromise attack remains both feasible and practical
even to less well resourced researchers, and was likely
even more exploitable in the past.
• Ethics. Passive analysis avoids sending unnecessary traf-

fic to servers, and instead relies on connections that are
already made without our involvement.

3.1 Tap architecture
We collected data between October 2021 and May 2022. We
used two network taps for data, one located at UCSD and one
located at CU Boulder.

UCSD’s tap receives a copy of campus wireless network
mirrored from a campus Arista switch using two 10Gbps fiber
lines. Due to limits in our processing capacity we exclude
data from a number of large CDNs to reduce the load on our
processing machine. These IPs account for about 1/3 of the
traffic seen at UCSD. Once that data has been excluded we see
a load of 4-6 Gbps on our server. To process this traffic we use
PF_RING [40] and the Bro [42] Intrusion Detection System 2.
Our analysis includes data on any port that Bro identified as

2Now known as The Zeek Network Security Monitor: https://zeek.org/.
However, our infrastructure is running an older version of Bro.

TLS Version Connections

SSL 3.0 207 0.00%
TLS 1.0 5.8M 0.16%
TLS 1.1 46K 0.00%
TLS 1.2 1.7B 47.50%
TLS 1.3 1.8B 49.04%
TLS 1.3-draft-26-fb 36.7M 1.00%
TLS 1.3-draft-23 449 0.00%
TLS 1.3-draft-28 33 0.00%
TLS 1.3-draft-26 24 0.00%
No version number 84.3M 2.29%

Total 3.7B

Table 1: Version numbers for SSL/TLS seen in UCSD con-
nections. The vast majority of the handshakes we observed
were TLS 1.2 or TLS 1.3. “No version number” indicates that
we did not see a server message containing a version number
for that connection.

TLS traffic. To extract the TLS data we use custom Bro scripts
to parse the TLS handshake messages and write the data out
to logs, which are then written to a Hive database [23].

CU Boulder maintains a custom TLS packet analysis
tool based on PF_RING [40] and adapted from TLS Finger-
print [25], running in a 1U server. This parser received a copy
of all post-firewall traffic traversing the university network
via a 40 Gbps fiber line. We analyze traffic on port 443.

TLS 1.2 Records We collected the following elements
from each TLS 1.2 (or below) handshake:

The 32-byte client and server randoms, server name indica-
tion (SNI), server IP, client fingerprint [25] (a hash of identi-
fying features from the Client Hello such as cipher suites and
extensions in order to identify implementations while keeping
specific devices anonymous), server certificate chain (which
includes the server public key), and finally for connections
using (EC)DHE cipher suites, the server key exchange param-
eters (Diffie-Hellman public values, signature algorithm, hash
algorithm, and the server’s signature).

Alert If an error occurs during the handshake, the client
sends an Alert record to notify the server, and then closes the
connection. Invalid signatures and other errors should produce
a visible Alert record. We store the plaintext alert description.

TLS 1.3 Records TLS 1.3 connections perform an (ellip-
tic curve or prime field) Diffie-Hellman key exchange, with
keys sent in the Key Share extension in the Client and Server
Hello messages. All records following the Server Hello are
encrypted under the derived key, and not passively observable.
This includes the certificate and server’s signature authenti-
cating the connection. Thus, for connections that negotiate
TLS 1.3, we only collect the 32-byte client and server ran-
doms, list of supported cipher suites (and the server selected
one), supported and chosen protocol versions, and the client

238 31st USENIX Security Symposium USENIX Association

https://zeek.org/

Description UCSD CU Boulder

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 561M 41.6% 880M 63.2%
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 647M 48.0% 297M 21.4%
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 68M 5.0% 88M 6.3%
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 53M 4.0% 84M 6.1%
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 9.6M 0.7% 6.6M 0.5%
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 3.6M 0.3% 4M 0.3%
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 3.6M 0.3% 3.9M 0.3%
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 1M 0.1% 2.6M 0.2%
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 1.5M 0.1% 21 0.0%
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 160K 0.0% 300K 0.0%
Unknown 0 0.0% 6.4M 0.2%

Total 1.3B 1.4B

Table 2: Most common cipher suites for TLS 1.2 and below. ECDHE key exchange with RSA signatures were the most
popular public-key choices among cipher options.

and server Diffie-Hellman key exchange values.

3.2 Dataset

In total, we collected 3.3 billion TLS 1.2 and below con-
nections across our datasets. Figure 1 shows the number of
connections we collected over time for both UCSD and CU
Boulder. Among these connections we observed 1.6 million
unique server IPs at UCSD and 1.0 million at CU Boulder.

In our data, we see that the transition to TLS 1.3 is well
under way, but not yet universal. As shown in Table 1, about
half of connections are still being made with TLS 1.2 or below.
More than two thirds of these connections in our datasets
used RSA with PKCS#1v1.5 for the server key exchange
signature. Table 2 lists the cipher suites we observed, with
RSA signature cipher suites being overwhelmingly popular.
Table 3 shows the breakdown of signature algorithms. The
rsa_pkcs1_* signature algorithms represent between 65%
and 70% of signatures we observed at each location.

Limitations Our collection tools both have limitations and
bugs that occasionally cause us to miss some connections.
This means there are idiosyncracies in our reported numbers,
beyond the pre-existing biases present within any given insti-
tution. We report these limitations for completeness.

In particular, for CU Boulder,
• We do not parse connections that do not have a server

key exchange message (That is, connections using RSA
key exchange.)
• Before February 2022, we only parsed alerts from the

client after the server key exchange.
• We do not parse TLS 1.0 handshakes.
• We began collecting TLS 1.3 handshakes in February

2022.
• We miss connections that have dropped or re-ordered

packets in the handshake.
• Until February 2022, we dropped a large number of

MTU-sized packets due to upstream limitations in our
tap infrastructure.

Overall, these limitations mean that we are missing some
data from about 80% of the TLS handshakes that pass through
the CU Boulder network from October 2021 to January 2022,
mainly due to a combination of TLS 1.3 handshakes and
missing packets. After adding support for TLS 1.3, we miss
data from around 50% of TLS handshakes. We report numbers
from completed handshakes.

For UCSD, the limitations include:
• We filter out several large CDNs to reduce the traffic to

a manageable size. This reduces our visibility into the
very largest traffic sources on the network. 3

• Approximately 3.3% of the 3.7 billion TLS connections
we saw experienced some packet loss during collection.

3.3 Checking for anomalies

When a handshake encounters an error, the client or server
would be expected to send a TLS alert containing a 1-byte
description field. Table 4 shows the distribution of TLS Alerts
seen throughout our dataset.

The presence of an alert in a connection signals that the
client had some type of error. We are most interested in the
case of a client who is unable to verify the signature on a
server key exchange message. Overall, alerts happen in well
under 1% of connections, with the most common alerts in
our dataset being unrecognized CA, expired certificate, or un-
parsable messages. The specific alert that a client sends when
encountering an invalid signature in the server key exchange
varies across implementations. OpenSSL appears to send

3Our network analysis infrastructure at UCSD (which is shared with other
researchers) couldn’t keep up with 2x10 Gbps traffic without dropping
packets. A fast IP filter dropping traffic from a few high-volume CDNs
(including Akamai, Vodafone, RPS, megafon, and others) was the simplest
solution that maximized parseable handshake data. These IPs were not
excluded from collection at CU Boulder so we potentially would have seen
evidence of vulnerabilities there.

