
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

WebGraph: Capturing Advertising and Tracking
Information Flows for Robust Blocking

Sandra Siby, EPFL; Umar Iqbal, University of Iowa; Steven Englehardt,
DuckDuckGo; Zubair Shafiq, UC Davis; Carmela Troncoso, EPFL
https://www.usenix.org/conference/usenixsecurity22/presentation/siby

WEBGRAPH: Capturing Advertising and Tracking Information Flows for Robust Blocking

Sandra Siby∗ Umar Iqbal† Steven Englehardt‡ Zubair Shafiq¶ Carmela Troncoso∗
∗EPFL †University of Iowa ‡DuckDuckGo ¶UC Davis

Abstract
Users rely on ad and tracker blocking tools to protect their

privacy. Unfortunately, existing ad and tracker blocking tools
are susceptible to mutable advertising and tracking content.
In this paper, we first demonstrate that a state-of-the-art ad
and tracker blocker, ADGRAPH, is susceptible to such adver-
sarial evasion techniques that are currently deployed on the
web. Second, we introduce WEBGRAPH, the first ML-based ad
and tracker blocker that detects ads and trackers based on their
action rather than their content. By featurizing the actions that
are fundamental to advertising and tracking information flows –
e.g., storing an identifier in the browser or sharing an identifier
with another tracker – WEBGRAPH performs nearly as well as
prior approaches, but is significantly more robust to adversarial
evasions. In particular, we show that WEBGRAPH achieves
comparable accuracy to ADGRAPH, while significantly de-
creasing the success rate of an adversary from near-perfect for
ADGRAPH to around 8% for WEBGRAPH. Finally, we show
that WEBGRAPH remains robust to sophisticated adversaries
that use adversarial evasion techniques beyond those currently
deployed on the web.

1 Introduction

Users rely on privacy-enhancing blocking tools to protect
themselves from online advertising and tracking. Many of
these tools—including uBlock Origin [8], Ghostery [6], Fire-
fox [47, 48], Edge [49], and Brave [16]—rely on manually
curated filter lists [3, 4, 5] to block advertising and tracking.
The research community is developing machine learning (ML)
approaches to automate the detection of advertising and track-
ing and make filter lists more comprehensive. The first gen-
eration of ML-based blocking approaches analyze network
requests [13, 33, 53] or JavaScript code [37, 42, 64] to learn
distinctive behaviors of advertising and tracking. However,
these approaches are highly susceptible to adversarial evasion
techniques that are already found in the wild, including URL

‡

The majority of this work was completed while Steven was at Mozilla.

and code obfuscation [55, 58]. The next generation of ML-
based blocking approaches leverage cross-layer graph infor-
mation from multiple layers of the web stack [40, 54]. These
approaches claim better robustness to evasion than single-layer
approaches, due to their use of structural features (the hierar-
chy of resource inclusions) in addition to traditional content
features (the resource’s network location or response content).

In this paper, we show that state-of-the-art ad and tracker
blocking approaches, such as ADGRAPH [40], are susceptible
to adversarial evasions due to their disproportionate reliance on
easy-to-manipulate content features. We show that a third-party
adversary can achieve 8% evasion success by manipulating
URLs of its resources. Worse yet, an adversary can achieve
near-perfect evasion—as high as a 96% success rate—if they
collude with the first party, e.g, by using the CNAME cloaking
technique already deployed by some trackers [26, 28].

We introduce WEBGRAPH, the first ML-based ad and
tracker blocking approach that does not rely on content features.
WEBGRAPH improves the cross-layer graph representation by
capturing a fundamental property of advertising and tracking
services (ATS): the flow of information from one entity to the
browser’s storage, the network, and other entities loaded on
a page. The intuition behind WEBGRAPH is to focus on the
actions of the advertising and tracking services, rather than the
contents of their resources. We posit that actions are harder
to obfuscate. Advertising and tracking scripts need to store
identifiers for users, and those identifiers must be shared with
any other entity with which they wish to share data (e.g., via
cookie syncing [51]). Thus, we build a graph representation of
the page load by monitoring network requests, JavaScript exe-
cution, HTML element creations, and browser storage access.
From this graph we extract flow features, which explicitly cap-
ture distinctive information flows in advertising and tracking.
Our evaluation shows that WEBGRAPH’s graph representation
and flow features can supplant content features, with compara-
ble accuracy.

While high accuracy is necessary for deployment, it is not
sufficient. We have repeatedly seen that advertisers and track-
ers will attempt to circumvent detection and evade blocking

USENIX Association 31st USENIX Security Symposium 2875

[26, 44, 55, 58]. Therefore, in order for an advertising and
tracking classifier to be useful in practice, it must be robust
to adversarial manipulation. We show that WEBGRAPH rep-
resents a significant step forward in robustness to adversarial
evasion as compared to prior approaches. In particular, we find
that WEBGRAPH is robust to the types of URL, CNAME, and
content manipulation evasion techniques that are currently de-
ployed on the web. We also know that advertisers and trackers
will attempt to deploy more sophisticated evasion techniques
tailored to our proposed approach. To understand how robust
WEBGRAPH would be in the face of these new evasion tech-
niques, we propose a novel realistic graph manipulation eva-
sion technique. We show that this attack achieves only limited
evasion success against WEBGRAPH, while incurring a non-
trivial usability loss in terms of mistakenly blocking its own
advertising/tracking resources or other benign resources on the
web page.

Overall, our findings suggest that the community should
migrate away from unreliable content features for advertising
and tracking blocking. We show that information flow features
built upon the actions of advertisers and trackers provide a
promising path forward.

In summary, our contributions are as follows:

• We show that existing ML-based ad and tracker blocking
approaches are susceptible to evasion due to their reliance on
content features. As a representative example, we show how
an adversary can achieve near-perfect evasion of ADGRAPH
using techniques already in use on the web today.

• We introduce WEBGRAPH, the first ML-based ad and
tracker blocking approach that does not rely on content fea-
tures and captures fundamentally distinctive information
flows in advertising and tracking.

• Our in-depth evaluation shows that WEBGRAPH achieves
comparable accuracy to prior approaches and achieves sig-
nificantly better robustness to adversarial manipulation of
content features.

• We propose a novel graph manipulation evasion technique,
and show that WEBGRAPH (and the information flow fea-
tures it relies on) remains robust under this attack.

Paper organization: The rest of this paper is organized as
follows: Section 2 provides an overview of the recent advances
in ML-based ad and tracker blocking. Section 3 evaluates ro-
bustness of existing graph-based approaches, using ADGRAPH
as a representative example. Section 4 describes the design
and evaluation of WEBGRAPH. Section 5 further evaluates
WEBGRAPH’s robustness to adversarial attacks. We discuss
limitations of our work in Section 6 and conclude in Section 7.

2 Background & Related Work

Online behavioral advertising enables ad targeting based on
users’ interests and behaviors. To target ads, online advertising

relies on the intertwined tracking ecosystem that uses cook-
ies for cross-site tracking. For instance, the real-time bidding
(RTB) protocol that powers programmatic online advertising
has built-in mechanisms for advertisers and trackers to share
information [24, 32, 51]. Thus, almost always, ads and trackers
go together, with intertwined execution flows and resource de-
pendencies. Below, we revisit prior literature on ad and tracker
blocking, and analyze its limitations.

Popular ad and tracker blocking tools such as Adblock Plus
[1] rely on filter lists [4, 5]. These filter lists are manually
curated based on user feedback. Prior work has shown that
manually curated filter lists suffer from scalability and robust-
ness issues. First, filter lists have trouble keeping up with the
ever expanding advertising and tracking ecosystem. Filter lists
have grown to include tens of thousands of rules that are often
not updated in a timely fashion. For instance, filter lists may
take as long as 3 months to add rules for newly discovered ads
and trackers [39]. Once a filter rule is added to block an adver-
tising and tracking service, it is rarely removed, even if it is
no longer needed. In fact, prior work showed that almost 90%
of the rules in filter lists are rarely or never used [58]. Second,
filter lists are not robust to evasion attempts by advertisers and
trackers. Filter lists are brittle in the face of domain rotation
[21, 65] and manipulation of page structure [15, 56, 63]. For
instance, prior work showed that filter lists are susceptible to
evasion attacks such as randomization of URL path, hostname,
or element attributes and IDs [10, 44, 61].

Addressing scalability. To address the scalability issues that
arise due to manual curation of filter lists, researchers have
proposed to use machine learning (ML) for automated ad and
tracker blocking. Prior ML-based approaches mainly detect ads
and trackers at the network and JavaScript layers of the web
stack. These approaches detect ads and trackers by featurizing
network requests [13, 33, 53] or JavaScript code [37, 42, 64].

Network layer approaches rely on content in URLs, HTTP
headers, and request and response payloads (e.g., keywords,
query strings, payload size) to extract features and train ML
models to detect ads and trackers [13, 33]. While trying to
mimic filter lists by detecting ad and tracker URLs, these ap-
proaches end up replicating some characteristics of filter lists
and thus also naturally inherit their shortcomings. For example,
presence of a certain keyword in the request URL could be
a distinguishing feature. However, as discussed earlier, such
keyword based features are brittle in the face of trivial evasions
such as domain rotation [10, 61].

JavaScript layer approaches rely on static or dynamic anal-
ysis to extract features and train ML models to detect ads
and trackers. Examples of features are n-grams of code state-
ments obtained via static analysis [37] or JavaScript API invo-
cations captured via dynamic analysis [64]. These approaches
are susceptible to JavaScript obfuscation [25, 31, 34]. These
approaches are also susceptible to evasion such as script amal-
gamation or dispersion. They implicitly assume that tracking
code is bundled in a single script or that tracking scripts only

2876 31st USENIX Security Symposium USENIX Association

contain tracking code. However, in practice, tracking code
could be distributed across several chunks and packaged with
functional code [11, 40].

Addressing robustness. While network and JavaScript layer
approaches consider information at each layer in isolation, ads
and trackers rely on all three layers (i.e. network, JavaScript,
and HTML) of the web stack for their execution. Therefore,
focusing on only one layer lacks robustness against the afore-
mentioned evasion attempts. To address this limitation, graph-
based approaches aim to capture the interactions among and
across layers of the web stack.

Graph-based approaches extract features from the cross-
layer graph representation to train ML models to detect ads
and trackers [40, 54]. These approaches leverage rich cross-
layer context and thus claim to be robust to evasion attempts.
ADGRAPH was the first graph-based approach to ad and tracker
classification [40]. It extracts structural features from the graph
such as node connectivity and ancestry information as well as
content features such as URL length and presence/absence of
certain keywords. Sjösten et al. [54] introduced PageGraph,
which extends ADGRAPH’s graph representation by improv-
ing event attribution and capturing more behaviors. In addi-
tion to content and structural features, they also added percep-
tual features to train the classifier. Since perceptual features
attempt to use the rendered resource content, they are also
considered content features. Chen et al. [19] proposed an ap-
proach, using PageGraph, to detect trackers based on their exe-
cution signatures. In contrast to ML-based approaches, their
signature-based approach would only be able to detect trackers
that strictly match the signatures of tracking scripts, but miss
trackers with even slight deviations in their behavior, such as
changes in the execution order. Kargaran et al. [43] followed
a different approach. Instead of building a graph representa-
tion per website, they combined graph representations across
multiple websites to model relations between third parties on
those sites. Just like ADGRAPH, they also extract structural
and content features from the graph to train the classifier.

