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Abstract
Synthetic data has been advertised as a silver-bullet solu-
tion to privacy-preserving data publishing that addresses the
shortcomings of traditional anonymisation techniques. The
promise is that synthetic data drawn from generative models
preserves the statistical properties of the original dataset but,
at the same time, provides perfect protection against privacy
attacks. In this work, we present the first quantitative eval-
uation of the privacy gain of synthetic data publishing and
compare it to that of previous anonymisation techniques.

Our evaluation of a wide range of state-of-the-art genera-
tive models demonstrates that synthetic data either does not
prevent inference attacks or does not retain data utility. In
other words, we empirically show that synthetic data does
not provide a better tradeoff between privacy and utility than
traditional anonymisation techniques. Furthermore, in con-
trast to traditional anonymisation, the privacy-utility tradeoff
of synthetic data publishing is hard to predict. Because it is
impossible to predict what signals a synthetic dataset will pre-
serve and what information will be lost, synthetic data leads
to a highly variable privacy gain and unpredictable utility loss.
In summary, we find that synthetic data is far from the holy
grail of privacy-preserving data publishing.

1 Introduction
The rise of data-driven decision making as the prevailing
approach to advance science, industrial production, and gov-
ernance generates a need to share and publish data [20,21,65].
At the same time, growing concerns about the implications
that data sharing has for individuals and communities call
for data publishing approaches that preserve fundamental
rights to privacy. Yet, how to share high-dimensional data in
a privacy-preserving manner remains an unsolved problem.
Attempts to anonymise micro-level datasets have failed across
the board [11, 13, 14, 42, 44, 47, 58, 59]. A large number of
publications, case studies, and real-world examples demon-
strate that high-dimensional, sparse datasets are inherently
vulnerable to privacy attacks. The repeated failures to protect

the privacy of microdata releases reflect a fundamental trade-
off: information-rich datasets that are valuable for statistical
analysis also always contain enough information to conduct
privacy attacks [45].

In this landscape, practitioners and researchers see in syn-
thetic data a promising approach to open data sharing that
addresses the privacy issues of previous anonymisation at-
tempts [2, 5, 10, 15, 16, 46, 61, 62, 64, 66–68, 72, 74]. Synthetic
data is presented as “the next, best step in sanitized data re-
lease” [5] that addresses a wide variety of privacy-sensitive
use cases from deriving aggregate insights [55, 73] to out-
lier analysis [40, 63]. Synthetic datasets are promised to pre-
serve the statistical properties of the original data but “contain
no personal data” [61] and hence “enable the protection of
personally identifiable information” [15]. In this work, we
present a rigorous, quantitative assessment of such claims and
challenge the common perception of synthetic data as the
holy grail of privacy-preserving data publishing.

Previous works. Previous studies on the privacy properties
of synthetic data publishing overestimate its benefits over
traditional anonymisation for multiple reasons. A common
argument to support claims about the privacy benefits of syn-
thetic data is that it is ‘artificial data’ and therefore no direct
link between real and synthetic records exists. Hence, many
argue, synthetic data by design protects against traditional
attacks on microdata releases such as linkage [19, 58] or at-
tribute disclosure [19,39]. Consequently, many studies rely on
similarity tests between real and synthetic records to measure
the privacy leakage of synthetic datasets [10, 67, 68]. As we
show in this paper, these studies severely underestimate the
privacy risks of synthetic data publishing. We introduce two
new privacy attacks that demonstrate that, despite its artifi-
cial nature, synthetic data does not protect all records in the
original data from linkage and attribute inference.

More recent works analyse the vulnerability of genera-
tive models against model-specific extraction attacks [8, 26,
28]. Due to their focus on white-box attacks against non-
parametric models for synthetic image generation these works
do not provide the right framework to assess the privacy risks
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of synthetic data sharing in the tabular data domain. In con-
trast, our attacks treat the data synthesis method as a black-
box, focus on tabular data publishing, and allow us to directly
compare the privacy leakage of synthetic data to that of tradi-
tional anonymisation techniques.

Other approaches rely on formal privacy guarantees for
the generative model training process to prevent privacy at-
tacks [1, 6]. While formal definitions of privacy are a clear
improvement over the heuristic privacy models of traditional
anonymisation, their guarantees are often hard to interpret and
difficult to compare to alternative anonymisation techniques.
Here, we propose a framework that enables data holders to
empirically evaluate the privacy guarantees of differentially
private synthetic data publishing and to directly compare its
tradeoffs to that of traditional anonymisation techniques.

Contributions. In this paper, we quantitatively assess
whether (differentially private) synthetic data produced by
a wide range of common generative model types does provide
a higher gain in privacy than traditional sanitisation at a lower
cost in utility. Our results demonstrate that:
(I) Synthetic data drawn from generative models without ex-
plicit privacy protection does not protect outlier records from
linkage attacks. Given access to a synthetic dataset, a strategic
adversary can infer, with high confidence, the presence of a
target record in the original data.
(II) Differentially private synthetic data that hides the signal of
individual records in the raw data protects these targets from
inference attacks but does so at a significant cost in utility.
Worse, in contrast to traditional anonymisation techniques,
synthetic datasets do not give any transparency about this
tradeoff. It is impossible to predict what data characteristics
will be preserved and what patterns will be suppressed.
(III) Our empirical evaluation of the existing implementations
of two popular differentially private generative model training
algorithms reveals that certain implementation decisions vio-
late their formal privacy guarantees and leave some records
vulnerable to inference attacks. We provide a novel implemen-
tation of both algorithms that addresses these shortcomings.
(IV) We make our evaluation framework available as an open-
source library. Our implementation allows practitioners and
researchers to quantify the privacy gain of publishing a syn-
thetic in place of a raw or sanitised dataset and compare the
quality of different anonymisation mechanisms.

2 Synthetic data and generative models

In this section, we formalise the process of synthetic data
generation. Let R be a population of data records where
each record rrr ∈ R contains k attributes: rrr = (r1, · · · ,rk). We
denote the unknown joint probability distribution over the
data domain of the population as DR . We refer to R∼Dn

R , a
collection of n data records sampled independently from DR ,
as raw dataset which defines the data distribution DR.

Synthetic data generation. The goal of a generative model
is to learn a representation of the joint probability distribu-
tion of data records DR. The model training algorithm GM(R)
takes as input a raw dataset R, learns Dg(R), a representa-
tion of the joint multivariate distribution DR, and outputs a
trained generative model g(R). The model g(R) is a stochastic
function that, without any input, generates synthetic records
sssi, distributed according to Dg(R). We denote the process of
sampling a synthetic dataset S = (sss1, · · · ,sssm) of size m as
S∼Dm

g(R). We write g(R)∼ GM(R) instead of g(R)← GM(R)
to indicate that the training algorithm can be a stochastic and
non-deterministic process.

Approximation by features. It is tempting to assume that
the model Dg(R) provides a perfect representation of the data
distribution DR and that synthetic data “carries through all
of the statistical properties, patterns and correlations in the
[input] data” [27]. The trained model, however, only provides
a lower-dimensional approximation of the true data distribu-
tion. It retains some characteristics but can never preserve all
of them. Which characteristics are captured, and how they ap-
proximate DR, is determined by the generative model choice.
Statistical models, such as Bayesian networks [35], or Hidden
Markov models [23], provide an explicit, parametric model of
DR. The features these models extract from their training data
is determined upfront. Non-parametric models, such as gen-
erative adversarial networks (GANs) [25] or variational auto
encoders (VAEs) [33], do not estimate a parametric likelihood
function to generate new samples from Dg(R). Which features
of the input data are most relevant and how the model approx-
imates DR is implicitly determined during training [24].

The features a generative model uses to approximate DR
define which of the statistical properties of the raw data R are
replicated by a synthetic dataset S∼Dg(R) sampled from the
trained model. Statistical models provide some control over
what features will be preserved. However, it is not possible
to exclude that a synthetic dataset reproduces characteristics
of the original data other than the features explicitly captured
by the model. For instance, synthetic data generated through
independent sampling from a set of 1-way marginals is ex-
pected to preserve a dataset’s independent frequency counts.
However, if the raw data contains strong correlations between
attributes, these correlations are likely to be replicated in the
synthetic data even under independent sampling.

2.1 Generative models in this study

In Sections 4.3 and 6.2, we empirically evaluate the privacy
gain of synthetic data publishing for five existing generative
model training algorithms. We implemented three generative
models without explicit privacy protection and two models
with differential privacy guarantees. We chose models rele-
vant to the tabular data sharing use case and to cover a wide
range of model architectures. We further considered their
computational feasibility for high-dimensional datasets and
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whether a working implementation was available. Table 1 in
Appendix 8.1 lists our parametrisation of these models.