USENIX Association 31st USENIX Security Symposium 239

Description UCSD CU Boulder

rsa_pkcs1_sha256 521M 38.6% 421M 30.3%
rsa_pkcs1_sha512 366M 27.1% 548M 39.4%
rsa_pss_rsae_sha256 330M 24.5% 230M 16.6%
ecdsa_secp256r1_sha256 108M 8.0% 156M 11.2%
ecdsa_secp384r1_sha384 9M 0.7% 14M 1.0%
ecdsa_secp521r1_sha512 4.8M 0.4% 4.5M 0.3%
rsa_pkcs1_sha1 6.5M 0.5% 400K 0.0%
rsa_pkcs1_sha384 173K 0.0% 1M 0.1%
rsa_pkcs1_sha224 7.4K 0.0% 10K 0.0%
rsa_pss_rsae_sha512 5.7K 0.0% 875 0.0%
ecdsa_sha1 1.9K 0.0% 4.3K 0.0%
rsa_pss_rsae_sha384 490 0.0% 305 0.0%
Unknown 4M 0.3% 15M 1.1%

Total 1.3B 1.4B

Table 3: TLS 1.2 Signature Algorithms. RSA PKCS#1v1.5
signatures were the most common in our dataset, followed by
RSA-PSS and ECDSA.

the decrypt_error alert, which occurs in approximately
0.0002% of connections.

As noted in Limitations in Section 3.2, CU Boulder does
not collect TLS alert messages sent by the server or those sent
after the handshake. Therefore, UCSD sees a wider variety of
alerts in Table 4 compared to CU Boulder.

4 Passive RSA Signature Analysis

In the UCSD data, we saw a total of 1.3 billion TLS connec-
tions where a server signature was sent. For every connection,
we attempted to verify the signatures using the client random,
server random, and server Diffie-Hellman parameters that we
recorded for the connection. Among all these connections, we
found 680 whose signatures did not verify. Of the connections
that did not verify, 420 were signed using RSA, which was
significantly more common than ECDSA in our dataset. See
Table 3. Our CU Boulder data saw an additional 1.4 billion
connections, with 1,306 invalid RSA signatures.

4.1 RSA PKCS#1v1.5 Signatures

Of the invalid signatures, 1,648 used RSA PKCS#1v1.5 signa-
tures. For each faulty signature s f , we examined the structure
of the recovered “message” m f = se

f mod N after a modular
exponentiation with the public key to try to classify the source
of errors more carefully.

Figure 2 depicts a flowchart for how the structure of the
faulty padded “message” m f recovered during the RSA signa-
ture validation process may give some evidence for whether
an invalid signature is due to errors in network transmission
or during computation. Errors that occur in transmission be-
tween client and server would be expected to lead to an alert.
We would not expect to see an alert if errors occurred in our

Description UCSD CU Boulder

certificate_unknown 7.7M 1.1M
protocol_version 1.6K 2.6M
unknown_ca 1.1M 1.4M
handshake_failure 12K 1.1M
internal_error 797K 0
bad_certificate 15K 429K
certificate_expired 99K 99K
illegal_parameter 92K 65K
unrecognized_name 102K 0
unexpected_message 17K 11K
bad_record_mac 1.5K 4.6K
decrypt_error 585 5.1K
user_canceled 3.4K 0
record_overflow 0 3K
bad_certificate_status_response 2.1K 0
access_denied 418 1.1K
unsupported_certificate 13 1.4K
decode_error 170 125
Other 5 46
Unknown 11 0

Total Alerts 10M 6.9M
Total Connections 1.3B 1.4B

Table 4: TLS Alerts

data collection. In either case, transmission or collection er-
rors cannot leak any private key information, while errors that
occur during the server’s computation of the signature may
reveal the private key.

Correct PKCS#1v1.5 padding For 1,442 of the non-
validating signatures, the recovered m f had the correct
padding format for a PKCS#1v1.5-padded signature—that is,
they had the correct fixed padding bytes preceding the hash.
That meant that these signatures failed to validate because
the hash value did not match the recorded client and server
randoms and server key exchange parameters.

This indicates that the problem with these signatures was
not with the RSA calculation but rather with the hash function
calculation either at signature generation or verification. We
hypothesized that potential sources of error could be an error
during the hash function calculation itself on the server, bit
errors that evaded the TCP checksum during transmission, or
corruption that happened after we collected the data.

Of the 1,442 faulty signatures in this category, 50
of the TLS connections were terminated with an
unexpected_message alert, 8 with a decrypt_error
alert, 8 with certificate_unknown, and 4 terminated with
a protocol_version alert.

The remaining 1,372 faulty signatures sent no alerts, sug-
gesting that these errors may have occurred during transmis-
sion or collection. In the UCSD data, 16 connections sent no
alert but had an unsuccessful handshake, suggesting the client
also failed to validate the signature. We found these signa-
tures were formatted as a valid TLS 1.2 RSA signature using

240 31st USENIX Security Symposium USENIX Association

Yes

Incorrect Hash
Does flipping bits in

inputs lead to correct
hash?

Invalid Signature

Is se mod N

properly padded?

Signature issue

Try factoring;

gcd(m - se, N) > 1?

No

Factored key
Derive private key

Yes

Does flipping bits in s
lead to correct

signature?

No

Yes
No

Error in non-CRT
signing, or

too many bit flips

Error in recorded
signature

Error in hash
computation, or

too many bit flips

No

Error in hash inputs

Yes

Figure 2: Factoring flow chart — There are several potential
causes for an observed invalid signature. If an error occurred
during transmission, then we may be able to brute force bit
flips in the signed values or signature to recover the original
values. Alternatively, an error that occured during signature
computation may allow us to factor the RSA key (green).

SHA256, but the connection used TLS 1.0, which computes
the digest differently. These connections were between the
same client and server over the period of a couple seconds.

In order to see if we could recover hypothesized bit flips
during transmission, we brute forced both single-byte errors in
every byte of the hash inputs and double bit errors anywhere
in the hash inputs for all of the failed signatures to see if they
would verify. None did. This suggests to us either that for
the other invalid signatures there were multiple errors in the
values, or that the hash function computation on the server
side experienced a different type of failure.

Incorrect metadata For five signatures we recorded
0x00e6 for their signature algorithm extension, while for one
we recorded 0x00d6. Neither of these are valid values for this
extension. These signatures did not seem to be formatted as a
recognizable RSA padding scheme when raised to the public
exponent and could not be verified. The clients and servers
did not raise errors and did not complete these handshakes,
so we do not know where the error occurred.

Faulty signatures Eliminating the two categories above
left 200 signatures identified as RSA PKCS#1v1.5 in the
handshake where the recovered faulty padded “message” m f
did not have a proper padding format.

For these signatures, we calculated the “correct” m ex-
pected from the collected handshake parameters and checked
whether gcd(m−m f ,N) resulted in a factor of N. For 11 sig-
natures, it did, allowing us to derive the corresponding RSA

private key. We discuss these signatures and keys in more
detail below in Section 4.1.2.

Among the remaining 189 signatures, 10 of the clients
raised decrypt_error and did not complete the handshake.
Of the 179 connections that did not raise an alert, 145 of them
successfully completed the handshake.

For these signatures, we investigated whether a bit error
during the transmission of the signature s might have resulted
in the validation failure. We attempted to test this hypothesis
by brute forcing all possible single-byte errors in s, but none
resulted in a valid PKCS#1v1.5 padding format.

4.1.1 Investigating the CRT Errors

In each of the 11 connections in which we factored the RSA
public key, the connection was made using TLSv1.2, so we
were able to passively collect the signature and the inputs to
the hash function used for signing. Three of the signatures
used SHA-256 for the hash algorithm and eight used SHA-512
as the hash algorithm. Nine of the connections resulted in a
TLS alert—eight decrypt_error and one close_notify—
and the connection was unsuccessful in all eleven cases.

Nine of these faulty signatures were signed with (and re-
vealed the factorization of) the same RSA modulus, and the
two remaining ones revealed two further distinct RSA moduli.