These graph-based systems use a combination of content
and structural features for classification, which they claim in-
creases the robustness to evasion attacks. While this combina-
tion should intuitively improve classifier robustness, we posit
that it would be less robust than expected if the classifier relies
heavily on content features. This is because content features
pertain to a single node on the graph and are easy to manipu-
late for an adversary, e.g., using adversarial attacks on textual
[66] and perceptual [60] content features, without causing un-
desired changes in other nodes. It is noteworthy that Zhu et
al. [66], also manipulate structural features, however their ma-
nipulations are only limited to graph size. Further, they do not
evaluate the impact of their mutations on overall graph.

In the next section, we analyze the robustness of graph-based
ad and tracker detection systems. We focus on ADGRAPH as it
is representative of other graph-based systems that use similar
structural and content features.

3 ADGRAPH Robustness

In this section, we analyze ADGRAPH’s robustness by evaluat-
ing its accuracy in the face of adversarial content manipulation.

ADGRAPH is a graph-based machine learning approach that
detects ads and trackers based on their structural and content
properties. ADGRAPH instruments the Chromium web browser
to capture detailed execution of ads and trackers across the
HTML, JavaScript, and the network layer, and models the in-
teraction among these layers in the form of a graph. Using this
graph, ADGRAPH extracts two categories of features: content
(information related to individual nodes in the graph, such as
URL length and presence of ad/tracking keywords in the URL)
and structure (information about relationships between nodes,
such as connectivity and ancestry information). It uses the ex-
tracted features to train a machine learning classifier to detect
advertising and tracking resources. The full list of ADGRAPH
features are described in Table 4.

Since ADGRAPH relies on content properties, in addition to
structural properties, it is subject to same evasion attacks that
succeed against the filter lists-based ad and tracker detection
approaches [10, 61].

3.1 Threat Model & Attack

Our threat model assumes an adversarial third-party adver-
tiser or tracker embedded on a site, who aims to change the
classification of its resources from advertising and tracking ser-
vices (ATS) to benign resources (Non-ATS) in order to evade
detection by ad and tracker blocking tools.

We assume that the adversarial third party has limited coop-
eration with the first-party publisher. We do not assume full
cooperation because the parties are mutually distrusting. The
third-party adversary generally does not trust the first-party
publisher to serve its advertising and tracking resources via a
reverse proxy [2, 41]. Likewise, the first-party publisher does
not trust the third-party adversary to host functional resources
via the adversary-controlled CDN [14]. Given existing prac-
tices, we assume that the adversary can serve its advertising
and tracking resources from a first-party subdomain but not
arbitrarily within the first-party domain space. For example,
the adversary can masquerade its resources through CNAME
cloaking [23], which only requires a minor change in DNS
records by the first party. Recent measurement studies have
reported an increase in the prevalence of CNAME cloaking
over the last few years. Dao et al. [26] showed that the usage
of CNAME cloaking-based tracking has steadily increased
between 2016 and 2020, with 1,762 of Alexa’s top-300K web-
sites employing at least one CNAME-based tracker as of Jan-
uary 2020. Dimova et al. [28] also showed that the usage of
CNAME cloaking has increased by 22% from 2018 to 2020,
with 9.98% of Tranco’s top-10K websites now employing at
least one CNAME-based tracker as of October 2020.

USENIX Association 31st USENIX Security Symposium 2877

Figure 1: Classification switch success rate distribution by web page
(over 10 folds) when the adversary does not collude with the first
party. The average success rate per web page is 15.92 ± 0.03 %.

We assume that the adversary is able to manipulate their own
URLs by altering the domain name or query string. The adver-
sary can only manipulate URLs that are under their control, and
only attempts to manipulate URLs that were initially correctly
classified as ATS (ad and tracker URLs initially classified as
Non-ATS already benefit the adversary). The adversary cannot
manipulate the data used to train the classifier. Therefore, we
only implement mutations during inference.

We implement two types of URL manipulations. For domain
names, we allow the adversary to randomly change the URL’s
domain, subdomain, or both. In practice, adversaries can rely
on automated techniques to generate random domains and sub-
domains. For example, they can use malware-inspired domain
generation algorithms (DGA) techniques to generate a large
number of domains [22, 52]. For query strings, we randomly
change the number of parameters, the parameter names, the
parameter values in the URL, or a combination of the three.

3.2 Results

Experimental setup. We extend OpenWPM [30] to automati-
cally crawl websites with Firefox and build ADGRAPH’s rep-
resentation. We crawl 10K sites sampled from the Alexa’s
top-100K list, the top 1K sites and a random sample of 9K
sites ranked between 1K-100K, and store their graph repre-
sentations. Next, we implement a decision tree classifier that
closely follows ADGRAPH’s design [40], and extract features
from the graphs for training and testing. For ground truth, we
use the same set of filter lists for data labeling that were used
by ADGRAPH [40]. A URL is labeled as ATS if it is present
in one or more of the filter lists, and Non-ATS otherwise. We
use 10-fold cross validation to obtain our results, where the
folds are selected such that every fold uses a different set of
web pages in the test set. Our classifier obtains comparable
performance to the original results reported by [40]: 92.33%
accuracy, 88.91% precision, and 92.14% recall. The minor
differences are likely due to differences in crawled sites, up-
dated filter lists, and a few subtle changes in our adaptation
of ADGRAPH from online to offline. In ADGRAPH’s online

Figure 2: Classification switch success rate distribution by web page
(over 10 folds) when the adversary colludes with the first party. The
average success rate per web page is 93.01 ± 0.01 %.

implementation, features are extracted from each node in the
graph as they are created. Our offline adaptation, instead, ex-
tracts features after page load completion. There are also some
minor differences due to JavaScript attribution, caused by the
differences in instrumentation between Chromium-based AD-
GRAPH and Firefox-based OpenWPM.1

Adversarial success rate without collusion. In our first ex-
periment, we assume that the adversary does not collude with
the first party. The adversary can randomize their domain and
subdomain, but cannot masquerade as the first party. Our con-
tent mutation procedure results in the mutation of 41.48 ± 1.47
% of all the test data URLs (averaged over 10 folds). The ad-
versary’s success rate in evading the classifier is 8.72 ± 0.42 %
(over 10 folds). While this may seem like a low percentage, we
note that every successful mutation is a win for the adversary
since it means that one more of their ads or trackers is now
unblocked. Over all 10 folds, the adversary mutated 691,602
URLs, out of which 60,270 had their classifications switched.

We also observe that the evasion success rate varies across
sites, as shown in Figure 1. For ≈1% of the web pages in the
test set (90 pages), the adversary achieves a perfect success
rate, meaning that all third-party ads and trackers on the web
page are now classified as benign content. It is noteworthy
that 21.62% of the unblocked URLs belong to popular ad
exchanges, which are responsible for further diffusion of user
information due to the broadcast nature of real-time bidding
(RTB) [12]. These unblocked ad exchanges can amplify the
privacy harm because they often share information about page
visits with multiple advertisers and trackers.

Adversarial success rate with collusion. In our second ex-
periment, we assume that the adversary colludes with the first
party. The adversary can perform domain mutation such that
their URL is a subdomain of the first party. The adversary’s
success rate increases to 96.62 ± 0.37 % (over 10 folds). This

1Due to these differences, our features are not exactly identical to the
online implementation of ADGRAPH. For example, in ADGRAPH, a node can
have a maximum of two parents, which need not be the case for our system.
Therefore, we do not use ADGRAPH features specific to these two parents.
The full feature list, showing these differences is provided in Appendix A.

2878 31st USENIX Security Symposium USENIX Association

Feature Category Information Gain (%)

URL length Content 14.87 ± 0.36
URL domain is a subdomain of the first party Content 11.06 ± 1.24
URL is a third party Content 10.67 ± 1.32
Degree of a node Structure 7.56 ± 0.63
Number of edges divided by number of nodes Structure 7.48 ± 0.41

Table 1: Top 5 most important features for ADGRAPH’s classification,
their category, and information gain values (averaged over 10 folds).

means that being able to use a first-party subdomain provides
almost perfect evasion capabilities. Figure 2 shows the evasion
success rate variation across sites. For ≈50% of the web pages
in the test set, the adversary achieves a perfect success rate.
We also see a higher proportion (32.25%) of the unblocked
URLs belonging to popular ad exchanges, as compared to the
previous experiment.

To better understand why such URL manipulation is able to
evade detection by ADGRAPH, we analyze feature importance
using information gain (see Table 1). We see that content
features are essential to the ADGRAPH classifier: not only
are the top-3 most important features content features, their
relative importance scores are also high compared to the other
features. Two of the top-3 features depend on whether a URL
is third-party, which explains why we obtain high success rates
when the adversary has the capability to masquerade as the
first party. These two features do not have an effect in the case
where the adversary does not collude with the first party, since
the adversary cannot change the fact that they are third party.
However, the adversary’s manipulations still influence the third
top feature, length of the URL. Hence, we observe lower but
non-trivial success rates even without collusion.

These results show that graph-based ML classifiers such
as ADGRAPH over-rely on content features that makes them
vulnerable. Next, we propose an approach to improve the ro-
bustness of graph-based ad and tracker blocking tools.

4 WEBGRAPH

Online advertising and tracking fundamentally relies on in-
formation sharing. Trackers need to share information with
each other to improve their coverage of users’ browsing his-
tory [30, 51]. Trackers also need to share information with
each other as part of built-in dependencies in programmatic
advertising protocols [9, 24, 32, 50, 51]. We contend that lever-
aging such fundamental information sharing patterns can help
build accurate and robust classifiers for ad and tracker blocking.
We introduce WEBGRAPH, a classifier that explicitly captures
these information sharing patterns as part of its cross-layer
graph representation of the execution of a web page.

To illustrate the information sharing patterns that we want
to capture in WEBGRAPH, let us revisit how information shar-
ing between different origins is mediated by the browser. We
deliberately use a loose definition of origin. An origin can
be, depending on the specific use case, a site, a domain, or
an entity, among others. At a high-level, the web browser iso-

lates different origins, based on various policies, so that their
data is not leaked to each other. Figure 3(a) illustrates how the
browser limits information sharing between different origins:
example.com, tracker1.com, and tracker2.com each have
access to their isolated local storage (e.g., cookies, IndexedDB)
that may be used to store user identifiers. The browser isolates
information flows between the local storage and remote servers
of different origins: tracker1.com and tracker2.com can-
not generally access each others’ cookies.