IndHist. The IndHist training algorithm from Ping et
al. [50] extracts marginal frequency counts from each data
attribute and generates a synthetic dataset S through inde-
pendent sampling from the learned marginals. Continuous
attributes are binned. The number of bins is a configurable
model parameter.

BayNet. Bayesian networks capture correlations between at-
tributes by factorising the joint data distribution as a product
of conditionals. The degree of the network model is a model
parameter. The trained network provides an efficient way to
sample synthetic records from the learned distribution (see
Zhang et al. [71] for details). We use the GreedyBayes imple-
mentation provided by Ping et al.’s DataSynthesizer [50].

PrivBay. PrivBayes [71] is a differentially private Bayesian
network model. Both, the Bayesian network and the con-
ditional distributions, are learned under ε-differentially pri-
vate algorithms. A synthetic dataset can be sampled from the
trained model without any additional privacy budget cost. We
use the GreedyBayes procedure provided by Ping et al. [50]
to train a differentially private version of BayNet such that a
PrivBay-trained model with ε→∞ corresponds to a BayNet-
model without formal guarantees.

CTGAN. CTGAN [66] uses mode-specific normalisation of tab-
ular data attributes to improve the approximation of complex
distributions through GANs. CTGAN further uses a condi-
tional generator and training-by-sampling to get better perfor-
mance on imbalanced datasets.

PATEGAN. PATEGAN builds on the Private Aggregation of
Teacher Ensembles (PATE) framework [48] to achieve DP for
GANs [32]. PATEGAN replaces the discriminator’s training
procedure with the PATE mechanism. The trained model
provides (ε,δ)-DP with respect to the discriminator’s output.

3 Quantifying the privacy gain of synthetic
data publishing

The promise of synthetic data is that it allows data holders to
publish (synthetic) datasets that are useful for analysis while,
at the same time, protect the privacy of individuals in the
raw data against powerful adversaries [2, 5, 10, 16, 66–68].
The increasing number of applications of synthetic data tools
shows that this has become an appealing proposition [15,
46, 61, 62, 64, 72, 74]. Here, we introduce a novel evaluation
framework that allows data holders to quantitatively assess
claims about the privacy benefits of synthetic data sharing.

Synthetic data as an anonymisation mechanism. Synthetic
data providers often present synthetic data as a novel “data
anonymisation solution” [74] that addresses the shortcom-
ings of traditional sanitisation techniques, such as generalisa-
tion [39, 58] or perturbation [43]. Data holders are promised

that publishing a synthetic in place of the raw dataset prevents
the leakage of private information about individuals in the
raw data previously observed in sanitised datasets [43, 58].

To evaluate this claim, that synthetic data generation is an
effective anonymisation mechanism, we hence need to assess
whether synthetic data addresses the privacy risks that origi-
nally motivated the use of data anonymisation techniques.
These are the risk of linkability and inference [3]. Previ-
ous anonymisation methods such as k-anonymity [58] or l-
diversity [39] have failed to provide robust protection against
these attacks for high-dimensional, sparse datasets [43]. So
far, however, there is no evidence that synthetic data provides
better protection against these attacks at a lower cost in utility
than traditional sanitisation techniques.

A number of recent papers have tackled related problems
but focus primarily on non-parametric models for synthetic
image generation and adversaries with white-box or query
access to the model [8,26,28]. However, like sanitisation, syn-
thetic data is primarily seen as a tool for privacy-preserving
tabular data sharing, i.e., to enable data holders to publish a
single copy of synthetic data as opposed to the trained model
or a set of statistics [15, 46, 64, 72, 74]. In our framework, we
hence assume that the adversary only has access to a syn-
thetic dataset and can not repeatedly query the trained model
or observe its parameters.

3.1 Evaluation framework
The goal of our framework is to quantitatively assess whether
publishing a synthetic dataset S in-place of the raw data R
reduces the privacy risks for individuals in the raw data with
respect to the relevant privacy concerns. We model each pri-
vacy concern as an adversary A that given a raw or synthetic
dataset aims to infer a secret about a target record rrrt from
the population R . For each adversary, we define an advan-
tage measure AdvA that captures by how much including
an individual’s record in the published data increases this
individual’s privacy risk. In Section 4.1 and 6.2, we define
adversaries and advantage measures that model the risk of
linkability and inference, respectively.

Privacy gain. We assess the privacy gain of publishing a
synthetic dataset S in place of the raw data R for target record
rrrt as the reduction in the adversary’s advantage when given
access to S instead of R

PG , AdvA (R,rrrt)−AdvA (S,rrrt) . (1)

A high privacy gain indicates that publishing S in place of
R substantially reduces the privacy risk modelled by adversary
A for target record rrrt . A low gain, in contrast, implies that
the data holder’s decision to publish S or R has no impact
on the privacy loss for target record rrrt , i.e., the adversary’s
advantage remains the same.

The privacy gain hence allows us to assess whether syn-
thetic data is, as promised, an effective anonymisation mech-
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anism. A good anonymisation mechanism should result in a
high privacy gain for all records in the population and under
any potential privacy adversary. A low gain in privacy indi-
cates that the anonymisation mechanism does not provide a
significant improvement over publishing the raw data.

Comparison to previous evaluation approaches. In con-
trast to model-specific evaluation techniques [30], our frame-
work treats the data generating mechanism as a complete
black-box and evaluates the privacy risks of synthetic data
publishing rather than an adversary’s inference power when
given query or white-box access to a model [26, 53]. As
opposed to privacy evaluations based on similarity met-
rics [10, 67, 68], the framework provides data holders with a
direct measure of how well the synthetic data defends against
the privacy risks of data sharing. This makes the evaluation
results easily interpretable and relatable to relevant data pro-
tection regulations [3]. We design and implement the frame-
work in a modular fashion. This ensures that the framework
is not limited to a specific threat model [53] or the privacy
risks modelled in this paper. Instead, it can be adapted to any
privacy concern specific to the data holder’s use case. The
proposed evaluation method is independent of the data gener-
ation method. Thus, it can be used to evaluate the privacy gain
of synthetic data generated by models trained without any ex-
plicit privacy protection, models trained under formal privacy
guarantees [1, 6], or traditional anonymisation techniques.

Worst-case vs. average-case evaluation. Finally, previous stud-
ies have shown that the privacy risks of data sharing are not
uniformly distributed across the population [36,38,54]. While
individuals that are representative of a large majority of the
population are often protected from privacy attacks, outliers
or members of minorities largely remain vulnerable. Our
framework allows to assess privacy risks both at an aggregate
population-level and on a per-record basis. This enables us
to demonstrate that synthetic data provides disparate privacy
gain across population subgroups.

4 Does synthetic data mitigate the risk of link-
ability?

A major privacy concern in the context of privacy-preserving
data sharing is the risk of linkability. Linkage attacks aim to
link a target record to a single record, or group of records,
in a sensitive dataset. Linkage enables adversaries to attach
an identity to a supposedly de-identified record [43, 58] or to
simply establish the fact that this particular record is present
in a sensitive dataset [29].

Related work. The risk of linkability has been demonstrated,
in theory and practice, for a large variety of data types: tab-
ular micro-level datasets [43, 58], social graph data [42, 44],
aggregate statistics [51], and statistical models [57]. Linkage
attacks on tabular microdata usually intend to link a target

record (connected to an identity) to a single record in a sensi-
tive database from which direct identifiers have been removed.

Membership inference attacks (MIAs) are linkage attacks
which target the output of statistical computations run on sen-
sitive datasets, such as aggregate statistics [29, 51] or trained
ML models [57]. ML-oriented MIAs have been extensively
studied on predictive models, such as binary or multi-label
classifiers [37, 56, 57, 69]. Recently, this work has been ex-
tended to GANs and VAEs [8, 26, 28].

4.1 Formalizing linkability as membership in-
ference

In a linkage attack, the adversary aims to learn whether a
record is present in a sensitive dataset. Following works by
Yeom et al. [69] and Pyrgelis et al. [51], we hence model the
risk of linkability as a membership privacy game between
an adversary A and a challenger C . The challenger plays the
role of a data holder that publishes a dataset X that is made
available to the adversary. This dataset could either be a raw
dataset R or a sanitised or synthetic version of R, denoted as
S. The goal of the adversary A is to infer whether a target
record rrrt , chosen by the adversary, is present in the sensitive
dataset R based on the published dataset X and some prior
knowledge P .

Fig. 1 presents the linkability game for the case where
S is a synthetic dataset sampled from a generative model
trained on R. Later, we discuss how the challenger’s protocol
changes when the game models sanitisation. First, A picks
a target record rrrt and sends it to C . C draws a raw dataset R
of size n−1 from the distribution defined by the population
R , and a secret bit st ∼ {0,1}. If st = 0, C draws a random
record rrr∗ from the population (excluding the target) and adds
it to the raw dataset. If st = 1, C adds the target rrrt to the
raw dataset. Then, C trains a generative model on the raw
data R, and samples a synthetic dataset S of size m from the
trained model. C picks at random whether to send back to the
adversary the raw data R or the synthetic data S. A receives
the dataset and makes a guess about the target’s presence in R,
ŝt ← AL (X ,b,rrrt ,P ). The adversary wins the game if ŝt = st .