Multiple faulty signatures from the same modulus gave
us some opportunity to investigate the nature of the fault
further. The GCD calculation revealed the same factor p
each time, so we can conclude that the error occurred in
the computation modulo the other factor, q, each time. We
attempted to reproduce the error with single byte errors in
combinations of the inputs to the CRT calculation: q, dq,
and qinv. None of these was successful. We also computed
gcd(mi− se

i mod N,m j− se
j mod N) = di j to see if we might

recover information about an incorrect second factor, but each
of these gave us p, 2p, or 3p.

4.1.2 baidu.com case study

The three private keys revealed by the 11 faulty signatures
in our data were associated with three certificates that were
served from four different IP addresses associated with Baidu.
Two of the certificates were for baidu.com, and the third
was for httpsdns.baidu.com. We confirmed these are the
trusted CA-signed certificates served by Baidu services.

Figure 3 shows the number of connections made to these
IP addresses during our collection period, with markers indi-
cating days we observed the faulty signatures.

However, those certificates were not just used by the four
IP addresses from which we observed faulty signatures. In
our dataset these three certificates were used to secure 1.2 mil-
lion distinct TLS connections, which were directed to 1,121
distinct IP addresses. There were 599 different values for the
server name indication (SNI) among these connections.

USENIX Association 31st USENIX Security Symposium 241

baidu.com
httpsdns.baidu.com

In total, certificates with baidu.com in the common
name field were associated with 37 failed signatures in
our data, 30 of which ended with a decrypt_error, three
without any error, two with close_notify, and one with
certificate_unknown. Eleven of these signatures used
PKCS#1v1.5 padding, and the remaining used RSA-PSS.

Server/code responsible After we disclosed to Baidu, they
informed us that the traffic we observed was between the
clients and Baidu’s golang-based L7 load balancer BFE 4

which offloads cryptographic operations like signature gener-
ation to a hardware accelerator. Baidu did not share details of
the specific cryptographic accelerators other than that Baidu’s
strategy was similar to other giant L7 load balancing deploy-
ments. There are numerous publicly available hardware im-
plementations for such cryptographic workloads including
Mellanox SmartNIC, DPU, Intel QAT, as well as FPGA and
ASIC devices.

To fix the vulnerability, Baidu added a signature validation
check in software. Based on the temporal pattern of signature
errors we observed, we hypothesize that the errors may have
been due to a single failing hardware component which then
passed vulnerable signatures through the unprotected software
implementation. We note that this failure mode is similar to
the 2015 hardware failures described by Weimer [53] who
traced RSA signature errors to a family of Cavium crypto-
graphic hardware accelerators that were used, among other
products, on TLS-terminating load balancers.

In order to investigate whether Baidu’s implementation
might be used elsewhere, we fingerprinted the Baidu server
serving the vulnerable key based on its supported cipher suites
and preference order [20] and observed that this fingerprint
appeared to be unique to Baidu.

Our fingerprinting algorithm sends a TLS connection to
the server claiming to support all known cipher suites, and
observes which one the server selected. We then send a new
TLS connection with the same list, removing the cipher suite
the server chose. We repeat this process until the server sends
an error (meaning they do not support any more cipher suites),
and record the cipher suites and order they picked them. Baidu
supported 7 cipher suites.

We then repeated this process to obtain server fingerprints
for a 1% sample of TLS hosts. We used ZMap [21] to scan
port 443, producing a list of 550K open hosts. Of these, 353K
produced fingerprints without error, with 59K unique finger-
prints. Only 38 of these matched the fingerprint of Baidu.
Each of the 38 IPs presented a certificate for baidu.com.

We also experimented with the RSA private key finger-
printing technique of Janovsky et al. [33] to see if we could
determine the implementation that generated the key. For each
of the two keys we factored, we generated two candidate pri-
vate keys, one for each ordering of prime factors p and q. We

4https://github.com/bfenetworks/bfe

20
21

-1
1-

23

20
21

-1
1-

28

20
21

-1
2-

03

20
21

-1
2-

08

20
21

-1
2-

13

20
21

-1
2-

18

20
21

-1
2-

23

20
21

-1
2-

28

20
22

-0
1-

02

20
22

-0
1-

07

20
22

-0
1-

12

20
22

-0
1-

17

20
22

-0
1-

22

0

5,000

10,000

15,000

20,000

25,000

Date

Figure 3: Total observed connections over time to the four
IP addresses that generated a factorable signature. The
markers indicate when the connections with faulty signatures
occurred. Different shaped markers represent different mod-
uli.

then ran Janovsky et al.’s fingerprinting tool on both private
keys. For one of the orderings for each key the tool identified
it as likely coming from OpenSSL (their group 24) with 90%
confidence. For the other prime ordering, the tool suggested
other libraries with lower confidence.

Active Analysis of baidu.com Servers After discovering
the errors in January 2022, we initiated TLS connections to the
four Baidu IP addresses associated with the faulty signatures
in an attempt to reproduce a faulty signature in a controlled
environment. We completed 500,000 connections from two
IP addresses, with randomized TLS client hello fingerprints
using uTLS [24].

Of these 500,000 completed connections, one signature did
not verify, and our client produced a TLS alert. The signature
used the rsa_pss_rsae_sha512 signature algorithm, so the in-
valid signature did not allow us to extract the factorization of
the public key.

We made an effort to mitigate negative effects on server
performance by rate limiting our scan so that our connections
would be expected to be only a negligible proportion of traffic
for this popular site.

4.2 PKCS#1v1.5 Implementation analysis
To see whether there are open source libraries vulnerable to
key compromise via signature faults, we manually reviewed
source code for a sample of popular open source TLS libraries.
All of the libraries we looked at had code to validate signa-
tures before returning, specifically aimed at preventing this
vulnerability. All of the libraries also used RSA blinding and
the Chinese Remainder Thereom when producing signatures.
Most recent versions also validate the produced signatures.

Table 5 lists the libraries we looked at, and the version/date
that signature validation checks were added to the codebase.

242 31st USENIX Security Symposium USENIX Association

Versions of libraries that predate these are likely vulnerable.

Library Version fixed Date of release
OpenSSL 0.9.6a Mar. 2001

Golang TLS 1.6 Dec. 2015
OpenJDK jdk8u Feb. 2015
Mbed TLS 2.1.0 Sep. 2015
libgcrypt 1.7.0 Aug. 2015
wolfSSL 3.6.8 Sep. 2015

wolfCrypt 4.3.0 Nov. 2019
Nettle 3.2 Sep. 2015

Table 5: TLS implementations — All of the open source
TLS libraries we examined have implemented fixes that cor-
rect this issue, most commonly by verifying the signature
before returning. We note that some of these checks can be
disabled by application configurations.

Some libraries, including OpenJDK, have a configurable
signature check, which applications can disable for perfor-
mance reasons. We cannot tell a priori if applications will
provide their own configurations when using this library and
make them vulnerable. Similarly, wolfSSL added signature
verification for its TLS code in 2015, but the signature check
was not incorporated into wolfCrypt, a lower-level crypto-
graphic library, until several years later. Applications that
used wolfCrypt to produce RSA signatures remained vul-
nerable until a patch was added in 2019 in response to a
Rowhammer-based fault attack [54].

Finally, OpenSSL’s signature check is unique among the
libraries we examined. Rather than simply clear the signature
or return an error if the signature fails, OpenSSL recomputes
the signature without using the CRT optimization (i.e. com-
putes md mod N directly) when its first attempt fails. This
“second try” signature is not checked before it is returned to
the user. As discussed in Section 2.2, there are algorithmic
fault attacks that don’t rely on CRT computations, but they
seem more challenging to exploit.

4.3 RSA-PSS

Of the non-validating signatures in our sample, 78 were signed
with RSA using PSS padding. Of these, 25 terminated with the
TLS alert decrypt_error, 13 with decode error, 2 with
close_notify, and the remaining 38 did not raise an alert. Of
these 38, half of them successfully completed the handshake.