Trackers typically circumvent these limitations in the
browser in two main ways. First, Figure 3(b) illustrates
how a tracker may share its identifier with another tracker
through cookie syncing. This can be implemented in several
ways. For example, let’s say example.com loads a JavaScript
from Tracker 1 that first uses document.cookie to retrieve
Tracker 1’s identifier cookie from its cookie storage and then
initiates a GET request to Tracker 2. The script includes
Tracker 1’s identifier cookie in the request URL as a query
string parameter. Note that the request automatically includes
Tracker 2’s identifier cookie in the Cookie header. Therefore,
when Tracker 2’s remote server receives the request, it would
be able to sync Tracker 1’s identifier with its own identifier.
As another example, let’s say example.com first loads an in-
visible pixel from Tracker 1, which responds back with a 3XX
redirect status code along with the URL in the Location header
that points to Tracker 2 and includes Tracker 1’s identifier
cookie. Upon receiving the response, the browser issues a GET
request to Tracker 2 and includes Tracker 1’s identifier cookie
in the request URL and Tracker 2’s identifier cookie in the
Cookie header. Again, Tracker 2’s remote server is able to sync
Tracker 1’s identifier with its own identifier.

Second, Figure 3(c) illustrates how a tracker may share
its identifier with another tracker through various web APIs
in several ways. For example, let’s say example.com loads
scripts from Tracker 1 and Tracker 2 which then share their
identifiers by reading/writing to the global variables of the
window object. The script from Tracker 1 may assign its iden-
tifier to a new global variable foo that is then read by the
script from Tracker 2. Therefore, Tracker 1 and Tracker 2’s
scripts would be able to sync identifiers with each other and
also send them to their respective remote servers. As an-
other example, let’s say example.com loads iframes from
Tracker 1 and Tracker 2 which then share their identifiers us-
ing postMessage. While these iframes have different origins,
Tracker 1’s iframe can use window.parent property to get a
reference to the parent window and then use window.frames
to get a reference to Tracker 2’s iframe. Tracker 1’s iframe
can then use this reference to call window.postMessage
and send its identifier to Tracker 2’s iframe, which can
use window.addEventListener to receive the identifier.
Tracker 2’s iframe can then send the shared identifier with
its remote server to sync them.

Trackers use a wide variety of information sharing patterns,
beyond the two aforementioned mechanisms. A sound and

USENIX Association 31st USENIX Security Symposium 2879

(a) (b) (c)

Figure 3: Origin isolation vs. sharing. Circles represent information about a user gathered by a particular domain (example.com, ;
tracker1.com, ; and tracker2.com,). The box represents the browser which acts as channel between the local storage on the user’s device
and the remote server of each domain. 3(a) Illustrates origin isolation in the browser: every domain can only access information in their own
storage. 3(b) and 3(c) illustrate two information sharing patterns that trackers use to circumvent origin isolation: (b) cookie syncing, where
users’ identifiers are sent to more than one domain; and (c) sharing identifiers using web APIs.

precise examination of all patterns warrants full-blown infor-
mation flow tracking that adds significant implementation com-
plexity and runtime overhead [18, 20, 35]. As we discuss next,
WEBGRAPH approximately captures these information sharing
patterns by including additional nodes and edges in its graph
representation that correspond to elements and actions associ-
ated with these information sharing patterns. (See Section 6 for
a discussion of WEBGRAPH’s completeness.) It then extracts
new features on this enriched graph representation to train a
classifier for detecting ads and trackers.

4.1 Design & Implementation

4.1.1 Graph Construction

WEBGRAPH captures the flow of information among and
across the HTML, network, JavaScript, and storage layers of
the web stack. At the HTML layer, WEBGRAPH captures cre-
ation and modification of all HTML elements that are initiated
with scripts, e.g., iframe. At the JavaScript layer, WEBGRAPH
captures the scripts’ interaction with other layer, e.g., initiation
of a network request. At the network layer, WEBGRAPH cap-
tures all outgoing network requests and their responses. At the
storage layer, WEBGRAPH captures read/write in cookies and
local storage through scripts and network requests, and also
value exchanges between network requests.

OpenWPM Instrumentation. We extend OpenWPM [30]
to capture the execution and interaction of HTML, network,
JavaScript, and storage layers. To capture HTML elements
creation and modifications, we instrument createElement
method and register a MutationObserver interface. To cap-
ture network requests, we parse OpenWPM’s existing instru-
mentation, which uses a webRequest2 listener, to capture all
of the network requests, their responses, and redirects. To cap-
ture JavaScript interaction, we parse OpenWPM’s existing
instrumentation, which relies on JavaScript’s stack trace to
log JavaScript execution. To capture read/write to storage, we
instrument document.cookie and localStorage methods and
also intercept cookie read/write HTTP headers.

2https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/API/webRequest

Graph Composition. Elements at each of the layers are rep-
resented with nodes and the interaction between these nodes is
represented with edges. Specifically, each HTML element, net-
work request, script, and stored value, is represented as a node.
Edges to HTML nodes from script nodes represent the creation
and modification of elements. Edges from HTML nodes to
network nodes represent initiation of network requests to load
content, such as scripts and images. Edges from script nodes
to network nodes represent the initiation of XMLHTTPRequest
which will be parsed by the script. Edges between script and
storage nodes and network and storage nodes, represent the
read/write of values in the storage. Edges between network
nodes either represent redirects or the presence of the same
stored values.3

Graph Composition Example. To illustrate WEBGRAPH’s
graph representation, let us consider the example web page
given by Code 1. The web page embeds a script from
Tracker 1 and an iframe from Tracker 2. The tracking iframe
from Tracker 2 reads its tracking cookies and sends them to
Tracker 3 via an XHR. Both trackers trigger requests to share
tracking identifiers. The HTTP requests and responses that
result from loads in Code 1 are listed in Listing 1.

Tracker 1’s script embeds an image element from Tracker 2,
which causes the browser to send an HTTP request (Request 1
in Listing 1) that includes Tracker 2’s cookie. Tracker 2 re-
sponds to this request with a redirect to Tracker 1 that embeds
the user identifier Tracker 2 received via the initial request’s
Cookie header (i.e., user1). The browser makes a subsequent
request (Request 2 in Listing 1) to Tracker 1. Tracker 1 re-
sponds with a tracking pixel image and a Set-Cookie header
to set its own tracking cookie with the value userA. On the
backend, Tracker 1 knows that userA is known as user1 by
Tracker 2. Tracker 2’s embedded iframe further shares its iden-
tifier cookie with Tracker 3. It does so by accessing its cookies
locally via document.cookie and embedding them in an XHR
to Tracker 3 (Request 3 in Listing 1).

Differences as compared to ADGRAPH. WEBGRAPH
keeps ADGRAPH’s HTML and JavaScript layers as they are,
but extends the network layer and includes a new storage layer
in the graph representation. WEBGRAPH also introduces infor-

3We match stored values with their base64-encoded and MD5 and SHA-1
hashed values [29, 32].

2880 31st USENIX Security Symposium USENIX Association

1 <html>
2 <script src=’tracker1.com/track.js’>
3 ...
4 var image =document.createElement(’img’);
5 image.src = ’tracker2.com/sync’;
6 document.body.appendChild(image);
7 ...
8 </script>
9 ...

10 <iframe src=’tracker2.com/track.html’>
11 <script>
12 ...
13 idCookie = document.cookie;
14 var newReq = new XMLHTTPRequest();
15 newReq.open("GET", "tracker3.com?user_id=

" + idCookie);
16 ...
17 </script>
18 </iframe>
19 </html>

Code 1: Web page sending requests to several trackers.

mation flow edges, which are absent in ADGRAPH, to entwine
the extended network layer and the storage layer. The extension
of network and the addition of storage layer allow WEBGRAPH
to explicitly capture information sharing patterns used in ad-
vertising and tracking.

Request 1
URL: tracker2.com/sync
Cookie: user1
Response 1
Status: 302
Location: tracker1.com?tracker2_id=user1

Request 2
URL: tracker1.com?tracker2_id=user1
Response 2
Status: 200
Set-Cookie: userA
Content: pixel.png

Request 3
URL: tracker3.com?user_id=user1
Response 3
Status: 200

Listing 1: HTTP requests and responses initiated from Code 1.

We illustrate the differences in Figure 4 which shows the
graph representation of the web page in Code 1 and request
and response sequences in Listing 1 for both ADGRAPH (Fig-
ure 4(a)) and WEBGRAPH (Figure 4(b)). ADGRAPH’s rep-
resentation of the example web page consists in two disjoint
graphs which capture the individual actions of the two trackers:
The first row of nodes (from 10 to 15) captures Tracker 2’s
tracking behavior: from the iframe loading to the initiation
of an XHR request. The second row of nodes (from 2 to 6)
captures Tracker 1’s tracking behavior: from the script loading
to the initiation of a network request for loading an image. In

this figure, it becomes clear that ADGRAPH does not capture
the information sharing pattern between the nodes, because of
its inability to capture the redirect (Request 2) made by the
image request (network node 5) and the cookie set (storage
node 5; visible only in WEBGRAPH’s graph) by the redirect
request. WEBGRAPH, on the contrary, not only captures the
flows appearing in ADGRAPH, but also captures the redirects
(dotted edge between the two network nodes labeled 5) and
cookies set by requests (the second network node 5 to storage
node 5). This representation further enables WEBGRAPH to
link requests that share common identifiers (node 5 to 15).

4.1.2 Features

We take the ADGRAPH feature set and augment them with
three categories of features. These additional features come
from WEBGRAPH’s improved graph representation, i.e., exten-
sion of the network layer and a new storage layer. The features
target storage, network, and information sharing behaviors that
were absent in ADGRAPH. First, we extract features that mea-
sure the number of read/write cookie and localStorage accesses
by a node. We obtain these features from the new storage layer.
Second, we extract features that measure the number of re-
quests and redirects to/from a node as well as the depth of
a node in a redirect chain. These features come from our ex-
tension to the network layer. Third, we extract features that
measure the number of different types of information sharing
edges (e.g., nodes access the same storage node or share data of
a storage node) to/from a node. We obtain these features using
both the network and storage layers in WEBGRAPH’s graph
representation. We also extract some standard graph features
(e.g., in-degree, out-degree, eccentricity) for the information
sharing edges. We jointly refer to these three newly added
categories of features as flow features. Table 4 in Appendix A
lists the full set of features in WEBGRAPH.