As in Yeom et al. [69], we assume an equal prior over the
target’s membership in R and define the linkage adversary’s
advantage as:

AdvL (X ,rrrt), 2P
[
AL (X ,b,rrrt ,P ) = st

]
−1 (2)

= P [ŝt = 1|st = 1]−P [ŝt = 1|st = 0] (3)

where X can be a raw R or synthetic S dataset. The prob-
ability space of AdvL is defined by the random choices of
R∼DR and st ∼ {0,1} and the randomness of the synthetic
data generation mechanism and the adversary’s guess.
Adversarial strategy. The adversary’s guess function AL(·)
takes as input a target record rrrt , the information published by
the challenger, X and b, and some prior information P and
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A(P ) C (R )

# Pick Target

1 : rrrt ∈ R
2 : rrrt

# Sample raw data

3 : R∼Dn−1
R

# Draw secret bit

4 : st ∼ {0,1}
5 : If st = 0 :

# Add a random record

6 : rrr∗ ∼DR \rrrt

7 : R← R∪ rrr∗
8 : If st = 1 :

# Add target

9 : R← R∪ rrrt

# Train model

10 : g(R)∼ GM(R)

# Sample synthetic

11 : S∼Dm
g(R)

# Draw public bit

12 : b∼ {0,1}
13 : if b = 0 : X ← R

14 : else : X ← S

15 : X ,b

# Make a guess

16 : ŝt ← AL (X ,b,rrrt ,P )

Figure 1: Linkability privacy game.

outputs a guess about the target’s presence in R. The adver-
sary’s strategy to make a guess changes depending on the data
published.
If C publishes X = R, the adversary simply checks whether
rrrt ∈ R and has a probability of 1 to win the game
(AdvL(R,rrrt) = 1).
If X = S, the adversary performs a binary classification task
on a set of features extracted from the synthetic data S. We ex-
plain how we implement this binary classifier in Section 4.2.
Privacy gain. For each target chosen by the adversary, we
instantiate the game multiple times and measure the adver-
sary’s advantage conditioned on the challenger’s choice of
X . Under our definition of privacy gain in Eq. 1 and with
AdvL(R,rrrt) = 1, the privacy gain of publishing a synthetic
dataset S in place of the raw data with respect to the risk of
linkability is given as:

PG = 1−AdvL(S,rrrt) (4)

A privacy gain of PG= 0 indicates that the adversary infers
the target’s presence in R with perfect accuracy regardless of
whether given access to the raw or synthetic data. If on the

other hand, observing the synthetic data S gives the adversary
no advantage in inferring the target’s presence (AdvL(S,rrrt) =
0), then PG = 1.

4.2 A black-box membership inference attack
We implement the adversary’s strategy as a generic black-box
MIA that is independent of the generative model architecture.
Related work. Existing MIAs on generative models focus
almost exclusively on non-parametric deep learning models
for synthetic image generation [8, 26, 28, 41]. These works
mostly investigate the privacy risks of either model-specific
white-box attacks or set membership attacks that assume the
adversary has access to the entire universe of training records
and come to the conclusion that black-box MIAs that target
specific records perform only slightly better than random
baseline guessing [26, 28]. Unfortunately, previous attacks
do not provide a good basis to evaluate the privacy gain of
synthetic data publishing. Non-parametric models for non-
tabular data cover only a very small set of use cases [15, 46,
72, 74], white-box attacks do not adequately reflect the data
sharing scenario, and set inference attacks are not suitable to
assess individual-level privacy gain.
Shadow model attack. In order to win the linkability game
(see Fig. 1) when she receives a synthetic dataset S, the ad-
versary needs a distinguishing function AL(·) that enables
her to infer the membership of rrrt in the raw data R used to
train the generative model that output S. As in many previous
works, we cast membership inference as a supervised learn-
ing problem and instantiate the adversary’s guess function
with a machine learning classifier trained on data produced
by generative shadow models [51, 57].

As Shokri et al. [57], we assume that, as part of her prior
knowledge P , the adversary has access to the training algo-
rithm GM(·), the size of the raw and synthetic datasets n and m,
and to a reference dataset RA ∼D l

R that comes from the same
distribution as the target model’s training data R∼Dn

R and
may or may not overlap with R. Given this prior knowledge
P and a target record rrrt , the adversary uses the following
procedure to learn AL : First, the adversary samples multiple
training sets Ri of size n from the reference dataset RA . On
each set Ri, the adversary trains a generative model g(Ri) us-
ing the training procedure GM(Ri). From each of the trained
models, the adversary samples multiple synthetic datasets S
of size m and assigns them the label st = 0. The adversary
repeats the same procedure on the same training sets, this time
including the target, R′i = Ri∪ rrrt , and assigns the generated
synthetic datasets the label st = 1. Finally, the adversary trains
a classifier AL on the labelled datasets. The trained classifier
takes as input a synthetic dataset S and outputs a guess ŝt
about the target’s presence in R: ŝt ← AL (S,rrrt ,P ).
Feature extraction. Existing MIAs on predictive models
leverage patterns in the confidence values output by a trained
model that differ between two classes, members and non-
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members [57]. Mounting a successful black-box MIA on a
generative model is much more challenging [26]. The attacker
needs to identify the influence that a single target record has
on the high-dimensional data distribution Dg(R) as opposed
to a low-dimensional confidence vector. Moreover, the output
sampling process introduces additional uncertainty and the
adversary only has access to a single output example.

In other words, the adversary needs to be able to distin-
guish between two distributions, Dg(R∪rrr∗) and Dg(R∪rrrt ), given
a single observation S∼Dm

g(X). To reduce the effect of high-
dimensionality and sampling uncertainty, the adversary can
apply feature extraction techniques. Instead of training a clas-
sifier directly on S, the adversary learns to distinguish feature
vectors extracted from synthetic datasets produced by models
trained with and without the target, respectively. A feature set
can be described as a function f (X) = fff that takes as input
a set of records X from the high-dimensional data domain
and outputs a numerical vector fff that maps X into a lower-
dimensional feature space. Whether the attack using feature
set fff is successful depends on two factors: First, whether
the target’s presence has a detectable impact on any of the
features in fff , and second, whether the synthetic dataset has
preserved these features from the raw data and hence pre-
served the target’s signal.

Implementation. We implement the distinguisher function
AL as an instantiation of our framework’s PrivacyAttack
class (see Appendix 8.1). We leverage the object-oriented
structure of the library to create multiple attack versions that
share the same training procedure but use different attack
models and feature extraction techniques. As feature extrac-
tors, we implemented a naive feature set with simple sum-
mary statistics FNaive, a histogram feature set that contains
the marginal frequency counts of each data attribute FHist,
and a correlations feature set that encodes pairwise attribute
correlations FCorr (see Appendix 8.1).

As attack models, we implemented a Logistic Regression,
Random Forests and K-Nearest Neighbours classifier. All
attack models yielded similar results with a Random Forests
classifier with 100 estimators using the Gini impurity splitting
criterion performing best across datasets, generative models,
and feature sets. In the remainder of the paper we focus on
results obtained using this classifier.

4.3 Empirical evaluation
We first evaluated the expected privacy gain with respect to the
risk of linkability under the three generative models trained
without any formal privacy (see Section 2.1) on two com-
mon benchmark datasets: Adult and Texas. Both are tabular
datasets that contain a mix of numerical and categorical at-
tributes. A detailed description of their characteristics can be
found in Appendix 8.2.

Experiment procedure. We aim to assess whether synthetic
data produced by a wide range of generative model types does,

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

P
G

FNaive FHist FCorr

IndHist BayNet CTGAN

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

P
G

IndHist BayNet CTGAN IndHist BayNet CTGAN

Figure 2: Expected per-record privacy gain for outliers and
random records for the Texas (top row) and Adult (bottom
row) datasets under three different attacks using three distinct
feature sets. Error bars represent the standard deviation.

as claimed, provide robust protection against linkage attacks.
If synthetic data is a “valid, privacy-conscious alternative to
raw data” [5], then its privacy gain should be close to PG = 1
for all target records regardless of the attacker’s strategy. We
evaluate two groups of targets: five records randomly chosen
from the population and five manually chosen outlier records
representative of population minorities and most likely to be
vulnerable to linkage attacks [43]. As outliers, we selected
records that either have rare categorical attribute values or
numerical values outside the attribute’s 95% quantile. For
instance, in the Texas dataset we show the privacy gain for
two records that have high total charges and one record with
high total non-covered charges outside the attribute’s 95%
quantile, and two records with an unusually high risk mortality
and illness severity. For the Adult dataset we followed the
same procedure to select outlier records.