RSA-PSS padding contains a fixed flag byte 0xBC that
should be present in the recovered padded message m =
se mod N derived from a signature s. For each of the faulty
PSS signatures, we checked for the presence of the flag byte
and found that it was present in 30 connections.

For connections missing the flag byte this suggests that the
faults were either due to errors in the modular exponentiation
in the signing process, or to bit errors in the signature value
during transmission. For the connections with the flag byte

this suggests that the error occurred in the computation of the
hash.

To investigate the possibility of bit errors during transmis-
sion, we brute forced all possible single-byte errors in the
signature and did not find any that resulted in validating sig-
natures. To check for errors in the hash generation we brute
forced single-byte errors in the hash inputs and also failed to
find any that resulted in matching hashes.

RSA-PSS has been proven secure against fault attacks if
the salt is randomized and unpredictable [18]. However, if the
salt is predictable and the padded message hash to be signed
is known to the attacker, then PSS would become vulnerable
to the same CRT-based fault attack as any other deterministic
RSA padding.

4.3.1 Is RSA-PSS randomized in practice?

We were intrigued by the note in PKCS#1v2.1, discussed in
Section 2.1, suggesting that randomization is not critical to
the security of PSS and therefore that implementations may
use fixed values or sequence numbers as a salt value.

We examined the salt values used to generate the valid
PSS signatures in our dataset in order to verify whether the
signatures were in fact randomized. This is straightforward:
given a signature s, we recover m= se mod N, verify the 0xBC
flag byte on m, then parse m into maskedDB and H, and recover
the padded salt by xoring maskedDB with H.

We found repeated salt values in 148 out of 330 million
PSS signatures, suggesting that repeats exist, but seem to be
rare enough to make a practical transient fault attack unlikely
outside of more specific implementation choices.

4.3.2 Key reuse between PKCS#1v1.5 and RSA-PSS

It was quite common in our dataset to find both PKCS#1v1.5
and RSA-PSS signatures from the same public key. In the
CU Boulder dataset, of 498,575 distinct RSA public keys
observed, 33,320 of them had generated both PKCS#1v1.5
and RSA-PSS signatures. These keys made up 37% of the
1.6 billion total TLS 1.2 connections seen on this network. In
the UCSD dataset we observed 516,019 distinct RSA keys,
of which 21,916 had generated both PKCS#v1.5 and RSA-
PSS signatures, accounting for approximately 34% of the
1.7 billion TLS 1.2 connections.

Kakvi [36] has formally proven that this type of key reuse is
secure, with a focus on the context of TLS 1.3 supporting both.
However, this proof naturally does not include fault attacks,
since they fall outside of the normal UF-CMA security model
for digital signatures; from that perspective, supporting multi-
ple padding schemes creates a larger attack surface for a given
private key. TLS has historically used the same long-term pri-
vate keys for different protocol versions, both encryption and
signatures, and different cipher and algorithm options, which
has enabled a variety of downgrade attacks [1, 3, 7].

USENIX Association 31st USENIX Security Symposium 243

4.4 ECDSA statistics
In the UCSD data, we observed 121 million ECDSA signa-
tures, and at CU Boulder we observed 77 million. At UCSD
all but 260 of these signatures validated, while CU Boulder
identified 207 signatures that failed to verify.

We investigated whether the circumstances necessary for a
successful passive fault ECDSA attack might arise in the data
we observed. Recall from Section 2.4 that a two-signature
ECDSA fault attack requires a correct and a faulty signature
using the same message hash h and signature nonce k. For
an implementation using deterministic ECDSA nonce gener-
ation, we would expect to see the same nonce k used every
time a message hash h is signed.

However, in the TLS context, it seems less plausible that a
passive network attacker might see multiple signatures over
the same message hash h, since the server signature includes
the client and server randoms, which are supposed to be
freshly randomly generated for each handshake. Thus in prin-
ciple, TLS ECDSA signatures should not be vulnerable to
fault attacks.

Connections w/ repeated UCSD CU Boulder

Server Random 58K 136
Client Random 77K 25K
Server Parameters 191M 176M
Client Random and Server Random 29K 0
Client Random and Server Parameters 919 839
Server Random and Server Parameters 1.1K 0
Client Random, Server Random, 904 0

and Server Parameters

Total Connections Seen 1.3B 1.4B

Table 6: Repeated nonces and key exchanges in TLS 1.2.
We find that non-unique ECDHE parameters remain common
among servers, and a small fraction of clients and servers use
non-unique randoms.

In practice, however, we observed a small but non-
negligible number of handshakes that repeated all of these
values. Table 6 summarizes the repeated values across our
observed connections.

Repeating client and server nonces In the UCSD data we
observed 6,566 distinct client random values that appeared
in more than one connection. 77,354 connections used one
of these non-unique values. 1,936 distinct server random val-
ues appeared in more than one connection; these appeared
in 58,099 connections. Of these connections, 1,210 of the
non-unique client randoms and 308 of the non-unique server
randoms appeared in connections that included ECDSA sig-
natures. Furthermore, 74 of these connections with ECDSA
signatures repeated not only the client and server random, but
also the Diffie-Hellman key exchange parameters; there were
37 distinct duplicated sets of values.

Repeating server key exchange parameters Although
(elliptic curve) Diffie-Hellman is often described as providing
“perfect forward secrecy” because in principle both the client
and server generate fresh key exchanges for every connec-
tion, this is not actually the case for many implemenations. In
particular, many servers have been observed to reuse Diffie-
Hellman key exchange parameters for days to months [51].

In OpenSSL, this behavior was historically governed by the
SSL_OP_SINGLE_DH_USE flag; as of OpenSSL version 1.0.2f
released in 2016, this option is always on.

Our data shows that non-unique server ECDH parameters
are very common; in the UCSD data almost 15% of observed
connections used a non-unique set of server key exchange
parameters.

4.4.1 Compromised ECDSA keys from insecure RNGs

Although it is not the main focus of our paper, we also checked
our collected ECDSA signatures for repeated signature nonces
that would allow us to compute a server’s private signing key.

In our data we found 637 connections with 183 different
repeated signature r values, allowing us to compute two dif-
ferent ECDSA private keys. All the connections were to the
same IP address, which we identified as a Xerox AltaLink
C8155 printer located on the UCSD campus. This server was
repeating its server random value, its chosen Diffie-Hellman
parameters, and its choice of k on new connections with the
same client. In our data the repeated values were close in
time with a maximum interval of five minutes in between con-
nections. The values did not appear to be hard-coded, since
they differed across different connections over time. In total,
we saw 7,043 connections to this server all using one of the
two compromised keys. We hypothesize that a faulty random
number generator led to this vulnerability.

5 Active scanning

To supplement the passive network data, we also analyzed
historical scan data and performed more recent active scans
of TLS.

In total, we derived 127 distinct private keys from 128
hosts with faulty signatures across all our active scans. These
include 54 keys revealed from historical scans between 2015
and 2020, and 73 keys computed from three weeks of daily
active scans in 2022.