To illustrate the potential of these features in distinguishing
ATS and Non-ATS resources, let us consider three flow features
belonging to each of the categories described above:the number
of storage elements set by a resource (Figure 5(a)), the number
of requests that were redirected to a resource (Figure 6(b)),
and the number of information sharing edge ancestors (Fig-
ure 6(c)). As explained in Section 4, ATS resources store user
identifiers in storage elements and use redirects and sharing of
identifiers in URLs to perform actions such as cookie syncing.
Therefore, we expect ATS resources to set a larger number of
storage elements, be at the receiving end of redirects, and be
involved in a larger number of shared information edges than
Non-ATS resources. We plot in Figure 5 the distributions of
these features in our dataset. We see that, indeed, the distri-
butions are different for benign and ATS resources, with ATS
presenting higher values on average for the three features under
study. The differences in distributions is especially apparent
for Figure 6(c), which shows the number of shared informa-
tion edge ancestors. In our dataset, we observe 589,218 cases

USENIX Association 31st USENIX Security Symposium 2881

2 5 6

Script
node

Image
request

HTML
image

11

2

10 10

Script
request

HTML
iframe

Script
node

Iframe
request

15

XMLHTTP
request

(a) Graph representation of Code 1 in ADGRAPH

2 5 5

6

5

Script
node

Image
request

Cookie
storage

Network request
setting a cookie

Redirect initiation
to load the image

HTML
image

11 15
Script
node

Shared cookie
in request

2

10 10

Script
request

HTML
iframe

Iframe
request

XMLHTTP
request

5,13Read Cookie
storage

(b) Graph representation of Code 1 in WEBGRAPH

Figure 4: Graph representation of Code 1 in ADGRAPH and WEBGRAPH. represents network nodes, represents script nodes, represents
HTML nodes, and represents storage nodes. Node numbers correspond to the lines in Code 1. In Figure 4(b), dotted (- - -) lines represent the
additional edges that are captured by WEBGRAPH and missed by ADGRAPH.

of ATS receiving a cookie value in a request URL, as com-
pared to 89,564 cases for non-ATS. This sharing is detected
as an information sharing edge, which in turn leads to ATS
having larger values in shared information edge properties than
Non-ATS. In the case of redirects (Figure 6(b)), the probability
that a Non-ATS resource has more than 7 redirects tends to
0, which is not the case with ATS resources. The number of
ATS resources with more than 7 redirects is very small in our
dataset (≈ 0.04%). Yet, it is a top-20 feature in our classifier, as
observing more than 7 redirects directly identifies the resource
as ATS. Storage element setting (Figure 5(a)) shows a similar
behavior, with ATS resources sometimes having more than 54
elements set, while Non-ATS resources never have so many.

While individual contributions of some of these flow features
might be small, they provide a strong signal in distinguishing
ATS when combined, as we show in the next section.

4.2 Evaluation
To evaluate WEBGRAPH, we use the same dataset of 10K web
pages and method as in Section 3.2. To understand the marginal
benefit of WEBGRAPH over ADGRAPH, we systematically
compare the performance of different feature sets and graph
representations. Table 2 summarizes the results.

Graph Feature Set Accuracy Precision Recall

ADGRAPH Structural + Content 92.33 ± 0.50 88.91 ± 1.14 92.14 ± 0.65
Structural 80.22 ± 0.81 71.85 ± 1.53 82.44 ± 1.26

WEBGRAPH Structural+ Flow + Content 94.32 ± 0.27 92.24 ± 0.67 94.14 ± 0.30
Structural + Flow 86.93 ± 0.64 80.57 ± 1.12 90.01 ± 0.50
Structural 82.62 ± 0.47 75.67 ± 0.75 85.09 ± 1.41

Table 2: Evaluation of WEBGRAPH and ADGRAPH with different
feature set variations.

We observe that ADGRAPH’s performance drops by at least
10% when content features are removed. Recall from Section
3.2 that if content features are present alongside structural fea-
tures, ADGRAPH is particularly susceptible to evasion: trackers
have an 8.72% evasion success rate on their own, and a 96.62%
success rate if they collude with the first party. Thus, there is a
trade-off in ADGRAPH between effectiveness (with content)
and robustness to evasion (without content).

Second, Table 2 shows that WEBGRAPH’s performance is
better than ADGRAPH. When using all feature sets, WEB-
GRAPH outperforms ADGRAPH by about 2-4%. If, for robust-
ness, we remove content features, we observe a drop in accu-
racy limited to just 4-9% across all measures. We conclude that
WEBGRAPH’s improved graph representation and new flow
features can compensate for the loss of content features to a
large extent.

Finally, Table 2 shows that WEBGRAPH’s improved graph
representation by itself (i.e., even without the new flow fea-
tures) contributes to about half of the improvement over AD-
GRAPH. WEBGRAPH with only structural features achieves
2-4% improvement across all measures as compared to AD-
GRAPH also with only structural features. We conclude that,
while WEBGRAPH’s new flow features help improve its accu-
racy, the improved graph representation is an important con-
tributor to performance.

Feature Category Information gain (%)

Shared information ancestors Flow 6.48 ± 0.69
Number of requests sent by node Flow 5.9 ± 0.69
Number of nodes in graph Structure 5.46 ± 0.35
Average degree connectivity of node Structure 5.18 ± 0.16
Number of edges in graph Structure 4.19 ± 0.34

Table 3: Top-5 most important features for WEBGRAPH’s classifica-
tion, their category, and information gain (averaged over 10 folds).

To provide insights into the relative importance of flow and
structural features, we list top five most important features in
terms of information gain in Table 3. The two most important
features are flow features. As discussed in Section 4.1.2, the
top feature distribution (Figure 6(c)) is very different for ATS
and non-ATS, so it’s not surprising that this feature contributes
to the classification. Storage setting (Figure 5(a)) and received
redirects (Figure 6(b)) contribute a smaller, but still useful,
portion towards identification; they have information gains
of 1.9% (± 0.37) and 2.5% (± 0.47) respectively (21st and
17th most important features). Structure features, enhanced
by WEBGRAPH’s improved graph representation, also con-
tribute towards the performance. We further analyze which
features contribute most to each prediction of WEBGRAPH
using treeinterpreter [7]. For ≈ 32% of predicted ATS in

2882 31st USENIX Security Symposium USENIX Association

(a) (b) (c)

Figure 5: Histograms of three example flow features for ATS and Non-ATS resources (normalized, y-axis in log scale). (a) Number of storage
elements set by a resource; (b) Number of network redirects received by a resource, and (c) Number of shared information ancestors of a
resource. These features demonstrate different distributions for ATS and Non-ATS resources, and thus can help the classifier to distinguish
between them.

the dataset, the flow features were the top contributors, indi-
cating that they provide an important signal for the presence
of trackers. In contrast, for ≈ 47% of predicted Non-ATS in
the dataset, structure features were the top contributors. These
results confirm our earlier intuition that capturing information
sharing behaviors that are unique to advertising and tracking
carries significant predictive power.

4.3 Efficiency

We envision WEBGRAPH to be used for filter list curation and
maintenance in an offline setting. WEBGRAPH relies on large
scale web crawls and notoriously expensive graph traversals
for feature extraction. We now measure WEBGRAPH’s offline
overhead to demonstrate its adequacy as a tool to periodically
update filter lists.

Crawl time. Our implementation of WEBGRAPH has an up-
per bound of 60 seconds, enforced with a timeout, to crawl a
website. In the average case, crawls take only ∼26.46 seconds
per-page. Crawls can be parallelized over several instances to
reduce the crawl time. For example, it took us around 10.5
hours to crawl 10K websites, parallelized over 7 instances.
Without parallelization and if all websites would reach the
timeout, the crawls would take ∼166 hours.

Processing websites. On average, WEBGRAPH takes 0.72 sec-
onds to build the graph, 15 seconds to extract features, and
0.25 seconds to train and test each website. For our crawl of
10K websites, it took us a total of ∼44 hours to create their
graphs and extract features on a single instance. This time can
be significantly reduced with parallelization.

Update frequency. These estimates suggest that for 10K web-
sites containing ∼1.1 million requests WEBGRAPH will re-
quire, at most, ∼166 (data crawling) and ∼44 (data processing)
hours with a single instance. However, when averaged over 7
instances, the computation time significantly reduces to 16.83
hours (10.5 for crawling and 6.33 for processing). We antici-
pate the computation time for periodic updates to reduce sig-
nificantly because many websites have low update frequency.
Monitoring the update frequency of websites will allow us to
only crawl when changes are expected in websites. In cases

where we determine that the website did not change since the
last crawl, we will not recompute their classifications. With
this update frequency, WEBGRAPH will be able to update filter
lists on a daily basis, and certainly operate within the current
expiry period, i.e., mandated update frequency, of popular filter
lists, e.g., 4 days for Easylist [4]. Frequent updates with WE-
BGRAPH can help remove outdated rules and as well as add
new rules to block newly discovered ads and trackers.

To evade detection by the updated rules generated by WEB-
GRAPH, adversaries could change their page content (e.g., ro-
tate domains) [44]. In order to successfully evade WEBGRAPH,
however, an adversary would need to change their page content
at a rate faster than the rate of WEBGRAPH’s updates (i.e, at
least once a day). Such frequent changes, however, require
continuous coordination and cooperation between the trackers
and publishers hosting their content and are complicated to
implement in practice. If an adversary with sufficient resources
and capabilities to perform frequent page content changes,
WEBGRAPH would need to operate in an online manner to be
robust by directly classifying page resources at runtime. This
would require few changes in WEBGRAPH’s operation. Specif-
ically, instead of extracting features from a complete graph
representation at the end of a page load, in an online setting
WEBGRAPH would need to extract features from partial graph
representations build as the page is being loaded. Relying on
partial graph representation, will make WEBGRAPH more per-
formant, but it may may degrade WEBGRAPH’s accuracy. We
leave to future work to explore the tradeoffs involved in an
online implementation of WEBGRAPH.

5 WEBGRAPH Robustness

In this section, we evaluate WEBGRAPH’s robustness against
content mutation attacks (described in Section 3) and structure
mutation attacks.

5.1 Content mutation attacks
To evaluate WEBGRAPH against content mutations, we
strengthen the threat model described in Section 3 to enable
the adversary to also masquerade their resources as first party,

USENIX Association 31st USENIX Security Symposium 2883

i.e., through first-party subdomains. Overall, our attacks in-
volve random mutations to domain names, subdomains, and
the query string in URLs (Section 3.2).

By relying on content mutations, the adversary is able to
switch 96.62% of their ATS resources to Non-ATS against AD-
GRAPH. Against WEBGRAPH, the adversary’s success rate
plummets to just 8.34 ± 0.66% (over 10 folds). For example,
mylivesignature.com, a tracking domain, was able to switch
all of its 560 ATS resources to Non-ATS against ADGRAPH,
but none against WEBGRAPH.

Note that, even though WEBGRAPH does not use content
features, the evasion success rate against WEBGRAPH does
not drop to zero. This is because some of the WEBGRAPH’s
features implicitly rely on URL properties. For example, shared
information edges, that consider sharing of cookie values via
query strings in the URL, are affected by URLs manipulations.

5.2 Structure mutation attacks
Next, we evaluate WEBGRAPH’s robustness against structure
mutations. We assume that the adversarial third-party has un-
restricted black box access to the WEBGRAPH’s classifier,
i.e., the adversary can make unlimited queries and observe
WEBGRAPH’s classification output. This access enables the
adversary to validate the effect of their structure mutations.