At the beginning of each experiment, we sample a fixed
reference dataset RA of size l from the population and use it to
train the adversary’s distinguisher. For each target record, we
train multiple attack models using the shadow model training
procedure described in Section 4.2. To assess privacy gain,
we repeatedly instantiate the linkability game described in
Fig. 1 for each of our ten targets.

Disparate gain. Fig. 2 shows the average privacy gain across
multiple instantiations of the linkability game for five outlier
targets and five randomly chosen targets for the Texas (top
row) and Adult (bottom row) datasets, respectively. Each
dataset, raw and synthetic, contained n = m = 1000 records.
The adversary was trained on a reference dataset of l =
10,000 records using 10 shadow models.

We find that in both datasets privacy gain is unevenly dis-
tributed across target records. While the control group of
randomly chosen target records ( ) achieves close to perfect
protection (PG≈ 1), other records ( ) remain highly vulnera-
ble to our linkage attack. The privacy gain for the majority of
outlier targets is substantially smaller than PG= 1 (ideal case).
For instance, under an attack using the naive feature set FNaive
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4 out of the 5 selected targets in the Texas dataset achieve
an average gain smaller than 0.8 across all three generative
models. More worryingly, 1 out of the 5 targets tested ( ) con-
sistently receives a privacy gain close to 0 (PG < 0.005) from
synthetic data produced a by CTGAN-trained model. These re-
sults indicate that, contrary to claims by previous works [26],
publishing the synthetic in place of the raw data does not
protect outlier targets from linkage attacks.

Unpredictable gain. Which records remain at risk varies
across generative model type and the adversary’s feature set.
In the Texas dataset, an attack using the FNaive feature set
on CTGAN-produced synthetic data results in a privacy gain
below PG < 0.3 for 3 out of the 5 outlier targets ( , , ). The
same attack on the same targets is less effective on synthetic
data produced by IndHist-trained models. The same group
of targets reaches a maximum gain of PG = 0.77. Attacks on
the Adult dataset are most successful under the correlations
feature set FCorr. Here, IndHist-trained models provide a
minimum gain of PG = 0.64 ( ) under FNaive. The minimum
gain provided by the same model drops below PG < 0.32
if the attacker uses FCorr as input to the attack and leaves a
different target ( ) most vulnerable.

Conclusions. These results are extremely problematic from
the point of view of a data holder seeking to use synthetic
data generation as a privacy mechanism. Ideally, data hold-
ers should be able to predict, given a fixed dataset R and a
generative model training algorithm GM(·), the minimum gain
in privacy they can achieve. Our experiment shows, however,
that this is next to impossible: The level of protection a gener-
ative model provides depends on how much information the
model’s output leaks about the features targeted by the attack.
This means that we can only predict privacy gain if we can
(1) predict what features a potential adversary will target and
(2) whether the synthetic data has preserved these features
from the raw data. In practice, neither of these factors is pre-
dictable. First, like traditional linkage attacks on microdata
releases, a strategic adversary might use any set of features
that are likely to be influenced by the target’s presence [43].
Second, which characteristics a synthetic dataset might pre-
serve is not constrained to the features explicitly represented
by the model. For instance, even the simplest statistical model
IndHist might unexpectedly preserve features targeted by
the attack: Synthetic data produced through independent at-
tribute sampling by an IndHist-model trained on the Adult
dataset leaves some target records vulnerable to linkage at-
tacks using the correlations feature set FCorr. Non-parametric
models, such as CTGAN, do not even provide a parametric spec-
ification for the data’s density function. This makes it even
harder to predict what set of features the model will preserve
and an attack might target.

Previous assessments of the privacy risks of synthetic
data publishing based on aggregate population measurements
severely underestimate the risk of linkage attacks [22, 26, 28].

Our experimental evaluation reveals that synthetic data does
not provide uniform protection against strategic adversaries,
and some outliers remain highly vulnerable.

5 Does differentially private synthetic data
mitigate the risk of linkability?

In the previous section, we demonstrate that non-private data
synthesis algorithms are largely unsuitable as privacy mech-
anisms. This is not an unexpected finding as none of the
evaluated models were originally designed as anonymisation
mechanisms. In this section, we thus extend our analysis to
two model training algorithms explicitly designed to protect
the privacy of a model’s training set, PrivBay and PATEGAN.
We evaluate to which extent their formal privacy guarantees
improve the privacy gain of synthetic data publishing with
respect to the risk of linkability.

Differentially private generative models. Model training
algorithms based on the differential privacy model protect
the privacy of the training data through formal guarantees for
the lower-dimensional approximation of the full-dimensional
data distribution [6,22,32,71]. Synthetic datasets drawn from
differentially private models preserve these privacy guaran-
tees under the post-processing guarantee [17].

The model training algorithm PrivBay learns a differen-
tially private Bayesian network that approximates the relation-
ship between data attributes via the exponential mechanism
and computes the conditionally independent marginals in the
subspaces of the Bayesian network via the Laplace Mecha-
nism [71]. PATEGAN, a differentially private GAN, ensures
that the discriminator’s decisions are not affected by the pres-
ence of a single record in the model’s training set by more
than the defined ε-bound [32].

5.1 Empirical evaluation

We used the experimental procedure described in Section 4.3
to evaluate the privacy gain of PrivBay and PATEGAN. We
integrated the implementations of these algorithms provided
by Ping et al. [12] and Jordon et al. [70] into our framework
and ran the linkability game defined in Fig. 1.

Differential privacy violations. Fig. 3 left shows the results
of this experiment for the Texas (top row) and Adult (bottom
row) datasets under an attack using the histogram feature set
FHist – the overall most effective attack. Both differentially
private models were trained with privacy parameter ε = 0.1.
Surprisingly, we find that neither the original implementation
of PrivBay nor PATEGAN reliably prevents linkage attacks.
Two out of the five outliers in the Texas dataset achieve close
to no gain ( and with PG < 0.1). This low gain violates
the theoretical lower bound on privacy provided by Yeom
et al. [69] (shown as a dashed line in Fig. 3). The bound
given by Yeom et al. [69] limits the expected advantage of the

USENIX Association 31st USENIX Security Symposium    1457



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
G

Original Adjusted

BayNet PrivBay PATEGAN

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
G

BayNet PrivBay PATEGAN

Figure 3: Per-record privacy gain for five outlier targets
records from the Texas (top row) and Adult (bottom row)
datasets under an attack using the FHist feature set.

membership inference adversary to AdvL ≤ eε − 1 which
implies PG≥ 0.89 for ε = 0.1.

Unexpected leakage. To understand these findings, we con-
ducted an in-depth analysis of the design and implementation
of both algorithms. Alongside some minor bugs, our anal-
ysis revealed that, while both models on paper fulfil their
formal privacy definitions, their available implementations
did not. Both PrivBay and PATEGAN require metadata about a
model’s training set to operate. For instance, data holders need
to specify upfront the range of numerical attributes and the
possible values of categorical attributes. To improve usabil-
ity, the existing implementations of PrivBay and PATEGAN

learn this metadata directly from the input dataset. This pro-
cess, in which algorithmic decisions are based on the raw
data, violates important assumptions of the differential privacy
model [18]. This discovery explained our previous results:
Both models extracted crucial information from their input
data in a process not covered by the formal privacy guarantee.
As a result, targets with rare categorical attributes or whose
presence affects the ranges of numerical attributes remained
highly vulnerable to our attack. Their presence in a model’s
training set became detectable due to the occurrence of new
categories or a shift in the ranges of continuous attributes in
synthetic datasets sampled from the trained model.

To avoid this leakage, we patched the PrivBay and
PATEGAN implementations so that both models obtain meta-
data as an independent input to their training process. In our
experiments with the Texas dataset, we used the publicly
available data description to define possible categorical val-
ues and a disjoint subset of the data (population records from
a different year) to obtain an estimate of the expected ranges
of numerical attributes. For the Adult dataset, where no com-
parable metadata is available, we used the dataset to estimate
categories and ranges and generalised each range to hide the
exact value of outlier targets.

Fig. 3 right shows the results of our evaluation under the
patched implementations. For most outliers, privacy gain is
now bounded by its differential privacy guarantee. For those
targets where the expected gain remains below its bound,

the remaining gap can likely be explained either by other
aspects of the model’s implementation that violate theoretical
assumptions and we were not able to find in our analysis, or
due to correlations between the datasets used to derive the
necessary metadata and the model’s training set. Further work
is needed to fully understand this problem.

Conclusions. Differentially private generative models can
provide a significantly higher privacy gain with respect to
linkage attacks than traditional data synthesis algorithms. To
achieve the desired protection it is necessary that, besides a
theoretically sound design, the models’ implementation and
operational environment does not break any of the privacy def-
inition’s theoretical assumptions. Our evaluation confirms that
otherwise there is no guarantee that outliers will be protected
from linkage attacks.