5.1 Collecting TLS signatures from old scans
The historical scan data we collected is a patchwork of full
IPv4 scans carried out using ZMap and ZGrab, beginning in
2015. The majority of the data was originally downloaded
from scans.io. This regular data collection was taken over
by Censys [19] who now carries out regular internet-wide
scans, but they do not collect the TLS handshake data we

244 31st USENIX Security Symposium USENIX Association

scans.io

2016 2017 2018 2019 2020
0

20M

40M

Scan Date

T
L

S
C

on
ne

ct
io

ns

0

2K

4K

Si
gn

at
ur

e
er

ro
rs

Total RSA Errors

Figure 4: RSA signatures and errors over time. We exam-
ined historical full IPv4 TLS scans on port 443 that were
collected using ZMap/ZGrab between 2015 and 2020 for dif-
ferent research projects. Although some of the scans were
carried out using different methodology and may have re-
quested different cipher suites, we see that the number of
successful connections, the number of connections that in-
cluded an RSA signature, and the number of RSA signatures
that did not validate have all risen over time.

need for our analysis. Since 2020, their dataset no longer
includes TLS signatures, and it appears that the Censys Uni-
versal Internet Dataset generated from scan data prior to the
deprecation of handshake signatures in 2020 only includes
successful handshakes, and thus omits the errors we are look-
ing for. We analyzed 2019 ZGrab scan data provided as a
paper artifact by Wan et al. [52], and a 2020 TLS scan pro-
vided by Izhikevich [31].

Because the historical scans we analyze were collected for
a variety of previous research projects, the scan methodology
and information collected has changed over the years, and
there are gaps in the data.

Figure 4 shows the number of successful TLS handshakes
for these scans over time, the number of handshakes contain-
ing RSA signatures, and the number of RSA signatures that
did not validate in each scan.

Most significantly for our analysis, ZGrab’s TLS module
does not record the signature hash. For scan data through 2015,
the records contain all of the handshake values necessary to
reconstruct the hash (client and server randoms and server
key exchange). However, after 2015 ZGrab stopped recording
the client random from the exchange and does not save the
signature hash.

For later scans, we were able to use the approach of Coron
et al [17] to identify vulnerable signatures for some choices of
hash function and key length. In particular, for 1024-bit RSA,
we were only able to recover keys from faulty signatures
using SHA-1, because longer hash lengths were prohibitively
slow (SHA256) or infeasible (longer hash lengths). For 2048-
bit keys, we could recover keys from faulty signatures using
SHA1, the 36-byte combination of MD5 and SHA1 in TLS
1.0 and 1.1, and SHA256. For larger keys, key recovery was

efficient for any hash function.

5.2 Current scan data
In order to get a clearer picture of the current internet from a
scanning perspective, we also carried out three weeks of daily
TLS scans focused on finding keys from invalid signatures.
The scans were carried out from a dedicated scanning machine
located at UCSD during May and June 2022.

Each daily scan was carried out in two steps. We first
scanned the entire IPv4 address space on port 443 using
ZMap [21] to identify hosts that completed a TCP handshake.
These scans gave 53.0–53.4 million IP addresses responding
on port 443. We then made rate-limited TLS handshakes to
each responsive IP address with a version of ZGrab2 mod-
ified to save the signature hash value. We performed scans
with two lists of cipher suites: first using ZGrab2’s deafult list
(some of which do not involve a signature for key exchange),
and second using a list that only included DHE and ECDHE
cipher suites that required signatures from the server. Our
scans using the default cipher suite list resulted in around
30 million RSA signatures (out of 35 million TLS connec-
tions), of which 850 signatures were invalid on average per
scan. Our second list resulted in 32.7 million RSA signatures
(from 32.8 million connections), with around 1,800 invalid
signatures per scan. The scans cover TLS 1.0–1.2, but do not
include TLS 1.3 handshakes, which ZGrab2 does not support.
We note that TLS 1.3 uses RSA-PSS, which has been proven
secure against fault attacks for properly-randomized salts [18],
so we would not expect to find faulty signatures that allow
key recovery in TLS 1.3 (see Section 4.3).

5.3 Historical and current scan results
From our scan data, there appear to be multiple classes of
errors. Some hosts reappear with compromised signatures in
scans over the course of months to years. This would suggest
that the errors they experience are persistent: disk corruption
or memory corruption affecting the private key. For some of
these hosts that are still online, we were unable to complete a
TLS handshake with them due to persistent handshake errors.

In other cases, the signature errors appear to be transient:
56 of the keys we find appear only once across all our scans.

5.3.1 Affected devices

The landscape of vulnerable keys has changed since 2015,
but it remains the case that most of the vulnerable keys are
associated with network devices rather than general-purpose
trusted servers. Our 2015 scan data reflects a very similar
picture to Weimer’s report: we recovered keys associated with
Hillstone Networks, Viprinet, QNO, and Fortinet. Some of
these devices are quite long lived: we see a QNO device in
scans as late as 2019. We also see certificates from devices

USENIX Association 31st USENIX Security Symposium 245

2015-08-02
2015-08-24
2015-09-10
2015-10-10

2015-12-17

Distinct Factored KeysScan Date

Hillstone QNO ets.org Viprinet Other

Figure 5: Persistence of factored keys in 2015 scans. In our
examination of historical scan data from 2015, we clustered
factored keys by the device or hostname identified by the cer-
tificate. We see some hosts with persistent errors in every scan.
For hosts whose certificates identified Hillstone devices, the
certificates all had the same common name, but the factored
keys seen in each scan were generally distinct keys served
from distinct hosts, suggesting a more sporadic error pattern
across a larger number of devices.

that weren’t mentioned by Weimer, including SonicWALL.
None of these certificates were CA-signed or browser-trusted.

Figure 5 shows the distribution of keys associated with
different types of devices or other host identifiers in our his-
torical 2015 scan data over time. The 2015 scan data also
includes semi-persistent errors on hosts with certificates un-
der ets.org, which no longer appear after October 6, 2015.
The 2019 scan data reveals private keys for a handful of sites
with browser-trusted certificates, including a subdomain of
doi.gov which is no longer accessible to the public.

In our 2022 scan data, nearly all of the compromised keys
that we were able to identify were associated with a variety
of Cisco VPN products. However, in contrast to the situation
in 2015, twenty-nine of these domains served browser-trusted
certificates, including nine wildcard certificates. Of these 29
certificates, 20 were still valid, 6 had expired, and 3 had been
revoked. Many of the non-wildcard, browser-trusted certifi-
cates identified a subdomain for a VPN. Many of these hosts
had persistent signature errors and appeared in most or all of
our daily scans. Figure 6 shows the distribution of factored
keys that appeared in our daily scans from 2022.

In addition to these device-associated keys, we also ob-
served sporadic errors from a small handful of hosts that
appeared to be normal web servers running on Alibaba Cloud
that were running Microsoft IIS 7.0 on Windows Server 2008.
The RSA private key fingerprinting tool of Janovsky et al. [33]
did not identify their private keys as having been generated
by a family of implementations that includes Microsoft Cryp-
toAPI or Microsoft CNG. We performed follow up scans
focused on Alibaba Cloud prefixes. From 26 scans of Alibaba
Cloud, we discovered 8 keys from faulty signatures.

From discussions with Alibaba and Microsoft, it appears
that the Microsoft TLS implementation separates the protocol

2022-05-09
2022-05-16
2022-05-23
2022-05-30
2022-06-06

Distinct Factored KeysScan Date

Cisco Hillstone Zyxel Citrix Alibaba Other

Figure 6: Persistence of factored keys in 2022 scans. For
many of the hosts producing signature errors in our scans, the
errors appear to be persistent across nearly every scan. Other
hosts seem to produce only sporadic errors. The red line on
the y axis marks scans that requested only (EC)DHE cipher
suites, which collects more faulty signatures.

layer from the implementations of cryptographic primitives,
and provides a cryptographic API for smart cards, TPMs,
or other implementations. The software KeyStorageProvider
(KSP) that ships with Windows performs signature validation,
but the TLS implementation may not validate in some cases.
Thus a server that offloads cryptographic operations to an
HSM or hardware accelerator that does not perform validation
may potentially be vulnerable to failing hardware.

6 Defenses

Our results demonstrate yet again that RSA PKCS#1v1.5 and
other deterministic digital signature schemes should be con-
sidered fragile, and that any implementation of deterministic
RSA signature padding or ECDSA nonce generation should
include an extra signature validation step to protect against
transient faults.