Attack details. We assume that the adversary can mutate the
structure of a web page through resource addition, re-routing,
and obfuscation. Moreover, we assume that the adversary also
performs content mutations, to maximize its chance of success
Resource addition entails addition of new resources, such as
images and scripts. Resource re-routing entails re-organization
of existing redirect chains, i.e., dispersing a redirect chain in
a sequence of XMLHttpRequest’s through one or multiple
scripts. Resource obfuscation entails obfuscation of cookie or
query string parameter values of existing resources, i.e., encod-
ing or encrypting cookie or query string parameter values in a
format that is not detected by WEBGRAPH’s implementation,
before sharing them in network requests. To remain stealthy,
we assume that the adversary does not delete functional content
from the web page that could damage usability.

It is important to note that even simple mutations, such as
adding a single element to the web page, can significantly
change graph properties and impact several features. For ex-
ample, the addition of a child node causes a cascading effect.
It increases the number of descendants of all the parent nodes
in the branch, all the way up to the root node, and also impacts
their centrality. Thus, the result of such simple mutations can
become unpredictable and hard to control by the adversary: It
can cause unintended classification changes for nodes under
and outside the control of the adversary. Complex mutations,
such as adding a combination of nodes at once, further compli-
cate having control on the number of unintended classification
changes. In our evaluation, we only consider atomic mutations,
i.e., addition, re-routing, or obfuscation of individual resources.

Mutation algorithm. We capture the adversary’s unrestricted
black box access to classifier by implementing a greedy random
algorithm to find suitable mutations. This kind of algorithm
is extensively used in the literature due to its simplicity and
practicality [36, 62, 67]. The algorithm (formally described
in Appendix D) iteratively mutates WEBGRAPH’s graph rep-
resentation. At each step, it adds, re-routes, or obfuscates the
resource that provides the best trade-off between desired (ATS
to Non-ATS) and undesired (NON-ATS to ATS) classification
switches. Resource addition is simulated by adding nodes to a
randomly selected leaf nodes in the graph. Resource re-routing
is simulated by adding each request, in a redirect chain, as
an individual node to one or more randomly selected scripts.
Resource obfuscation is simulated by replacing stored values
in URLs with an encoding that is not detected by WEBGRAPH.

5.3 Empirical evaluation

Experimental Setup. To evaluate WEBGRAPH’s robustness,
we must rebuild the graph and recompute the features after
each mutation. To keep the evaluation time reasonable, we
sample 100 web pages from our dataset, and we limit the graph
growth to 20%. To ensure that this sample is representative of
our dataset, we divide graphs into 5 bins according to their size
and sample 20 web pages from each bin. To avoid exception-
ally long evaluation times, we only consider web pages that
have 250 or fewer nodes (80% of the dataset; see Appendix B
for the full distribution).4 For each web page, we designate
the adversary as the third party with the highest number of
resources classified as ATS. It is noteworthy that the adversary
with the highest number of ATS resources has an opportunity
to do maximum damage.

In this dataset, the median evaluation time per web page was
29.08 minutes, with 39% of the pages taking more than an hour
to run. Even though this is a simulation, the computational
cost is directly proportional to the operational cost for the
adversary. The adversary must consume additional CPU cycles
and memory and in the case of node addition, send additional
network requests, thereby increasing the cost of their attack.

Success metrics. To measure adversary’s success, we define
the following terms:

ATSWeb: Number of nodes classified as ATS.

ATSAdv: Number of adversary nodes classified as ATS.

Non-ATSWeb: Number of nodes classified as Non-ATS.

Non-ATSAdv: Number of adversary nodes classified as
Non-ATS.

desired: Number of nodes switching from ATSAdv to
Non-ATSAdv.

4The resulting reduced dataset has similar mean, stand deviation, and me-
dian for the features as the full dataset.

2884 31st USENIX Security Symposium USENIX Association

undesired: Number of nodes switching from Non-ATSWeb to
ATSAdv.

neutral: Number of nodes switching from ATS to Non-ATS
for non-adversary nodes.

Success rate: Desired changes from the adversary’s point of
view. It is calculated as desired/ATSAdv.

Collateral damage: Undesired changes from the
adversary’s point of view. It is calculated as
undesired/(Non-ATSAdv+Non-ATSWeb).

Other changes: Non-consequential changes from the adver-
sary’s point of view. It is calculated as neutral/ATSWeb.

We illustrate the node switches, with the mutation algorithm,
for an example graph in Appendix E.

5.3.1 Adversary’s success

We assume that the adversary neither colludes with other third
parties nor with the first party and can only perform mutations
on the nodes and edges it controls. We conduct the attack on
100 web pages. We note that increasing the number of graph
mutations increases the adversary’s mean success rate from
38.6 ± 33.01 (median: 33.33) at 5% graph growth to 52.48 ±
33.4 (median: 50.00) at 20% graph growth. The classification
switches lead to a decrease in the overall classification accuracy
by 1.5%, recall by 8.85%, and precision by 2.29%.

However, the adversary’s success comes at a cost of collat-
eral damage. The average collateral damage rises from 2.17 ±
11.19 to 3.88 ± 13.55 (median: 0). In Figure 6, we illustrate the
trade-off between success rate and collateral damage at 20%
graph growth. The x-axis represents success rate, the y-axis
represents collateral damage, and circles represent a trade-off
between the two. The circles’ color represents ATSAdv or the
number of classifications the adversary has to switch for the
particular web page. The lighter the color, the more switches
are required, i.e, the cost of success increases. For the web
pages in this dataset, the adversary has, on average, ATSAdv =
5.98 ± 5.39 nodes classified as ATS. For certain pages, the
ATSAdv can be as high as 26.

Ideally, the adversary wants to be at the bottom right of the
graph, where it achieves 100% success rate with zero collateral
damage. The adversary is able to reach its ideal target on
only 13 web pages, which only required four switches. The
adversary is able to achieve 50% or more success on 61 of
the tested web pages. Together, they amount to 240 nodes
switched, with 45 of these pages having non-zero collateral
damage. On the other hand, we have 9 web pages that had a
higher collateral damage than success rate: a net negative effect
of the mutation. Out of these, 6 web pages had 0% success rate
with non-zero collateral damage, and 3 web pages had a large
collateral damage > 75% (with one web page hitting 83%).

Overall, even in the case of an unrealistic adversary that
has the capabilities to manipulate structure features at will,
and also the operational power to do so for a large number of
iterations, there is no guarantee of perfect success.

Breakage. If undesired changes affect benign resources that
are essential to the correct functioning of the web page, even
a small collateral damage can break the page. This may have
large impact on trackers. If users leave the broken web pages,
the adversary cannot track them or show them ads.

We define website breakage as degradation in usability of the
website. We say there is major breakage if the user is unable to
complete the primary functionality of the web pages (e.g. login,
search or page navigation). If the user is unable to complete
a secondary functionality of the web pages (e.g. comment
or review), we say there is minor breakage. Otherwise, we
consider that the web page does not have any breakage.

We quantify breakage on all of the 21 web pages where
the adversary experiences undesired classification switches.5

We open these web pages side by side on stock Firefox and
a Firefox configured with an extension that blocks the URLs
that switched classification, and we compare them side by side
to identify any visual signs of breakage.

We ask two reviewers to perform the analysis. Our reviewers
attain an agreement of 90.46% in their evaluation. They find
that the undesired classification switches cause major break-
age on 3 and minor breakage on 2 web pages. This breakage
mostly happens when the first-party resources are switched
from Non-ATS → ATS. Our approach and results are in line
with other works that evaluate breakage [40, 57], though we
cannot test whether this breakage is representative of what
users experience in the wild.

Careless adversary. If the adversary is not concerned with
changes to any non-adversarial nodes, their collateral damage
decreases. The adversary still does not want their own con-
tent to be blocked, so it will optimize against their own nodes
switching to ATS. This change in strategy updates the collateral
damage calculation to: undesired/Non-ATSAdv.

With our modified definition, there can be no collateral dam-
age for web pages on which all of the adversary nodes are
classified as ATS; we note 55 such web pages. For the remain-
ing 45 web pages, only 8 web pages have collateral damage,
as compared to 27 web pages that had collateral damage as
per our original definition. Out of these 8 web pages, 4 had a
higher collateral damage than success rate (net negative effect),
and 6 web pages have a large collateral damage > 20% (with
2 web pages hitting 100%). Thus, even when an adversary is
not concerned about collateral damage to other parties they are
not significantly more successful in subverting WEBGRAPH.
Surprisingly, the success rate mean growth does not change
much from the previous scenario. The unpredictable effect of
the mutations on the graph features (see Appendix E for an

5The adversary experiences undesired classification switches on 45 web
pages. However, 24 web pages no longer serve the switched ATS resources.

USENIX Association 31st USENIX Security Symposium 2885

(a) (b) (c)

Figure 6: Adversary’s success rate vs. collateral damage for each web page in the test data at 20% graph growth. Figure 6(a) represents all
mutations, 6(b) represents only structure mutations, and 6(c) represents only resource re-routing and obfuscation mutations. Colored circles
represent the number of required switches.

example) makes it difficult to pinpoint what causes this lack of
change in the adversary’s success rate.

Collusion with the first party. So far, we have assumed that
the adversary is a single third party that does not collude with
other third parties or the first party. If we assume the adversary
colludes with both, the adversary can add child nodes to any
node in the graph. This is a much stronger adversary than
in Section 5.3.1, where in each iteration the adversary can
only test a random subset of the options. Realistically, such a
powerful collusion would be difficult to implement, as it would
require coordination and cooperation among multiple parties
to ensure that the mutation is feasible.

We repeat our experiment, but we now allow the adversary to
consider all possible mutation options on any node, and pick the
best one in each iteration. These experiments take longer to run
(see Appendix C), so we only analyze 100 web pages whose
graphs have at most 50 nodes. We see that collusion enables the
adversary to have a slightly higher success rate (63 pages with
success rate > 50% as compared to 60 for the non-colluding
adversary) and lower collateral damage (9 pages with damage
>0% compared to 18 pages for a non-colluding adversary).
These results are described in detail in Appendix F).

5.3.2 Impact of mutation choice

Next, we study the adversary’s preference in selecting the
most useful mutations. The adversary picks resource addition
81.70%, resource re-routing 17.26%, and resource obfuscation
0.04% of the time. Resource obfuscation is rarely chosen by the
adversary because the graph already has content manipulations
applied, and these manipulations have already severed many
of the edges that would be severed by resource obfuscation.
To separate out the impact of different mutations, we conduct
two additional experiments: (1) where the adversary can only
perform resource addition, and (2) where the adversary can
only perform resource re-routing and obfuscation.