While in our experimental setup we were (mostly) able
to avoid undesired privacy leakage through metadata, it is
unlikely that in practice data holders will be able to follow
our example. Data holders likely do not have access to either
a disjoint subset or a public dataset from the same distribution
that would allow them to define metadata that fits the raw
data they would like to share. Synthetic data sharing is often
motivated by the unique value of sensitive dataset that are
limited in size. This implies that, in practice, data holders
might struggle to achieve the desired strict privacy guarantees,
or face a large utility loss when either using public data or
splitting the available data to derive the necessary metadata.
In Section 6.3, we empirically demonstrate this tradeoff.

6 Does synthetic data improve the privacy-
utility tradeoff of sanitisation?

Synthetic data is often presented as “a new, better alternative
to sanitised data release” [5]. Our results in previous sec-
tions confirm Bellovin et al.’s hypothesis that data synthesis
algorithms without any formal privacy guarantees leave out-
liers vulnerable to linkage attacks [5]. Differentially private
generative models, although hard to implement, reduce these
risks. We now investigate whether “synthetic data may be
combined with differential privacy to achieve a best-of-both-
worlds [privacy and utility] scenario.” [5]. In other words,
whether synthetic data can achieve a higher gain in privacy at
a lower cost in utility compared to traditional sanitisation.

In this section, we assess the privacy-utility tradeoff of syn-
thetic data publishing and compare it to that of traditional
sanitisation. For our comparison, we implement a sanitisa-
tion procedure described by NHS England [46] and assess its
privacy gain with respect to the risk of linkability (see Sec-
tion 4.1) and the risk of inference formalised in Section 6.2.

NHS Sanitisation procedure. A sanitisation procedure S←
San(R) is a deterministic function that applies a set of pre-
defined row-level transformations to the input data R to pro-
duce a sanitised dataset S that fulfils a heuristic privacy defi-
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nition [58]. Common transformations are generalisation, per-
turbation, or deletion of single rows [3]. Following the de-
tails given in [46], we implemented a simple sanitisation
procedure San that reduces the granularity of categorical at-
tributes through grouping, generalises any granular timing or
geographical information, removes any rows with rare cate-
gorical values, caps numerical values to the attribute’s 95%
quantile, and enforces k-anonymity for a pre-defined set of
demographic attributes.

6.1 Privacy gain with respect to linkability

To compare the privacy gain of sanitised and synthetic data
publishing, we repeat the experimental procedure from Sec-
tion 4.3. We adapt the game so that the challenger C , instead
of generating a synthetic dataset S from a trained model g(R)
(lines 10 to 11 in Fig. 1), produces a sanitised version of
R through a pre-defined sanitisation procedure S← San(R).
When the adversary receives a sanitised dataset (b = 1), she
first attempts literal record linkage. Only if the adversary can
not uniquely identify a record that matches the target, she
attempts classification. As in previous sections, we first train
the adversary on a reference dataset RA and then instantiate
the game multiple times for each of the selected targets.

Fig. 4 compares the results of this experiment for the five
outlier targets from the Texas dataset for three different data
sharing mechanisms: traditional sanitisation San with k =
10, synthetic data produced by BayNet-trained models, and
differentially private synthetic data sampled from PrivBay

models with varying ε values. The same experiment on the
Adult dataset yields similar results.

As expected, the privacy gain of row-level sanitisation tends
to be binary: Target records that are likely to be removed from
the shared dataset receive close to perfect gain ( and with
PG≥ 0.8 under all three feature sets). Others remain highly
vulnerable to linkage attacks and receive a substantially lower
gain ( , , with PG≤ 0.3 for at least one attack).
BayNet improves the privacy gain for the latter group: The

three targets that under sanitisation receive close to no pro-
tection from linkage attacks using the naive feature set FNaive
obtain a higher minimum gain ( , , with PG≥ 0.48). Dif-
ferentially private model training further improves protection
and minimum gain increases as ε decreases (PG = 0.77 for
target under ε = 10 and PG = 0.97 under ε = 1.0). This in-
dicates that synthetic data produced by either model (BayNet
and PrivBay) hides changes in the raw data features caused
by the target’s presence and prevents the adversary from in-
ferring the target’s secret. This gain in privacy, however, is
not constant across the population. One out of the five targets
actually loses protection from linkage attacks when sharing a
synthetic instead of the sanitised dataset ( with PG = 0.62
for BayNet and PG = 0.91 for PrivBay with ε = 10 instead
of PG = 1.0 for San under FCorr).

This variability in privacy gain highlights one of the major
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Figure 4: Per-record privacy gain for five outlier target records
from the Texas dataset under three different attacks using
three distinct feature sets.

drawbacks of synthetic data sharing as a privacy mechanism:
unpredictability. Due to the deterministic nature of row-level
sanitisation, the privacy gain of traditional anonymisation
is largely predictable. The high gain in privacy for and
under San is constant across all three feature sets. In contrast,
the privacy gain under BayNet and PrivBay is much more
variable. Before model fitting and an empirical analysis, it is
not possible to predict whether an individual record’s signal
will be preserved and what will be its minimum privacy gain.

6.2 Privacy gain with respect to attribute in-
ference

The risk of linkability is not the only concern in the con-
text of privacy-preserving data sharing (see Section 3). Data
anonymisation also aims to protect individuals in the raw data
from inference attacks. The risk of inference describes the
concern that an adversary might “deduce, with significant
probability, the value of an attribute from the values of a set
of other attributes” [3].

6.2.1 Formalising attribute inference

To evaluate privacy gain with respect to attribute inference,
we define a privacy game similar to the attribute inference
experiment proposed by Yeom et al. [69].

In the attribute inference game, shown in Fig. 5, the
adversary only has access to a partial target record r̃rrt =
(r1, · · · ,rk−1) and aims to infer the value of a sensitive, un-
known attribute rs. At the start of the game, the adversary
picks a target from the population R̃ , a set of records from the
same domain as R but with the sensitive attribute removed.
The challenger receives the partial target record and assigns
it a secret value rs← φ(r̃rrt) where φ represents the projection
of a partial record from R̃ into the domain of the sensitive
attribute according to the distribution DR . C then follows
the same procedure as in the linkability game. The adversary
obtains the dataset X and the public bit b and outputs a guess
about the target’s sensitive attribute value r̂s. This game can
be easily adapted for sanitisation by replacing lines 12 and
13 to produce a sanitised version of R through a pre-defined
sanitisation procedure, S← San(R).

Similar to Eq. 2, we define the adversary’s advantage to
assess the leakage of publishing dataset X with respect to
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A(P ) C (R )

# Pick Target

1 : r̃rrt ∈ R̃
2 : r̃rrt

# Assign sensitive

3 : rs← φ(r̃rrt)

4 : rrrt ← (r̃rrt ,rs)

# Sample raw data

5 : R∼Dn−1
R

# Draw secret bit

6 : st ∼ {0,1}
7 : If st = 0 :

# Add random record

8 : rrr∗ ∼DR \rrrt

9 : R← R∪ rrr∗
10 : If st = 1 :

# Add target

11 : R← R∪ rrrt

# Train model

12 : g(R)∼ GM(R)

# Sample synthetic

13 : S∼Dm
g(R)

# Draw public bit

14 : b∼ {0,1}
15 : if b = 0 : X ← R

16 : elif b = 1 : X ← S
17 : X ,b

# Make a guess

18 : r̂s← AI (X ,b, r̃rrt ,P )

Figure 5: Attribute inference privacy game

attribute inference as:

AdvI (X , r̃rrt), P [r̂s = rs|st = 1]−P [r̂s = rs|st = 0] (5)

where r̂s = AI (X ,b, r̃rrt ,P ) is the adversary’s guess about
the target’s sensitive attribute rs given dataset X and prior
knowledge P .
Adversarial strategy. The procedure to estimate AdvI and
the adversary’s strategy to make a guess about the target’s sen-
sitive value depends on the domain of the sensitive attribute
rs, the value of the public bit b and whether S is a synthetic
or sanitised dataset. When C publishes a raw or sanitised
dataset, the adversary first attempts to infer the missing value
via record linkage [16, 39, 52]. If the adversary can link the
target to a unique record in the dataset X based on its known
attributes, she can reconstruct the target’s missing value with
probability P

[
AI (X ,b, r̃rrt ,P ) = rs|st = 1

]
= 1.

When linkage fails, i.e., C publishes a raw dataset without
the target, a sanitised dataset that hides the target’s presence
or a synthetic dataset, the adversary uses the published data to
train a supervised ML model to predict the target’s sensitive

value based on the known attributes r̃rrt . To learn a mapping
from known to sensitive attributes, the adversary splits the
dataset X into two parts: A feature matrix X̃ that contains the
values for all attributes known to the adversary and a vector xxxs
with the corresponding sensitive attribute values. Depending
on the domain of xxxs, the adversary can either train a regression
or classification model using X̃ as input features and xs as
labels. The trained attack model, denoted as h(·), takes as
input a partial record containing the set of known attributes
and outputs a guess about the label x̂s← h(x̃).