Validate signatures before sending Any implementation
using RSA-CRT or deterministic ECDSA nonce generation
to compute signatures must validate all signatures before
sending them across the wire. As discussed in Section 4.2,
nearly every open-source RSA implementation we examined
already does this.

Randomization Signature randomization appears to pro-
vide a real benefit against fault attacks. With ECDSA, how-
ever, signature randomization is a double-edged sword: any
randomness failure for randomly generated signature nonces
results in a compromise of the long-term key. This tension has
arisen in standards discussions; see for example a discussion
that fortuitously arose as we were writing this paper [22]. A
middle ground that should provide protection against both
random number generator vulnerabilities and signature faults
is to generate an ECDSA signature nonce from the private
key, message, and a random input [44].

246 31st USENIX Security Symposium USENIX Association

ets.org
doi.gov

Avoiding CRT computations The RSA vulnerability we
exploit is entirely due to the use of CRT computations. If an
implementation computes an RSA signature by carrying out a
modular exponentiation with the full secret exponent d, then
a fault will not allow an attacker to recover the factorization
of the key in the same way. This countermeasure is already
in use by OpenSSL: if the RSA signature validation fails, the
signature is recomputed using only the private key d.

As noted in Section 2.2, fault attacks against non-RSA-
CRT exponentiation with d can still be vulnerable to fault
attacks, although these attacks seem less plausible to exploit
via spontaneous hardware errors.

Non-defenses Blinding, either of signature or exponent, is
not a defense against these types of fault attacks. The only
thing the RSA attacks require is for any type of fault to occur
in one of the signature components computed for the RSA-
CRT reconstruction. A fault could still occur if the signature
is computed blinded.

7 Discussion

7.1 The persistence of PKCS#1v1.5 padding

PKCS#1v1.5 padding for both RSA encryption and signa-
tures has had a surprisingly long life despite the repeated
demonstrations of catastrophic attacks breaking the security
of both. In both cases, it appears that this has been due to
backwards compatibility concerns. TLS 1.3 has removed both
RSA encryption and PKCS#1v1.5 signature padding, replac-
ing them with (EC)DH key exchange and RSA-PSS, ECDSA,
or EdDSA, respectively. Both of these changes appear to have
caused compatibility issues that are slowing the adoption of
TLS 1.3 [6, 47]. Both PKCS#1v1.5 and PSS padding are ap-
proved in the most recent FIPS 186-5 draft Digital Signature
Standard (DSS) [41].

7.2 Side Channel and Fault Threat Models

Most of the academic work on fault attacks in the context
of RSA has been carried out under an active attack model,
and published in the side channel literature. Protecting im-
plementations against every variant of side channel attacks
is currently impossible, and OpenSSL has publicly declared
that “Certain threats are currently considered outside of the
scope of the OpenSSL threat model. Accordingly, we do not
consider OpenSSL secure against the following classes of
attacks: same physical system side channel; CPU/hardware
flaws; physical fault injection; physical observation side chan-
nels (e.g. power consumption, EM emissions, etc).”

While OpenSSL has implemented defenses against RSA
signature faults, we hope that our observations illustrate that
faults in computations do not require a physical attacker, fault

injection, or a co-located process carrying out a Rowhammer
attack: they may require only a failing hardware device.

7.3 Certificate risks
The patterns of compromise we observe illustrate the risk that
faulty hardware can pose to long-term secret keys. In particu-
lar, if an organization uses a wildcard certificate with a VPN
implementation that leaks that key, an attacker could reuse
the private key to impersonate or decrypt traffic to other hosts
protected by that certificate. This illustrates the importance of
domain separation.

7.4 Re-examining the past
While our passive attack demonstrates lessons that are impor-
tant for the future, it is equally relevant to re-examine this
attack from a historical context. As discussed in [53] and in
Section 4.2, prior to 2015 nearly all popular TLS libraries
were vulnerable to RSA key recovery via signature faults.
Given this historical implementation environment, it is nat-
ural to wonder if this attack could have been exploited in
secret.

The passive nature of an RSA-CRT fault attack makes it an
especially appealing avenue for a nation-state who is able to
perform large-scale network surveillance and has an incentive
to decrypt TLS traffic at scale: they can avoid sending large
numbers of TLS connections to vulnerable sites, which would
scale poorly and leave evidence in observant websites’ logs.
Instead, the adversary only needs to passively observe large
amounts of network traffic, a capability that many nation-
states are known to have, and wait for a transient error. For
instance, the United States’ NSA is known to have deployed
global network taps to collect and analyze large amounts of
Internet traffic prior to 2015 [27].

The state of common TLS cipher suites prior to 2015 paints
an even bleaker picture. Until a few years ago, non-forward
secure RSA key exchanges dominated TLS connections: ac-
cording to a leaked classified NSA document on SSL trends
from the Communications Security Establishment Canada,
over 95% of TLS connections used an RSA key exchange in
2011 [50]. Since TLS versions prior to 1.3 reuse the RSA keys
in a server’s certificate both for digital signatures (if client
and server negotiate a Diffie-Hellman cipher suite) or for en-
cryption (if client and server negotiate RSA key exchange), an
attacker could use signature data to passively recover the RSA
private key, and then use this private key to decrypt observed
RSA-encrypted data from other past or future connections.

7.5 Prospects for the future
The rise of TLS 1.3 spells a slow end to access to the trove
of metadata exposed to passive network observers by the
handshakes for TLS versions 1.2 and below. In addition, TLS

USENIX Association 31st USENIX Security Symposium 247

1.3’s removal of a number of insecure cipher options will
eventually lead to the end of families of cryptographic attacks
that have plagued TLS security for decades.

The adoption of TLS 1.3 does not, however, entirely remove
the possibility of the attacks we discuss. TLS certificates
are typically shared across multiple versions of SSL/TLS
supported by a server, and as long as support for TLS 1.2
and below exists, an attacker could potentially carry out a
TLS 1.3 impersonation or man-in-the-middle attack against
an unprotected implementation that inadvertently exposes its
private key through a faulty TLS 1.2 signature.

However, on the bright side, even for these earlier TLS
versions, the security of the cipher suites offered by servers
and negotiated by clients has improved dramatically over the
past decade, thanks to increased attention, and all signs point
to the continuing ubiquity of TLS and encrypted protocols
and improvements in cryptographic security for all [48].

8 Acknowledgements

We thank Zakir Durumeric and Liz Izhikevich for sharing
their 2019 and 2020 active scan data, Steve Weis, Asil Veral,
Yu Ding, Andrew Chi, David McGrew, and Dan Shumow for
their help with the disclosure process, and the anonymous
reviewers for their constructive suggestions. This research
was supported by NSF grants no. 2048563 and 2145783, and
the DARPA RACE program.

References

[1] David Adrian, Karthikeyan Bhargavan, Zakir Du-
rumeric, Pierrick Gaudry, Matthew Green, J. Alex Hal-
derman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wus-
trow, Santiago Zanella-Béguelin, and Paul Zimmermann.
Imperfect forward secrecy: How Diffie-Hellman fails in
practice. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015, pages 5–17, Denver,
CO, USA, October 12–16, 2015. ACM Press.

[2] Christian Aumüller, Peter Bier, Wieland Fischer, Pe-
ter Hofreiter, and Jean-Pierre Seifert. Fault attacks on
RSA with CRT: Concrete results and practical counter-
measures. In Burton S. Kaliski Jr., Çetin Kaya Koç,
and Christof Paar, editors, CHES 2002, volume 2523
of LNCS, pages 260–275, Redwood Shores, CA, USA,
August 13–15, 2003. Springer, Heidelberg, Germany.