We exclude 33 of the web pages for experiment 2 because
these web pages do not have re-route-able or obfuscate-able
resources. For the remaining 67 pages, we see that the re-
routing/obfuscation mutations (Figure 6(c)) are more effective
than addition mutations (Figure 6(b)). Re-routing/obfuscation

not only yields higher success rates for the adversary, but also
results in lower collateral damage. This is unsurprising because
these mutations target information sharing patterns which are
distinctive of trackers; changing these patterns removes an
important signal for the classifier (see Table 3).

However, in practice, resource re-routing and obfuscation
would entail high costs for the adversary since they involve the
manipulation of identifier sharing patterns. Specifically, the ad-
versary would have to coordinate with other parties on changes
to these patterns, and redesign how they perform tracking in
order to perform these mutations. The success of these muta-
tions also depends on the degree to which flows are captured
by the instrumentation used to create the graph. WEBGRAPH’s
instrumentation approximates information flows and will not
capture all attempts by an adversary to use re-routing and
obfuscation. We argue that this is not a fundamental flaw in
WEBGRAPH’s architecture but a limitation in our implementa-
tion that approximates information flow (Section 4). A fully
fledged instrumentation would make these manipulations much
more difficult to deploy. See Section 6 for an extended discus-
sion. Resource addition has fewer costs for the adversary since
it does not involve coordination with additional parties. This
manipulation is not affected by the type of implementation
because it is not related to the flow of identifiers.

5.3.3 Comparison with ADGRAPH

We also evaluate whether WEBGRAPH, in addition to having
superior classification performance, offers robustness benefits
over ADGRAPH. We only use ADGRAPH’s structural features,
as we already demonstrated that content features are not ro-
bust. Because ADGRAPH does not have features based on
flow information, we only perform resource addition. We find
that the adversary has greater success against ADGRAPH than
WEBGRAPH, but also suffers from more collateral damage
(Figure 10 in Appendix F). This is because the structural ef-
fects of node additions are hard to control, as explained in
Section 5.2. Since the former is beneficial to the adversary but
the latter is not, it is not clear-cut as to whether one system
provides more robustness than the other.

2886 31st USENIX Security Symposium USENIX Association

In summary, it is not trivial for an adversary to produce the
desired classification switches for their advertising and tracking
resources without producing any undesired changes. Yet, an
adversary willing to accept the collateral damage, and with the
resources to grow the graph beyond the 20% we evaluated, can
increase the success rate. Even this success, however, would
increase the adversary’s operational and computational costs.

6 Limitations

In this section, we discuss limitations of WEBGRAPH’s design,
implementation, and evaluation.

Completeness. For efficiency reasons, WEBGRAPH fo-
cuses on a limited subset of the browser’s API surface,
such as HTTP cookie headers, document.cookie, and
window.localStorage. WEBGRAPH’s implementation is
also geared towards capturing client-side information that is
pertinent to stateful tracking. However, techniques used by
ATS need not to be limited to these APIs or to stateful tracking.
Some ATS have started to use stateless tracking techniques,
such as browser fingerprinting, which use APIs that are not cur-
rently covered by our instrumentation [27, 38, 46]. To account
for these techniques, WEBGRAPH’s instrumentation must be
extended to include the corresponding APIs.

WEBGRAPH’s manually designed graph representation and
feature set capture the most well-known information shar-
ing patterns. The limits of these approach are shown in Sec-
tion 5.3.2, where we show that an adversary capable of hiding
or obfuscating traditional sharing flows has a better chance to
bypass WEBGRAPH than doing structure modifications. This
limitation is, however, linked to our implementation choices.
To increase WEBGRAPH’s coverage of sharing behaviors, if
suffices with increase the instrumentation to cover more infor-
mation flows. Ideally, we would instrument full-blown infor-
mation flow tracking. Such expansion would incur prohibitive
runtime overheads (up to 100X-1000X [35]) and its complex-
ity makes it hard to integrate in the browser [18, 20, 45, 59].
Nevertheless, the design of WEBGRAPH permits that the instru-
mentation to be upgraded gradually, as ATS evolve in response
to our evasion protection techniques, increasing the cost of eva-
sion without fundamentally changing the detection approach.

Robustness analysis. Inspired by previous work on graph-
based detection evasion [36, 62, 67], we use a greedy algorithm
to attack WEBGRAPH. This algorithm only considers the best
mutation in each iteration. Thus, it is not guaranteed to find
the optimal mutation sequence that would lead to the best
adversary performance. We note however that even exhaustive
search does not lead to perfect success (see our results on small
websites). We expect adversaries to try alternative algorithms
to improve their success rates. However, any alternative that is
close to exhaustive search will become prohibitively expensive
for the adversary when the web page graph is large.

Another option for the adversary would be to perform more
sophisticated graph mutations instead of the simple node ad-
ditions that we perform. An adversary could tailor their muta-
tions to the page’s graph structure by studying how their node
changes affect the graph properties of the web page. However,
this requires that the rest of the graph (i.e., the portions outside
of the adversary’s control) remaining unchanged. Realistically,
it would be difficult for an adversary to coordinate with other
parties to generate these changes.

Finally, we note that the dynamism of modern websites [17]
complicates the process for the adversary. Web pages change
often, sometimes on every load. Even if the adversary manages
to find an appropriate set of mutations, those mutations may
be invalid the next time the page is reloaded.

7 Conclusion

In this paper, we showed that state-of-the-art ad and tracker
blocking approaches are susceptible to evasion due to their re-
liance on easy-to-manipulate content features. We then showed
that information sharing patterns in online advertising and
tracking can be leveraged for their robust blocking. We pro-
posed WEBGRAPH, that builds a cross-layer graph represen-
tation to capture such information flows and trains a machine
learning classifier for accurate and robust blocking. Our results
showed that it is non-trivial to evade WEBGRAPH’s classifier
without causing unavoidable collateral damage.

While it is not foolproof, WEBGRAPH raises the bar for
advertisers and trackers attempting to evade detection. We
foresee that advertising and tracking services would need to
significantly re-architecture their information sharing patterns
to achieve long-lasting evasion against WEBGRAPH. We note,
however, that introducing new information flows may be quite
complicated, as they may require collaboration among the first-
party and numerous third-parties on a typical web page.

Acknowledgments

We thank Charles Nguyen for helping with the breakage analy-
sis. We also thank our anonymous reviewers and our shepherd,
Blase Ur, for their constructive feedback. A part of this work
was carried out during Sandra Siby’s internship at Mozilla.
We thank Luke Crouch for his mentorship of the project dur-
ing Sandra’s internship. This work is supported in part by the
National Science Foundation under grant numbers 2051592,
2102347, 2103038, and 2103439.

References

[1] Adblock Plus. https://adblockplus.org/.
[2] Bypassing ad blockers for Google Analytics. https://

analytics-bypassing-adblockers.netlify.app/.
[3] Disconnect. https://disconnect.me/.

USENIX Association 31st USENIX Security Symposium 2887

https://adblockplus.org/
https://analytics-bypassing-adblockers.netlify.app/
https://analytics-bypassing-adblockers.netlify.app/

[4] EasyList. https://easylist.to/easylist/easylis
t.txt.

[5] EasyPrivacy. https://easylist.to/easylist/eas
yprivacy.txt.

[6] Ghostery. https://www.ghostery.com.
[7] treeinterpreter. https://pypi.org/project/treeint

erpreter/.
[8] uBlock Origin. https://github.com/gorhill/uBl

ock.
[9] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ,

M., NARAYANAN, A., AND DIAZ, C. The web never
forgets: Persistent tracking mechanisms in the wild. In
CCS (2014).

[10] ALRIZAH, M., ZHU, S., XING, X., AND WANG, G.
Errors, misunderstandings, and attacks: Analyzing the
crowdsourcing process of ad-blocking systems. In IMC
(2019).

[11] AMJAD, A. H., SALEEM, D., ZAFFAR, F., GULZAR,
M. A., AND SHAFIQ, Z. Trackersift: Untangling mixed
tracking and functional web resources. arXiv preprint
arXiv:2108.13923 (2021).

[12] BASHIR, M. A., AND WILSON, C. Diffusion of user
tracking data in the online advertising ecosystem. PETS
(2018).

[13] BHAGAVATULA, S., DUNN, C., KANICH, C., GUPTA,
M., AND ZIEBART, B. Leveraging Machine Learning to
Improve Unwanted Resource Filtering. In WAIS (2014).

[14] BLOOMBERG, J. Ad Blocking Battle Drives Disruptive
Innovation. https://www.forbes.com/sites/jason
bloomberg/2017/02/18/ad-blocking-battle-dri
ves-disruptive-innovation, 2017.

[15] BOSWORTH, A. A New Way to Control the Ads You
See on Facebook, and an Update on Ad Blocking.
https://newsroom.fb.com/news/2016/08/a-new-way-to-
control-the-ads-you-see-on-facebook-and-an-update-on-
ad-blocking/, 2016.

[16] BRAVE. A Long List of Ways Brave Goes Beyond Other
Browsers to Protect Your Privacy. https://brave.co
m/privacy-features/.

[17] BUTKIEWICZ, M., MADHYASTHA, H. V., AND SEKAR,
V. Understanding website complexity: measurements,
metrics, and implications. In IMC (2011).

[18] CHEN, Q., AND KAPRAVELOS, A. Mystique: Uncov-
ering information leakage from browser extensions. In
CCS (2018).

[19] CHEN, Q., SNYDER, P., LIVSHITS, B., AND KAPRAVE-
LOS, A. Detecting filter list evasion with event-loop-turn
granularity javascript signatures. In S&P (2021).

[20] CHUDNOV, A., AND NAUMANN, D. A. Inlined informa-
tion flow monitoring for javascript. In CCS (2015).

[21] CIMPANU, C. Ad Network Uses DGA Algorithm to By-
pass Ad Blockers and Deploy In-Browser Miners. https:
//www.bleepingcomputer.com/news/security/a

d-network-uses-dga-algorithm-to-bypass-ad-b
lockers-and-deploy-in-browser-miners/, 2018.

[22] CIMPANU, C. Ad Network Uses DGA Algorithm to By-
pass Ad Blockers and Deploy In-Browser Miners. https:
//www.bleepingcomputer.com/news/security/a
d-network-uses-dga-algorithm-to-bypass-ad-b
lockers-and-deploy-in-browser-miners/, 2018.

[23] COINTEPAS, R. CNAME Cloaking, the
dangerous disguise of third-party trackers.
https://medium.com/nextdns/cname-cloaking-
the-dangerous-disguise-of-third-party-trackers-
195205dc522a, 2010.

[24] COOK, J., NITHYANAND, R., AND SHAFIQ, Z. Dif-
fusion of user tracking data in the online advertising
ecosystem. PETS (2020).

[25] DANG, H., HUANG, Y., AND CHANG, E. Evading Clas-
sifiers by Morphing in the Dark. In CCS (2017).

[26] DAO, H., MAZEL, J., AND FUKUDA, K. Characterizing
CNAME Cloaking-Based Tracking on the Web. In TMA
(2020).