Implementation. We implement the adversary AI as an in-
stantiation of our framework’s PrivacyAttack class (see
Appendix 8.1). For continuous sensitive attributes with rs ∈R,
we implement the attack h(·) using a simple linear regression
model provided by the sklearn library [49]. We centre all
features extracted from the input data and fit a linear model
without intercept. The model fits linear coefficients that min-
imise the root mean squared error between the observed and
predicted target values. We analytically calculate the adver-
sary’s probability of success P [r̂s = rs|st ] as the likelihood
of the true value under the learned linear coefficients (see
Appendix 8.3 for details). For categorical attributes, we use a
simple Random Forests classifier as attack model and estimate
the attack’s success via its classification accuracy.

Empirical evaluation. Fig. 6 shows the privacy gain of the
three data release mechanisms, sanitisation via San and syn-
thetic data produced by BayNet and PrivBay-models with
varying ε values, for the five outlier targets from the Texas
dataset for two distinct sensitive attributes. We chose one con-
tinuous (LengthOfStay) and one categorical attribute (Race)
that might be considered sensitive patient information.

For the continuous attribute LengthOfStay, synthetic data
produced by either BayNet or PrivBay provides close to per-
fect gain for all five targets while row-level sanitisation via
San marginally reduces the adversary’s advantage for three
out of the five targets ( , , with PG≤ 0.2). This implies
that, in contrast to the sanitised datasets, synthetic data does
not preserve the targets’ signal. Even when the generative
model’s training set includes the target record, synthetic data
sampled from the trained model does not contain any patterns
that allow the adversary to infer the target’s sensitive value
and hence AdvI (S,rrrt)�AdvI (R,rrrt). When the attack targets
the categorical attribute Race, the privacy gain of synthetic
data publishing does not significantly increase over that of
sanitised data publishing. Even differentially private gener-
ative model training with ε = 0.1 does not guarantee a high
privacy gain.

To explain this low gain, we plot in Fig. 7 for the target
marked as the adversary’s probability of success on dataset
X when the target is in the dataset ( st = 1), when it is
not ( st = 0), and the resulting adversary’s advantage (
AdvI ). The figure shows that the low privacy gain observed
in Fig. 6 results from the fact that the adversary’s advantage
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Figure 6: Per-record privacy gain for five outlier target records
from the Texas dataset for two distinct sensitive attributes.
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Figure 7: Probability of success and advantage for an at-
tribute inference attack on attribute Race on the Texas dataset.

P [r̂s = rs|st = 0], P [r̂s = rs|st = 1], and AdvI . Data
shown for PrivBay with ε = 1.

is already small when the adversary receives the raw data R.
Thus, publishing a sanitised or synthetic data instead of the
raw data does not lead to any substantial gain in privacy for
this target.

Conclusions. Depending on the attribute targeted by the at-
tack, the privacy gain of synthetic and sanitised data publish-
ing varies substantially. A low gain in privacy either indicates
that the anonymised data still contains enough information
specific to the target record to give the adversary a significant
advantage or it implies that already publishing the raw data
did not incur a significant privacy loss. Where necessary, our
framework allows data holders to make a distinction between
those two cases based on the reported privacy loss. In both
cases, however, a low gain signals that publishing the syn-
thetic or sanitised data does not provide any improvement
over publishing the raw data R. We also observe that there are
records for which privacy gain is high: the dataset published
in place of the raw data successfully hides information about
these records. While this might be good news for privacy, it
comes, as we show in the next sections, at a cost in utility.

6.3 Utility loss comparison

The promise of synthetic data is that its improvement in pri-
vacy gain over traditional sanitisation comes at a negligible
cost in utility. In this section, we empirically evaluate the
utility loss of synthetic data sharing and compare it to that of
row-level sanitisation.

Utility metrics. Besides its potential privacy benefits, sharing
a synthetic in-place of the original dataset incurs certain risks,
such as the risk of false conclusions [2] or the risk of exacer-
bating existing biases in the data [9]. The goal of our utility

evaluation is to assess to which extent the privacy gain of
synthetic data observed in previous sections (see Section 6.1
and 6.2) increases these risks and reduces data utility.

The concepts of utility and utility loss are highly depen-
dent on the data use case and different utility metrics might
yield vastly different results [55, 66]. Therefore, in practice
data holders should conduct their own evaluation based on
appropriate utility definitions when weighing off the risks and
benefits of (anonymised) data sharing.

In this work, we chose a set of simple utility function that
aim to cover a wide range of synthetic data use cases sug-
gested in the literature and reported to us by practitioners.
First, we evaluate in Section 6.3.1 the utility of synthetic data
for use cases that rely on aggregate population metrics, such
as reporting of summary statistics or training machine learn-
ing models [55, 73]. Second, in Section 6.3.2, we turn to one
of the main selling points brought forward by proponents
of synthetic data as a privacy technology: That it enables
the analysis of more fine-grained statistical patterns than ag-
gregate query release mechanisms, including the analysis of
outliers. Financial fraud and medical anomaly detection are
two of the most commonly suggested synthetic data use cases
largely based on the analysis of outliers [40, 63].

The latter class of use cases further motivates us to focus on
the privacy gain and utility loss of outlier records. A simple
way to improve privacy gain for these most vulnerable records
would be to remove them from the dataset, as the high privacy
gain for targets and under San in Fig. 4 demonstrates.
Directly removing vulnerable records from the raw data in-
creases privacy gain but severely impacts the data’s utility,
e.g. in healthcare “this can sometimes mean missing out on
important data that could be used to help future patients” [63].
For this reason, we assess in Section 6.3.2 whether synthetic
data leads to a high privacy gain for outlier records while
preserving their utility benefits for similar records.

6.3.1 Average utility loss

Machine learning utility. We first measure the utility loss of
publishing a synthetic or sanitised dataset S in place of the raw
data R as the decrease in average prediction accuracy over
a hold out set for a prediction model trained on S instead of
R. Due to the limited size of the Adult dataset, we focus our
evaluation on the Texas dataset. We created a pre-processed
dataset that contained all publicly available inpatient records
for the years of 2013 and 2014. We denote records from 2013
as the train population RTrain, and records from 2014 as the
test set RTest . In each experiment, we sample a raw dataset of
size n from RTrain and use it as training set for a prediction
model hR(·)∼ PM(RTrain). We then train a generative model
g(RTrain) on the same raw dataset and sample multiple copies
of synthetic data Si from this generative model. We use these
synthetic datasets to train classifiers hS(·). We follow an anal-
ogous procedure for sanitisation, where we sanitise RTrain
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Figure 8: Test accuracy of prediction models for attribute
RiskMortality in the Texas dataset for three dataset sizes
( n = 1000, n = 2000 and n = 5000). The grey dotted
line shows the random guess baseline.

according to the NHS sanitisation procedure before training
the classifier. Finally, we evaluate the accuracy of each of the
trained classifiers hX (·) on a test set sampled from RTest .

Fig. 8 shows the results of this experiment for a multi-
classification task on attribute RiskMortality with 5 classes
for three different training set sizes ( n = 1000, n = 2000,
and n = 5000). Fig. 15 in the Appendix 8.4 shows the
corresponding privacy gain for various dataset sizes. The
random baseline guess rate is indicated with a dotted grey
line. With n = 1000, classifiers trained on the raw data
hR(·) achieve an average test accuracy of 72.2% which is
comparable to models trained on the sanitised dataset with
70.5%. Using a synthetic version of the data as training set
leads to a significant utility loss: The classifier’s average
test accuracy drops to 68.0% when trained on synthetic data
produced by BayNet. Differentially private model training
further widens this gap. Even with privacy parameter values
as high as ε = 10 the classifier’s mean accuracy with 62.0%
remains 10 points below that of a model trained on the raw
data. Increasing the model’s training set size has a slight effect
on utility. While classifiers trained on the raw data achieve an
average accuracy of 74.2% for n = 5000, average accuracy
under synthetic data produced by BayNet and PrivBay with
ε = 10.0 increases to 68.9% and 68.4%, respectively.

Summary statistics. We use the discrepancy of the mean
(Fig. 9 left) and median (right) of three continuous attributes
between raw, sanitised, and synthetic datasets as additional
utility loss measures. These simple summary statistics are
common metrics used for reporting. While data sanitisa-
tion largely preserves the raw data’s statistics, synthetic
datasets sampled from all models significantly differ from
the raw data. For instance, the empirical mean of attribute
TotalChargesAccomm in raw datasets R sampled from the

population DR ranges between 9K and 11K. In contrast, syn-
thetic data sampled from BayNet models trained on the raw
data produces values ranging from 218K to 232K. The devia-
tion between the raw and synthetic datasets’ characteristics
further increases with decreasing privacy parameter ε and
grows to an error of multiple orders of magnitude.
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Figure 9: Mean (left) and median (right) for at-
tributes TotalCharges, TotalChargesAccomm, and
TotalChargesAncil from the Texas dataset.
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Figure 10: Marginal frequency counts for attribute
RiskMortality from the Texas dataset.