[3] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,
Nadia Heninger, Maik Dankel, Jens Steube, Luke
Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne En-
gels, Christof Paar, and Yuval Shavitt. DROWN: Break-
ing TLS using SSLv2. In Thorsten Holz and Stefan

Savage, editors, USENIX Security 2016, pages 689–706,
Austin, TX, USA, August 10–12, 2016. USENIX Asso-
ciation.

[4] Michael Barr. Bookout v. Toyota 2205 Camry L4 soft-
ware analysis. https://www.safetyresearch.net/
Library/BarrSlides_FINAL_SCRUBBED.pdf, 2013.

[5] Mihir Bellare and Phillip Rogaway. The exact secu-
rity of digital signatures: How to sign with RSA and
Rabin. In Ueli M. Maurer, editor, EUROCRYPT’96, vol-
ume 1070 of LNCS, pages 399–416, Saragossa, Spain,
May 12–16, 1996. Springer, Heidelberg, Germany.

[6] David Benjamin. TLS ecosystem woes: Why your
crypto isn’t real world yet. Talk at Real World Crypto
2018.

[7] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. A messy state of the union: Taming
the composite state machines of TLS. In 2015 IEEE
Symposium on Security and Privacy, pages 535–552,
San Jose, CA, USA, May 17–21, 2015. IEEE Computer
Society Press.

[8] Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the RSA encryption stan-
dard PKCS #1. In Hugo Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 1–12, Santa Barbara, CA,
USA, August 23–27, 1998. Springer, Heidelberg, Ger-
many.

[9] Johannes Blömer, Martin Otto, and Jean-Pierre Seifert.
A new CRT-RSA algorithm secure against Bellcore at-
tacks. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent
Jaeger, editors, ACM CCS 2003, pages 311–320, Wash-
ington, DC, USA, October 27–30, 2003. ACM Press.

[10] Hanno Böck, Juraj Somorovsky, and Craig Young. Re-
turn of bleichenbacher’s oracle threat (ROBOT). In
William Enck and Adrienne Porter Felt, editors, USENIX
Security 2018, pages 817–849, Baltimore, MD, USA,
August 15–17, 2018. USENIX Association.

[11] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
On the importance of checking cryptographic protocols
for faults (extended abstract). In Walter Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 37–51,
Konstanz, Germany, May 11–15, 1997. Springer, Hei-
delberg, Germany.

[12] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
On the importance of eliminating errors in cryptographic
computations. Journal of Cryptology, 14(2):101–119,
March 2001.

248 31st USENIX Security Symposium USENIX Association

https://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf
https://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

[13] Dan Boneh et al. Twenty years of attacks on the RSA
cryptosystem. Notices of the AMS, 46(2):203–213, 1999.

[14] Joppe W. Bos, J. Alex Halderman, Nadia Heninger,
Jonathan Moore, Michael Naehrig, and Eric Wustrow.
Elliptic curve cryptography in practice. In Nicolas
Christin and Reihaneh Safavi-Naini, editors, FC 2014,
volume 8437 of LNCS, pages 157–175, Christ Church,
Barbados, March 3–7, 2014. Springer, Heidelberg, Ger-
many.

[15] Joachim Breitner and Nadia Heninger. Biased nonce
sense: Lattice attacks against weak ECDSA signatures
in cryptocurrencies. In Ian Goldberg and Tyler Moore,
editors, FC 2019, volume 11598 of LNCS, pages 3–20,
Frigate Bay, St. Kitts and Nevis, February 18–22, 2019.
Springer, Heidelberg, Germany.

[16] Eric Brier, David Naccache, Phong Q. Nguyen, and
Mehdi Tibouchi. Modulus fault attacks against RSA-
CRT signatures. In Bart Preneel and Tsuyoshi Tak-
agi, editors, CHES 2011, volume 6917 of LNCS, pages
192–206, Nara, Japan, September 28 – October 1, 2011.
Springer, Heidelberg, Germany.

[17] Jean-Sébastien Coron, Antoine Joux, Ilya Kizhvatov,
David Naccache, and Pascal Paillier. Fault attacks on
RSA signatures with partially unknown messages. In
Christophe Clavier and Kris Gaj, editors, CHES 2009,
volume 5747 of LNCS, pages 444–456, Lausanne,
Switzerland, September 6–9, 2009. Springer, Heidel-
berg, Germany.

[18] Jean-Sébastien Coron and Avradip Mandal. PSS is
secure against random fault attacks. In Mitsuru Matsui,
editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
653–666, Tokyo, Japan, December 6–10, 2009. Springer,
Heidelberg, Germany.

[19] Zakir Durumeric, David Adrian, Ariana Mirian, Michael
Bailey, and J. Alex Halderman. A search engine backed
by internet-wide scanning. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, ACM CCS 2015,
pages 542–553, Denver, CO, USA, October 12–16, 2015.
ACM Press.

[20] Zakir Durumeric, Zane Ma, Drew Springall, Richard
Barnes, Nick Sullivan, Elie Bursztein, Michael Bailey,
J Alex Halderman, and Vern Paxson. The security im-
pact of https interception. In Network and Distributed
System Symposium, 2017.

[21] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
ZMap: Fast internet-wide scanning and its security appli-
cations. In In Proceedings of the 22nd USENIX Security
Symposium, 2013.

[22] Stephen Farrell. EDDSA (un)suited for
mandatory to implement ciphersuite? https:
//mailarchive.ietf.org/arch/msg/cfrg/
Ev8hgyojKeObXMZ7SF2m3_yekMo/, 2022.

[23] Apache Software Foundation. Apache Hive website.
https://hive.apache.org/, 2019.

[24] Sergey Frolov. uTLS. https://github.com/
refraction-networking/utls.

[25] Sergey Frolov and Eric Wustrow. The use of TLS in
censorship circumvention. In Network and Distributed
System Symposium, 2019.

[26] Daniel M. Gordon. A survey of fast exponentiation
methods. Journal of Algorithms, 27(1):129–146, 1998.

[27] Glenn Greenwald. XKeyscore: NSA tool collects
‘nearly everything a user does on the internet’. The
Guardian, 2013.

[28] Peter Gutmann. Why RSA-PSS is much
less secure than PKCS #1 v1.5. https:
//www.metzdowd.com/pipermail/cryptography/
2019-November/035449.html, 2019.

[29] Marcella Hastings, Joshua Fried, and Nadia Heninger.
Weak keys remain widespread in network devices. In
Proceedings of the 2016 Internet Measurement Confer-
ence, IMC ’16, page 49–63, New York, NY, USA, 2016.
Association for Computing Machinery.

[30] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and
J. Alex Halderman. Mining your ps and qs: Detection of
widespread weak keys in network devices. In Tadayoshi
Kohno, editor, USENIX Security 2012, pages 205–220,
Bellevue, WA, USA, August 8–10, 2012. USENIX As-
sociation.

[31] Liz Izhikevich, Renata Teixeira, and Zakir Durumeric.
LZR: Identifying unexpected internet services. In
Michael Bailey and Rachel Greenstadt, editors, USENIX
Security 2021, pages 3111–3128. USENIX Association,
August 11–13, 2021.

[32] Tibor Jager, Saqib A. Kakvi, and Alexander May. On
the security of the PKCS#1 v1.5 signature scheme. In
David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 1195–
1208, Toronto, ON, Canada, October 15–19, 2018. ACM
Press.