[27] DAS, A., ACAR, G., BORISOV, N., AND PRADEEP, A.
The Web’s Sixth Sense: A study of scripts accessing
smartphone sensors. In CCS (2018).

[28] DIMOVA, Y., ACAR, G., OLEJNIK, L., JOOSEN, W.,
AND VAN GOETHEM, T. The CNAME of the Game:
Large-scale Analysis of DNS-based Tracking Evasion.
PETS (2021).

[29] ENGLEHARDT, S., HAN, J., AND NARAYANAN, A. I
never signed up for this! privacy implications of email
tracking. PETS (2018).

[30] ENGLEHARDT, S., AND NARAYANAN, A. Online track-
ing: A 1-million-site measurement and analysis. In CCS
(2016).

[31] FASS, A., BACKES, M., AND STOCK, B. HideNoSeek:
Camouflaging Malicious JavaScript in Benign ASTs. In
CCS (2019).

[32] FOUAD, I., BIELOVA, N., LEGOUT, A., AND
SARAFIJANOVIC-DJUKIC, N. Missed by Filter
Lists: Detecting Unknown Third-Party Trackers with
Invisible Pixels. PETS (2020).

[33] GUGELMANN, D., HAPPE, M., AGER, B., AND
LENDERS, V. An Automated Approach for Comple-
menting Ad Blockers’ Blacklists. In PETS (2015).

[34] HANSEN, N., CARLI, L. D., AND DAVIDSON, D. As-
sessing Adaptive Attacks Against Trained JavaScript
Classifiers. In SecureComm (2020).

[35] HEDIN, D., BIRGISSON, A., BELLO, L., AND
SABELFELD, A. Jsflow: Tracking information flow in
javascript and its apis. In SAC (2014), pp. 1663–1671.

[36] HOU, S., FAN, Y., ZHANG, Y., YE, Y., LEI, J., WAN,
W., WANG, J., XIONG, Q., AND SHAO, F. αcyber: En-
hancing robustness of android malware detection system
against adversarial attacks on heterogeneous graph based
model. In IKM (2019), pp. 609–618.

2888 31st USENIX Security Symposium USENIX Association

https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easyprivacy.txt
https://www.ghostery.com
https://pypi.org/project/treeinterpreter/
https://pypi.org/project/treeinterpreter/
https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
https://www.forbes.com/sites/jasonbloomberg/2017/02/18/ad-blocking-battle-drives-disruptive-innovation
https://www.forbes.com/sites/jasonbloomberg/2017/02/18/ad-blocking-battle-drives-disruptive-innovation
https://www.forbes.com/sites/jasonbloomberg/2017/02/18/ad-blocking-battle-drives-disruptive-innovation
https://brave.com/privacy-features/
https://brave.com/privacy-features/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/

[37] IKRAM, M., ASGHAR, H. J., KAAFAR, M. A., MA-
HANTI, A., AND KRISHNAMURTHY, B. Towards Seam-
less Tracking-Free Web: Improved Detection of Trackers
via One-class Learning . In PETS (2017).

[38] IQBAL, U., ENGLEHARDT, S., AND SHAFIQ, Z. Finger-
printing the Fingerprinters:Learning to Detect Browser
Fingerprinting Behaviors. In S&P (2021).

[39] IQBAL, U., SHAFIQ, Z., AND QIAN, Z. The Ad
Wars: Retrospective Measurement and Analysis of Anti-
Adblock Filter Lists. In IMC (2017).

[40] IQBAL, U., SNYDER, P., ZHU, S., LIVSHITS, B., QIAN,
Z., AND SHAFIQ, Z. AdGraph: A Graph-Based Ap-
proach to Ad and Tracker Blocking. In S&P (2020).

[41] JOHANSEN, B. Tracking visitors with adblock-
ers. https://www.bjornjohansen.com/tracking-v
isitors-with-adblockers.

[42] KAIZER, A. J., AND GUPTA, M. Towards Auto-
matic identification of JavaScript-oriented Machine-
Based Tracking. In IWSPA (2016).

[43] KARGARAN, A. H., AKHONDZADEH, M. S., HEIDAR-
POUR, M. R., MANSHAEI, M. H., SALAMATIAN, K.,
AND SATTARY, M. N. On detecting hidden third-
party web trackers with a wide dependency chain graph:
A representation learning approach. arXiv preprint
arXiv:2004.14826 (2020).

[44] LE, H., MARKOPOULOU, A., AND SHAFIQ, Z. Cv-
inspector: Towards automating detection of adblock cir-
cumvention. In NDSS (2021).

[45] LEKIES, S., STOCK, B., AND JOHNS, M. 25 million
flows later: Large-scale detection of DOM-based XSS.
In CCS (2013).

[46] MAVROUDIS, V., HAO, S., FRATANTONIO, Y., MAGGI,
F., KRUEGEL, C., AND VIGNA, G. On the privacy and
security of the ultrasound ecosystem. PETS (2017).

[47] MDN. Redirect tracking protection. https://develo
per.mozilla.org/en-US/docs/Mozilla/Firefox
/Privacy/Redirect_Tracking_Protection.

[48] MDN. Storage access policy: Block cookies from
trackers. https://developer.mozilla.org/en-US/
docs/Mozilla/Firefox/Privacy/Storage_acces
s_policy.

[49] MICROSOFT EDGE TEAM. Introducing tracking
prevention, now available in Microsoft Edge preview
builds. https://blogs.windows.com/msedgedev/
2019/06/27/tracking-prevention-microsoft-e
dge-preview/.

[50] OLEJNIK, L., TRAN, M.-D., AND CASTELLUCCIA, C.
Selling off privacy at auction. In NDSS (2014).

[51] PAPADOPOULOS, P., KOURTELLIS, N., AND
MARKATOS, E. P. Cookie synchronization: Ev-
erything you always wanted to know but were afraid to
ask. In WWW (2019).

[52] PLOHMANN, D., YAKDAN, K., KLATT, M., BADER,
J., AND GERHARDS-PADILLA, E. A Comprehensive

Measurement Study of Domain Generating Malware. In
USENIX Security (2016).

[53] SHUBA, A., MARKOPOULOU, A., AND SHAFIQ, Z.
NoMoAds: Effective and Efficient Cross-App Mobile
Ad-Blocking. In PETS (2018).

[54] SJÖSTEN, A., SNYDER, P., PASTOR, A., PAPADOPOU-
LOS, P., AND LIVSHITS, B. Filter List Generation for
Underserved Regions. In WWW (2020).

[55] SKOLKA, P., STAICU, C.-A., AND PRADEL, M. Any-
thing to hide? studying minified and obfuscated code in
the web. In WWW (2019), pp. 1735–1746.

[56] SLOANE, G. Ad Blocker’s Successful Assault on
Facebook Enters Its Second Month. http://adage.co
m/article/digital/blockrace-adblock/311103/,
2017.

[57] SNYDER, P., TAYLOR, C., AND KANICH, C. Most web-
sites don’t need to vibrate: A cost-benefit approach to
improving browser security. In CCS (2017).

[58] SNYDER, P., VASTEL, A., AND LIVSHITS, B. Who
Filters the Filters: Understanding the Growth, Useful-
ness and Efficiency of Crowdsourced Ad Blocking. In
SIGMETRICS (2020).

[59] STOCK, B., LEKIES, S., MUELLER, T., SPIEGEL, P.,
AND JOHNS, M. Precise Client-side Protection against
DOM-based Cross-Site Scripting. In USENIX Security
(2014).

[60] TRAMÈR, F., DUPRÉ, P., RUSAK, G., PELLEGRINO, G.,
AND BONEH, D. Adversarial: Perceptual ad blocking
meets adversarial machine learning. In CCS (2019).

[61] WANG, W., ZHENG, Y., XING, X., KWON, Y., ZHANG,
X., AND EUGSTER, P. WebRanz: Web Page Random-
ization For Better Advertisement Delivery and Web-Bot
Prevention. In FSE (2016).

[62] WANG, X., EATON, J., HSIEH, C.-J., AND WU, F. At-
tack graph convolutional networks by adding fake nodes.
arXiv preprint arXiv:1810.10751 (2018).

[63] WILLIAMS, B. Ping pong with Facebook. https://ad
blockplus.org/blog/ping-pong-with-facebook,
2018.

[64] WU, Q., LIU, Q., ZHANG, Y., LIU, P., AND WEN, G.
A Machine Learning Approach for Detecting Third-Party
Trackers on the Web. In ESORICS (2016).

[65] ZAIFENG, Z. Who is Stealing My Power III: An
Adnetwork Company Case Study, 2018. http://blog
.netlab.360.com/who-is-stealing-my-power-i
ii-an-adnetwork-company-case-study-en/.

[66] ZHU, S., WANG, Z., CHEN, X., LI, S., IQBAL, U.,
QIAN, Z., CHAN, K. S., KRISHNAMURTHY, S. V., AND
SHAFIQ, Z. A4: Evading learning-based adblockers.
arXiv preprint arXiv:2001.10999 (2020).

[67] ZÜGNER, D., AKBARNEJAD, A., AND GÜNNEMANN,
S. Adversarial attacks on neural networks for graph data.
In KDD (2018).

USENIX Association 31st USENIX Security Symposium 2889

https://www.bjornjohansen.com/tracking-visitors-with-adblockers
https://www.bjornjohansen.com/tracking-visitors-with-adblockers
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Redirect_Tracking_Protection
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Redirect_Tracking_Protection
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Redirect_Tracking_Protection
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://blogs.windows.com/msedgedev/2019/06/27/tracking-prevention-microsoft-edge-preview/
https://blogs.windows.com/msedgedev/2019/06/27/tracking-prevention-microsoft-edge-preview/
https://blogs.windows.com/msedgedev/2019/06/27/tracking-prevention-microsoft-edge-preview/
http://adage.com/article/digital/blockrace-adblock/311103/
http://adage.com/article/digital/blockrace-adblock/311103/
https://adblockplus.org/blog/ping-pong-with-facebook
https://adblockplus.org/blog/ping-pong-with-facebook
http://blog.netlab.360.com/who-is-stealing-my-power-iii-an-adnetwork-company-case-study-en/
http://blog.netlab.360.com/who-is-stealing-my-power-iii-an-adnetwork-company-case-study-en/
http://blog.netlab.360.com/who-is-stealing-my-power-iii-an-adnetwork-company-case-study-en/

A Comparison between ADGRAPH and WEB-
GRAPH features

Table 4 compares the features used in WEBGRAPH and AD-
GRAPH. WEBGRAPH does not use content features. Graph
size, Degree and Centrality features come under both struc-
ture and flow categories, since they include graph properties
that are based on both normal and shared information edges.
Some structural features used in ADGRAPH are not used in
WEBGRAPH due to WEBGRAPH being adapted for offline use,
whereas the features are useful in an online context.

B Distribution of graph sizes

Figure 7 shows the distribution of number of nodes in the graph
representations of the web pages in our dataset. Since 80% of
web pages have 250 nodes or fewer, we sample from this subset
in our structural mutation experiments in Section 5.