We observe the same trend on the marginal frequency
counts over the categorical attribute RiskMortality, another
common reporting task (see Fig. 10). For instance, publishing
a synthetic dataset sampled from a PrivBay-trained model
in place of the raw data would lead an analyst to overestimate
the relative frequency of category 0 by 3% percentage points
when ε = 10 and up to 15.3% percentage points for ε = 0.1
with a growing variance of the mean error as ε decreases.

These results highlight the risks of synthetic data sharing
outlined in Section 2. Generative models represent a lower-
dimensional approximation of the raw data’s distribution and
only capture a subset of the dataset’s high-dimensional feature
space. Synthetic data sampled from the trained model hence
does not preserve all of the raw data’s statistics and can lead
to a large error on the derived insights. Synthetic data that
accurately reflects the desired statistics would improve utility
but not provide any privacy gain over directly publishing those
aggregates.

No free lunch. In summary, the promising privacy gain of
(differentially private) synthetic data publishing over tradi-
tional sanitisation shown in Fig. 4 comes at a significant cost
in utility. Unsurprisingly, the higher a model’s privacy gain,
the higher its loss in utility. Even models with low theoretical
privacy guarantees (ε > 1) may not provide the expected util-
ity benefits and their utility loss may be prohibitive for many
use cases.

The high utility loss of differentially private models can
partially be explained by their reliance on metadata that needs
to be derived independent of the model’s training set (see
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Figure 11: Absolute distance between the mean of at-
tributes TotalCharges, TotalChargesAccomm, and
TotalChargesAncil in raw and synthetic datasets with

metadata extracted from the raw data (left) and metadata de-
rived independently from the training set (right)

Section 5). This can lead to a significant difference between
the ranges in the raw data and the ones the data holder defines
based on her background knowledge. To optimise the utility
of synthetic datasets, the metadata given as input to the gener-
ative model training must reflect the raw data characteristics
as closely as possible. However, this increases the privacy
leakage of the model and, as we show in Section 5, in the
most extreme case undermines its formal privacy guarantees.

We demonstrate this tradeoff in Fig. 11 and Fig. 12. Fig. 11
compares the absolute distance between the mean of three
attributes in the raw data to the corresponding mean value in
synthetic datasets sampled from models trained given differ-
ent metadata as input. On the left, all models were given the
exact ranges of attributes in the raw data sample. On the right,
models used metadata learned from an independent popula-
tion sample (see Section 5 for more details). In the case where
the model directly learns all metadata from its raw input data
(left), the utility loss of (differentially private) synthetic data
is substantially reduced. For instance, the average distance
between the mean of attribute TotalChargesAccomm in
the raw and synthetic data shrinks from 215K for a BayNet
model trained with fixed ranges to 9K for a model based
on metadata tailored to its training set. The error of differ-
entially private models similarly decreases (from 621K to
34K for PrivBay ε : 10) and with increasing ε values con-
verges to its non-private version. Despite this improvement
the utility loss of all differentially private models we tested
still remains far above that of non-private synthetic data gen-
eration or traditional sanitisation. On the downside, as we
show in Fig. 12 (left metadata tailored to training set, right
metadata derived from an independent population sample),
the utility gain achieved through better metadata leads to a
large loss in privacy. When the model’s metadata is derived
from the raw data, even models with low data utility provide
close to no protection against linkage attacks (PG≤ 0.35 for
three out of five targets tested across all ε values). Models
that due to the use of metadata derived from an independent
population sample result in a high privacy gain unfortunately
do not provide sufficient data utility (see Fig. 11).
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Figure 12: Per-record privacy gain for five outlier target
records from the Texas dataset under an attack using the
FNaive feature set with metadata extracted from the raw data
(left) and metadata derived independently from the training
set (right)

6.3.2 Per-record utility loss

In the previous section, we show that for use cases that aim to
derive aggregate insights from sensitive datasets generative
models with a high privacy gain suffer from low data utility.
However, average population metrics are not the main selling
point of synthetic data. Synthetic data is often advertised as
a solution for analysis tasks focused on more fine-grained
statistical patterns that requires access to row-level data, in
particular, the analysis of rare events and minority population
subgroups. We hence now study whether synthetic data allows
data holders to share datasets that retain the signal of outlier
records without risking their privacy.

To study this relationship between privacy gain and utility
loss, we slightly abuse the notion of advantage and formalise
our utility metric as an advantage measure. This formalisation
allows us to quantify the positive impact that the presence
of a single target record in the training set has on a model’s
performance for individual test records. We define a utility
game, shown in Fig. 13, played between an analyst A and
a challenger C . The analyst’s goal is to train a predictive
model h(·) on a dataset X published by the challenger that
performs well on a chosen test record rrre from the population
RTest . The analyst chooses this test record and a target record
rrrt from the training population RTrain. The analyst sends
rrrt to the challenger, who follows the same procedure as in
the linkability game and sends back the public bit b and the
chosen dataset X . The analyst trains a model on dataset X
and uses it to predict the test record’s label ŷe← hX (r̃rre). The
analyst wins the game if ye = ŷe.

Based on this game, we define the advantage that adding a
record rrrt to the dataset R gives to record rrre as

AdvU(X ,rrre,rrrt), P [ŷe = ye|st = 1]−P [ŷe = ye|st = 0] (6)

where ŷe = hX (r̃rre) is the label produced by a predictive
model trained on data X for test record rrre = (r̃rre,ye) chosen
by the analyst with feature set r̃rre and label ye; and st indicates
the presence of target record rrrt in the raw dataset R.

To empirically evaluate the utility loss of synthetic data
publishing, we use the same split of the Texas dataset as
in the previous section. We ensured that the outlier targets
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A(RTest) C (RTrain)

# Pick target & test

1 : rrrt ∈ RTrain, rrre ∈ RTest rrrt
2 : # Sample raw

3 : R∼Dn−1
R

4 : # Draw secret bit

st ∼ {0,1}
5 : If st = 0 :

# Add random record

6 : rrri ∼DR \rrrt

7 : R← R∪ rrri

8 : If st = 1 :

# Add target

9 : R← R∪ rrrt

# Train model

10 : g(R)∼ GM(R)

# Sample synthetic

11 : S∼Dm
g(R)

# Draw public bit

12 : b∼ {0,1}
13 : if b = 0 : X ← R

14 : elif b = 1 : X ← S
15 : X ,b

# Train model

16 : hX (·)∼ PM(X)

17 : # Make guess

18 : ŷe← hX (r̃rre)

Figure 13: Utility game

used in previous experiments were included in the population
RTrain and re-used them as target records rrrt . We manually
chose five test records in RTest that are semantically similar
to those five target records. For instance, we selected records
with rare categorical attribute values or continuous attributes
outside the test population’s 95% quantile.

Privacy through suppression. We repeatedly ran the utility
game and computed the utility advantage for each of the target-
test record pairs. We show in Fig. 14 the utility advantage for a
prediction task on attribute RiskMortality for two different
dataset sizes (n = 1000 left and n = 5000 right). The colour
of each bar indicates the target record rrrt chosen by A and
bars are grouped by test record rrre along the x-axis. For the
differentially private models, we present data for a PrivBay
model trained with ε= 1.0, the highest ε value under which all
targets still receive robust protection against linkage attacks.

Independent of a model’s training set size, sanitised datasets
tend to reproduce patterns found in the raw data. If a target’s
presence in the raw data has a significant (negative or positive)
impact on a test record’s prediction accuracy, this advantage
is retained in the sanitised data. Synthetic data sampled from

either model (BayNet and PrivBay ε : 1.0) exhibits entirely
different results. For instance, the presence of target record

in the raw training data leads to a negative prediction ad-
vantage with |AdvU | ≥ 0.3 for four out of the five test records
with n = 1000 (Fig. 14 left). The same holds true when the
classifier is trained on data produced by San. With training
on synthetic data produced by BayNet and PrivBay, the test
records’ advantage from the target’s presence vanishes (maxi-
mum advantage of |AdvU | ≤ 0.15 and AdvU | ≤ 0.06).