[33] Adam Janovsky, Matús Nemec, Petr Svenda, Peter
Sekan, and Vashek Matyas. Biased RSA private keys:
Origin attribution of GCD-factorable keys. In Liqun
Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider,
editors, ESORICS 2020, Part II, volume 12309 of LNCS,

USENIX Association 31st USENIX Security Symposium 249

https://mailarchive.ietf.org/arch/msg/cfrg/Ev8hgyojKeObXMZ7SF2m3_yekMo/
https://mailarchive.ietf.org/arch/msg/cfrg/Ev8hgyojKeObXMZ7SF2m3_yekMo/
https://mailarchive.ietf.org/arch/msg/cfrg/Ev8hgyojKeObXMZ7SF2m3_yekMo/
https://hive.apache.org/
https://github.com/refraction-networking/utls
https://github.com/refraction-networking/utls
https://www.metzdowd.com/pipermail/cryptography/2019-November/035449.html
https://www.metzdowd.com/pipermail/cryptography/2019-November/035449.html
https://www.metzdowd.com/pipermail/cryptography/2019-November/035449.html

pages 505–524, Guildford, UK, September 14–18, 2020.
Springer, Heidelberg, Germany.

[34] Don Johnson, Alfred Menezes, and Scott Vanstone. The
elliptic curve digital signature algorithm (ECDSA). In-
ternational Journal of Information Security, 1:36–63,
2001.

[35] J. Jonsson and B.Kaliski. Public-key cryptography stan-
dards (PKCS) #1: RSA cryptography specifications ver-
sion 2.1. Technical report, Internet Society, 2003.

[36] Saqib A. Kakvi. On the security of RSA-PSS in the
wild. In Proceedings of the 5th ACM Workshop on
Security Standardisation Research Workshop, SSR’19,
page 23–34, New York, NY, USA, 2019. Association
for Computing Machinery.

[37] Burt Kaliski. PKCS# 1: RSA encryption version 1.5,
1998.

[38] Chong Hee Kim and Jean-Jacques Quisquater. Fault at-
tacks for CRT based RSA: New attacks, new results, and
new countermeasures. In IFIP International Workshop
on Information Security Theory and Practices, pages
215–228. Springer, 2007.

[39] Arjen K Lenstra. Memo on RSA signature generation
in the presence of faults. Technical report, EPFL, 1996.
https://infoscience.epfl.ch/record/164524.

[40] ntop. PF_RING: High-speed packet capture, filter-
ing and analysis. https://www.ntop.org/products/
packet-capture/pf_ring/.

[41] National Institute of Standards and Technology.
FIPS 186-5: Digital signature standard (dss).
https://csrc.nist.gov/publications/detail/
fips/186/5/draft.

[42] Vern Paxson. Bro: A system for detecting net-
work intruders in real-time. Comput. Netw.,
31(23–24):2435–2463, December 1999.

[43] Andrea Pellegrini, Valeria Bertacco, and Todd Austin.
Fault-based attack of RSA authentication. In 2010 De-
sign, Automation & Test in Europe Conference & Exhi-
bition (DATE 2010), pages 855–860. IEEE, 2010.

[44] Trevor Perrin. The XEdDSA and VXEd-
DSA signature schemes. https://
signal.org/docs/specifications/xeddsa/
#security-considerations, 2016.

[45] Damian Poddebniak, Juraj Somorovsky, Sebastian
Schinzel, Manfred Lochter, and Paul Rösler. Attack-
ing deterministic signature schemes using fault attacks.
In 2018 IEEE European Symposium on Security and
Privacy (EuroS P), pages 338–352, 2018.

[46] T. Pornin. Deterministic usage of the digital signature
algorithm (DSA) and elliptic curve digital signature al-
gorithm (ECDSA). Technical report, RFC 6979, August,
2013. https://datatracker.ietf.org/doc/html/
rfc6979.

[47] Thomas Pornin. BearSSL TLS 1.3 status. https://
www.bearssl.org/tls13.html.

[48] Qualys. SSL pulse. https://www.ssllabs.com/
ssl-pulse/.

[49] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip feng shui:
Hammering a needle in the software stack. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016,
pages 1–18, Austin, TX, USA, August 10–12, 2016.
USENIX Association.

[50] (redacted) Communications Security Estab-
lishment Canada. TLS trends: A roundtable
discussion on current usage and future direc-
tions. 2012. https://www.spiegel.de/media/
25722dbd-0001-0014-0000-000000035510/
media-35510.pdf.

[51] Drew Springall, Zakir Durumeric, and J. Alex Halder-
man. Measuring the security harm of tls crypto shortcuts.
In Proceedings of the 2016 Internet Measurement Con-
ference, IMC ’16, page 33–47, New York, NY, USA,
2016. Association for Computing Machinery.

[52] Gerry Wan, Liz Izhikevich, David Adrian, Katsunari
Yoshioka, Ralph Holz, Christian Rossow, and Zakir Du-
rumeric. On the origin of scanning: The impact of
location on internet-wide scans. In Proceedings of the
ACM Internet Measurement Conference, IMC ’20, page
662–679, New York, NY, USA, 2020. Association for
Computing Machinery.

[53] Florian Weimer. Factoring RSA keys with TLS
perfect forward secrecy. Technical report, Red
Hat, 2015. https://www.redhat.com/en/blog/
factoring-rsa-keys-tls-perfect-forward-secrecy.

[54] Zane Weissman, Thore Tiemann, Daniel Moghimi,
Evan Custodio, Thomas Eisenbarth, and Berk Sunar.
JackHammer: Efficient Rowhammer on heterogeneous
FPGA-CPU platforms. IACR TCHES, 2020(3):169–
195, 2020. https://tches.iacr.org/index.php/
TCHES/article/view/8587.

[55] Junko Yoshida. Toyota case: Single bit flip that
killed. EE Times, 2013. https://www.eetimes.com/
toyota-case-single-bit-flip-that-killed/.

250 31st USENIX Security Symposium USENIX Association

https://infoscience.epfl.ch/record/164524
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/
https://csrc.nist.gov/publications/detail/fips/186/5/draft
https://csrc.nist.gov/publications/detail/fips/186/5/draft
https://signal.org/docs/specifications/xeddsa/#security-considerations
https://signal.org/docs/specifications/xeddsa/#security-considerations
https://signal.org/docs/specifications/xeddsa/#security-considerations
https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc6979
https://www.bearssl.org/tls13.html
https://www.bearssl.org/tls13.html
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/
https://www.spiegel.de/media/25722dbd-0001-0014-0000-000000035510/media-35510.pdf
https://www.spiegel.de/media/25722dbd-0001-0014-0000-000000035510/media-35510.pdf
https://www.spiegel.de/media/25722dbd-0001-0014-0000-000000035510/media-35510.pdf
https://www.redhat.com/en/blog/factoring-rsa-keys-tls-perfect-forward-secrecy
https://www.redhat.com/en/blog/factoring-rsa-keys-tls-perfect-forward-secrecy
https://tches.iacr.org/index.php/TCHES/article/view/8587
https://tches.iacr.org/index.php/TCHES/article/view/8587
https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/
https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/

	Introduction
	Background and related work
	RSA signatures
	Padding and Optimizations

	Fault Attacks against RSA
	Practical fault attack demonstrations

	ECDSA signatures
	Fault attacks on ECDSA
	TLS

	Passive Data Collection
	Tap architecture
	Dataset
	Checking for anomalies

	Passive RSA Signature Analysis
	RSA PKCS#1v1.5 Signatures
	Investigating the CRT Errors
	baidu.com case study

	PKCS#1v1.5 Implementation analysis
	RSA-PSS
	Is RSA-PSS randomized in practice?
	Key reuse between PKCS#1v1.5 and RSA-PSS

	ECDSA statistics
	Compromised ECDSA keys from insecure RNGs

	Active scanning
	Collecting TLS signatures from old scans
	Current scan data
	Historical and current scan results
	Affected devices

	Defenses
	Discussion
	The persistence of PKCS#1v1.5 padding
	Side Channel and Fault Threat Models
	Certificate risks
	Re-examining the past
	Prospects for the future

	Acknowledgements