Figure 7: Distribution of number of nodes in the graph representations
of the web pages in the dataset.

C Experimental run times

(a) (b)

Figure 8: Run-times for robustness experiments without collusion.
Figure 8(a) shows mean time per iteration vs graph size, and 8(b)
shows total run time.

Figure ?? describes the run times for the experiment de-
scribed in Section 5.3.1 (adversary without collusion). Fig-
ure 8(a) shows the impact of graph size on each iteration of
the experiment. Smaller graphs have lower run times since

features have to be calculated over a smaller number of nodes.
Factors such as the complexity of the structure and flow be-
haviors also contribute towards time spent in each iteration,
which explains variations in iteration time among graphs of the
same size. We see that the mean time per iteration can be as
high as ≈ 1200 seconds (median is ≈ 68 seconds). Figure 8(b)
shows the total experiment time over all iterations for a graph.
Since we increase the sizes of graphs by 20% of their origi-
nal size, bigger graphs will have a larger number of iterations.
In our dataset, the maximum time taken for an experiment
is 46654.19 seconds, the minimum is 15.67 seconds, and the
median is 1745.11 seconds. 39% of the graphs in our dataset
have a run time of more than an hour.

For the experiment in Section 5.3.1 (collusion with first
party), the median time is 265.03 seconds, with the maximum
time going up to 992.67 seconds, despite the maximum graph
size being only 50 nodes. In comparison, for the adversary
without collusion, for graph sizes up to 50 nodes, the median is
21.46 seconds and the maximum is 221.51 seconds. Since the
adversary considers all nodes in the graph as potential parents,
each iteration takes a longer amount of time.

D Graph Mutation algorithm

In each iteration, the algorithm mutates WEBGRAPH’s graph
representation and probes the model for classification decisions.
The algorithm takes the following inputs: a graph represen-
tation of a web page, G0, consisting of all the nodes in the
graph; a set of nodes and edges T of size lT , representing the
resources loaded by the adversary, hereafter referred to as the
adversary resources; a trained classifier M that identifies ATS
in WEBGRAPH; and a maximum number of iterations that the
algorithm can run, max_iter.

The algorithm processes the input as follows: It first uses the
classifier M to obtain classifications of all nodes in the original
graph G0 (lines 1–4 in Algorithm ??). Second, it iterates over
the steps from lines 9–20 max_iter times. In each iteration, ev-
ery adversary node tries resource addition, resource re-routing,
and obfuscation, and produces a new mutated graph, Gi (line
11). Third, it extracts features from the mutated graph Gi and
uses them to classify all the nodes in this graph (lines 11–12).
Fourth, it compares the predictions in the original and mutated
graphs to obtain the number of desired and undesired switches
(line 13). We assume an adversarial goal for which desired
switches are all those in which an adversary node is switched
from ATS to Non-ATS, whereas undesired switches are all those
where any Non-ATS node is switched to ATS node. We call the
total number of adversarial ATS nodes whose prediction the
adversary wishes to change to Non-ATS the number of required
switches. The switching of nodes not under the adversary’s
control from ATS to Non-ATS do not affect the adversary. These
switches are, therefore, neither desired nor undesired. Finally,
the adversary chooses the mutation that provides the best re-
sult, i.e., the one with the best trade-off between desired and

2890 31st USENIX Security Symposium USENIX Association

Feature Type WEBGRAPH ADGRAPH

Request type (e.g. iframe, image) Content
Ad keywords in request (e.g. banner, sponsor) Content
Ad or screen dimensions in URL Content
Valid query string parameters Content
Length of URL Content
Domain party Content
Sub-domain check Content
Base domain in query string Content
Semi-colon in query string Content

Graph size (# of nodes, # of edges, and nodes/edge ratio) Structure
Degree (in, out, in+out, and average degree connectivity) Structure
Centrality (closeness centrality, eccentricity) Structure
Number of siblings (node and parents) Structure
Modifications by scripts (node and parents) Structure
Parent’s attributes Structure
Parent degree (in, out, in+out, and average degree connectivity) Structure
Sibling’s attributes Structure
Ascendant’s attributes Structure
Descendant of a script Structure
Ascendant’s script properties Structure
Parent is an eval script Structure

Local storage access (# of sets, # of gets) Flow (storage)
Cookie access (# of sets, # of gets) Flow (storage)
Requests (sent, received) Flow (network)
Redirects (sent, received, depth in chain) Flow (network)
Common access to the same storage node Flow (shared information)
Sharing of a storage node’s value in a URL Flow (shared information)
Graph size (# of nodes, # of edges, and nodes/edge ratio) Flow (shared information)
Degree (in, out, in+out, and average degree connectivity) Flow (shared information)
Centrality (closeness centrality, eccentricity) Flow (shared information)

Table 4: WEBGRAPH features comparison with ADGRAPH. indicates that a feature is present. WEBGRAPH calculates Graph size, Degree
and Centrality features using both normal and shared information edges. The former comes under structural features while the latter comes
under flow features.

undesired switches (lines 14–15). The adversary updates its T
based on the chosen mutation (line 18). To keep memory and
run time manageable, at the end of every iteration the algorithm
randomly samples lT adversarial nodes and edges from T (line
19) to be considered in the next iteration.

E Mutations on a single web page.

To illustrate how mutations result in classification switches, we
take as an example a web page in which the third party with the
highest number of ATS resources is assets.wogaa.sg, which
has 12 nodes in the graph. Figure 9 shows the breakdown of
classification switches as the adversary mutates the graph using
the greedy mutation algorithm. The ATSAdv or the number of
classifications the adversary wants to switch is 5 (pink line

). From the adversary’s point of view, adversarial nodes
switching from ATS→ Non-ATS are desired (blue line),
whereas adversarial nodes switching from Non-ATS → ATS
are undesired (orange line). We consider Non-ATS→ ATS
changes on non-adversarial nodes to be undesired because they
may have unintended impact on the web page (red line and

brown line). For instance, a first party Non-ATS → ATS
switch may break the web page. We note that, if the adversary’s
goal is to just create a denial of service and force the user
to disable ad and tracker blocking, the adversary might be
unconcerned about breakage. In our experiments, switches that
do not affect the adversary, such as ATS→ Non-ATS for non-
adversary nodes, are neither considered desired nor undesired
(purple line and green line).

There are two points worth highlighting from Figure 9: (1)
Even if an adversary achieves the maximum number of desired
switches, the mutations may produce undesirable changes, to
both the adversary’s nodes and others. For instance, at 20%
of growth, 3 of the adversary’s ATS nodes are classified as
Non-ATS, but also 7 Non-ATS nodes (3 adversary and 4 non-
adversary) switch to the undesired ATS classification. (2) The
evolution of desired and undesired switches is not monotonic,
i.e. the classification of nodes may change in both directions
as the adversary mutates the graph, resulting in increasing
or decreasing counts. This finding reinforces our argument
that it can be cumbersome for an adversary to create targeted
structural mutations without any unintended consequences. Not

USENIX Association 31st USENIX Security Symposium 2891

assets.wogaa.sg

Algorithm 1 Greedy random graph mutation. G0 is a web page
representation, T is the set of lT nodes and edges controlled
by the adversary, M is a trained model, and max_iter is the
maximum number of operations.
Input: G0,T,C,M,max_iter

1: for v ∈ G0 do
2: xG0 ← ExtractFeatures(v) ∀ v ∈ G0
3: yG0 ← Classify(M,x) ∀ x in xG0

4: end for
5: G← G0
6: i← 0
7: graph-info = []
8: while i < max_iter do
9: for t ∈ T do

10: Gt ← MutateGraph(G,t)
11: xt ← ExtractFeatures(v) ∀ v ∈ Gt

12: yt ← Classify(M,x) ∀ x in xt
13: d,u ← GetDesiredAndUndesired(yt,yG0)
14: ∆t = d−u
15: graph-info[t] ← (∆t,t,Gt)

16: end for
17: G← Gt in graph-info[t] with largest ∆t
18: T ← UpdateAdv(T,t ∈ graph-info[t])
19: T ← sample(T,lT)
20: i← i+1
21: end while

Figure 9: Example breakdown of classification switches for the
adversary’s and other nodes on the graph. NATS is shorthand for
Non-ATS. ATSAdv = 5 (pink line), Non-ATSAdv = 7, ATSWeb = 62,
ATSWeb = 13 (not shown in plot). At 20% growth, the adversary
achieves 3 desired switches, 7 undesired switches and 1 neutral
switch. This leads to a success rate of 60%, a collateral damage of
10.14% and other changes of 7.7%.

only it is hard to predict how mutations will affect adversary’s
own desired classification, but also how those mutations may
result in undesirable changes to others.

F WEBGRAPH robustness experiments

We show plots for the experiments in Sections 5.3.1 and 5.3.3.
Figure 10 shows the results for an adversary that performs
only resource addition against ADGRAPH (with only struc-
tural features) and WEBGRAPH. ADGRAPH shows a higher
number of successes for the adversary (44 pages with suc-
cess rate > 50% as compared to 30 for WEBGRAPH). At the
same time, ADGRAPH also shows a higher amount of collat-
eral damage (which is not beneficial for the adversary) – 66
pages with non-zero collateral damage, as compared to 47 for
WEBGRAPH. Hence, there is no clear-cut winner between the
two classifiers in terms of robustness. However, we do see that
ADGRAPH has lower successes and higher collateral damage
than WEBGRAPH against the powerful adversary that can do
all mutations as shown in Figure 6(a) (note that this adversary
cannot be used against ADGRAPH since ADGRAPH does not
use information flow edges), since this adversary targets the
effective, but costly, information sharing patterns.

Figure 11 shows the results for an adversary that colludes
against an adversary with no collusion (Section 5.3.1). A col-
luding adversary shows a higher number of successes (63
pages with success rate > 50% as compared to 60 for the non-
colluding adversary), and a lower collateral damage (9 pages
with damage >0% compared to 18 pages for a non-colluding
adversary).

Figure 10: Adversary’s success rate vs. collateral damage for each test
page at 20% graph growth, for resource addition against ADGRAPH

and WEBGRAPH.

Figure 11: Adversary’s success rate vs. collateral damage for each
test page at 20% graph growth, for colluding and non-colluding ad-
versaries.

2892 31st USENIX Security Symposium USENIX Association

	Introduction
	Background & Related Work
	AdGraph Robustness
	Threat Model & Attack
	Results

	WebGraph
	Design & Implementation
	Graph Construction
	Features

	Evaluation
	Efficiency

	WebGraph Robustness
	Content mutation attacks
	Structure mutation attacks
	Empirical evaluation
	Adversary's success
	Impact of mutation choice
	Comparison with AdGraph

	Limitations
	Conclusion
	Comparison between AdGraph and WebGraph features
	Distribution of graph sizes
	Experimental run times
	Graph Mutation algorithm
	Mutations on a single web page.
	WebGraph robustness experiments