This indicates that while row-level sanitisation preserves
the statistical signals of outliers, and their potential positive
impact on the prediction accuracy of similar test records,
synthetic data produced by the two models evaluated here
does not retain the targets’ unique influence. In the case of
PrivBay, this is expected: The model’s differential privacy
guarantee ensures that the addition of a single record to its
training set does not affect the model’s output distribution by
more than the defined ε-bound. This is also reflected in the
increased privacy gain of these targets under PrivBay ε : 1.0
compared to San shown in Fig. 4. Our utility evaluation re-
veals that this gain in privacy does not come for free. As an
example, the target marked receives a low gain in privacy
from sanitised data publishing with PG≤ 0.3 under all three
feature sets. Accordingly, the high positive impact the target’s
presence in the raw data has on test record ID2 (AdvU = 0.19
shown in Fig. 14) is preserved under sanitisation. Synthetic
data sampled from PrivBay ε : 1.0 increases the target’s pri-
vacy gain to PG≥ 0.77 but simultaneously reduces the test
record’s advantage to AdvU = 0.02. The same patterns can
be found for other target records and dataset sizes.

Conclusions. The inherent tradeoff between the privacy and
utility of high-dimensional data releases has been shown many
times [31, 43, 51]. We present empirical evidence that syn-
thetic data publishing is subject to the same limitations, and
might even provide less beneficial tradeoffs. Synthetic data
that protects outliers from linkage attacks does so at a cost
in utility for test records from similar minority subgroups.
Differentially private data releases provide more robust pro-
tection, but inadvertently suppress the statistical signal of the
protected records. This decreases the utility of the released
data and prevents statistical models from learning patterns
about certain target groups, potentially increasing the bias and
unfairness of data-driven decision making [4, 9].

7 Key takeaways

Synthetic data is portrayed as a silver-bullet solution to
privacy-preserving data sharing that provides a higher gain in
privacy at a lower cost in utility than traditional anonymisa-
tion techniques [2, 5, 10, 16, 66–68]. In this paper, we quan-
titatively assess this claim and demonstrate that it rarely
holds true. The basic tradeoff between utility and privacy
for high-dimensional data sharing that has been shown many
times [7, 31, 43, 51] remains. If a synthetic dataset preserves
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Figure 14: Utility advantage for 5 test (indicated on the x-axis)
and 5 target (indicated by the colour of each bar) record pairs
for predictions on attribute RiskMortality from the Texas
dataset for n = 1000 (left) and n = 5000( right)

the characteristics of the original data with high accuracy, and
hence retains utility for the use cases it is advertised for, it
simultaneously enables adversaries to extract sensitive infor-
mation about individuals. A high gain in privacy through any
of the anonymisation mechanisms we evaluated here can only
be achieved if the published synthetic or sanitised version of
the raw data does not carry through the signal of individual
records and in effect suppresses their record.

Our findings not only show that synthetic data is subject
to the same tradeoffs as previous anonymisation techniques,
but also demonstrate that the privacy gain of synthetic data
publishing is highly unpredictable. Because it is not possible
to predict which data features a generative model will pre-
serve, it is neither possible to anticipate the minimum gain in
privacy from synthetic data publishing nor its utility loss. In
comparison to deterministic sanitisation techniques, synthetic
data does not allow data holders to provide transparency about
what information will be omitted in the published dataset and
what information will be retained.

We conclude that synthetic data does not provide a better
tradeoff between privacy and utility than traditional row-level
sanitisation, especially for data use cases that focus on the
analysis of outlier signals, such as financial fraud or medical
anomaly detection [40, 63]. Generative models with formal
privacy guarantees reduce private information leakage with
respect to anonymisation but do not preserve the fine-grained
statistical patterns needed for outlier analysis. Our evaluation
further shows that, even for use cases that focus on aggregate
insights, synthetic datasets with a high privacy gain can suffer

from a significant utility loss and can lead to false conclusions.
Even synthetic datasets that do preserve the desired statistics
still present a noisier summary of the data than traditional
privacy-preserving query release mechanisms [17] due to
the additional uncertainty introduced by the output sampling
process.
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8 Appendix
8.1 Framework implementation
We implemented the evaluation framework as a
Python library [75]. The library has two main classes:
GenerativeModels and PrivacyAttacks. For both classes
we define a parent class that determines the core functionality
that objects of the class need to implement.
GenerativeModel provides two main functions. GM.fit()
is called with a raw dataset R as input and implements
the model’s training procedure. GM.sample(m) generates a
synthetic dataset S of size m corresponding to S∼Dm

g(R). The
library enables easy integration of existing model training
procedures. GM.fit() simply wraps any existing training
algorithm and exposes the appropriate API endpoints.
PrivacyAttack objects have two functions: PA.train
and PA.attack. PA.train(rrrt,BK) trains the attack for
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Table 1: Generative Model Hyperparameters

IndHist BayNet PrivBay

nbins nbins degree nbins degree

Adult 45 45 1 45 1
Texas 25 25 1 25 1

CTGAN

embeddings gen_dim dis_dim l2scale

Adult 128 (256,256) (256,256) 10−6

Texas 128 (256,256) (256,256) 10−6

a specific target record rrrt on background knowledge
BK. PA.attack(S), takes a dataset S and outputs a guess
about a secret value. In our implementation, we instantiate
PrivacyAttack with two attacks, a membership inference
adversary and an attribute inference attack. The library also
includes procedures to estimate the privacy gain of synthetic
and sanitised data publishing.
Generative model and feature set parametrisation. We in-
tegrated five existing models into our Python library. Each of
the models has a set of model hyper-parameters that can be
adjusted to fit the input data. In Table 1 we list the parameter
values for each model and dataset used in our experiments.

We implement the adversary’s feature sets as feature ex-
traction objects FeatureSet. Each FeatureSet takes in a
synthetic dataset S of size m× k and outputs a vector of size
l×1. Our library includes the following feature sets:
FNaive. The naive feature set computes the mean, median, and
variance of each numerical attribute and encodes the number
of distinct categories plus the most and least frequent category
for each categorical attribute.
FHist. The histogram feature set computes the marginal distri-
bution of each data attribute. Numerical attributes are binned
with configurable bin size and frequency counts are computed
for categorical attributes. The number of bins per attribute
is configured for each dataset independently. In our experi-
ments, we set the number of bins to 45 and 25 for the Adult
and Texas dataset, respectively.
FCorr. The correlations feature set encodes pairwise attribute
correlations. Categorical attributes are dummy-encoded be-
fore computing the pairwise correlation matrix. The FHist
and FCorr feature sets include a pre-processing step in which
continuous columns are binned. The number of bins is a con-
figurable parameter that can be adjusted to fit the input data.
In our experiments, we set the number of bins to 45 and 25
for the Adult and Texas dataset, respectively.

8.2 Datasets
We include two tabular datasets, commonly used in the ma-
chine learning (ML) literature, in our experimental evaluation.
Tabular datasets are the most relevant data type in the syn-
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Figure 15: Per-record privacy gain for five outlier records for
the Texas dataset under an attack using the FNaive feature set.

thetic data publishing case. One datasets contains financial
data the other one health data:
Adult [34]. The Adult dataset contains information from
45,222 individuals extracted from the 1994 US Census
database. Each entry consists of 15 attributes among which 6
are continuous attributes and 9 are categorical attributes.
Texas [60]. The Texas Hospital Discharge dataset is a large
public use data file provided by the Texas Department of
State Health Services. The dataset we use consists of 50,000
records uniformly sampled from a pre-processed data file that
contains patient records from the year 2013. We retain 18
data attributes of which 11 are categorical and 7 continuous.

8.3 Attribute inference
We formalise the risk of attribute inference as a prediction
problem in which an attacker learns to predict the value of
an unknown sensitive attribute from a set of known attributes
given access to a raw, sanitised, or synthetic dataset which we
denote as X . The adversary splits the dataset X into two parts:
A feature matrix X̃ that contains the values for all attributes
known to the adversary and a vector xxxs with the corresponding
sensitive attribute values.

If the attribute targeted by the attack is a continuous, real-
valued attribute rs ∈ R, we model attribute inference as a
linear regression problem. The linear regression attack mod-
els the relationship between the sensitive attribute values in
xxxs and the attributes in X̃ as a a linear relationship with coeffi-
cients wX , and treats the records in X as i.i.d. samples:

xxxs = X̃wX + ε, εi ∼N
(
0,σ2) , (7)

During training, the adversary takes the dataset X , splits
it into a feature matrix X̃ and target variable xxxs, and uses
maximum likelihood estimation to obtain a set of regression
coefficients wX = maxw P

[
xxxs|X̃ ,w

]
.

The simplicity of the model enables us to analytically de-
rive the attacker’s posterior distribution over the target’s secret
given access to dataset X P [r̂s|X , r̃rrt ] = N

[
r̃rrtwX , σ̂

2
X
]
, with

variance σ̂2
X = 1

n−(k−1) ∑
n
i=1
(
xi

s− x̃xxiwX
)2.

8.4 Privacy-utility tradeoff
Fig. 15 shows the privacy gain for five outlier targets from the
Texas dataset for varying dataset sizes.
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