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Abstract
A voiceprint is the distinctive pattern of human voices

that is spectrographically produced and has been widely used

for authentication in the voice assistants. This paper inves-

tigates the impact of speech contents on the distinctiveness

of voiceprint, and has obtained answers to three questions

by studying 2457 speakers and 14,600,000 test samples: 1)

What are the influential factors that determine the distinctive-

ness of voiceprints? 2) How to quantify the distinctiveness

of voiceprints for given words, e.g., wake-up words in com-

mercial voice assistants? 3) How to construct wake-up words

whose voiceprints have high distinctiveness levels. To answer

those questions, we break down voiceprint into phones, and

experimentally obtain the correlation between the false recog-

nition rates and the richness of the phone types, the order,

the length, and the elements of the phones. Then, we define

PROLE Score that can be easily calculated based on speech

content yet can reflect the voice distinctiveness. Under the

guidance of PROLE Score, we tested 30 wake-up words of 19

commercial voice assistant products, e.g., “Hey, Siri”, “OK,

Google” and “Nihao, Xiaona” in both English and Chinese.

Finally, we provide recommendations for both users and man-

ufacturers, on selecting secure voiceprint words.

1 Introduction

A voiceprint is a measurable characteristic of human voices

that can uniquely identify a person. It is the key biometric in

automatic speaker verification (ASV) systems and is used for

personal asset access, financial transactions, and even criminal

investigation [1–4], e.g., utilizing the voiceprint embedded in

wake-up words to activate an Amazon Echo [5], as a password

to access a TD bank account [6], or for caller identification

in telecommunication fraud cases [7]. Given that voiceprints

are increasingly used in sensitive scenarios, it is critical to

understand how much we can trust state-of-the-art voiceprint

technologies, which commercial ASV system outperforms

others in terms of speech contents, and last but not least, what

*Xiaoyu Ji is the corresponding author.
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Figure 1: The workflow of a voiceprint ASV system. The

distinctiveness of voiceprint is affected by the speaker, the

speech contents, and the verification model.

words to say to improve the accuracy of the ASV. The key to

answering the aforementioned questions is to define a metric

that can quantify the distinctiveness of voiceprints.

A voiceprint is essentially a spectrographically produced

mathematical representation of human voices, and its dis-

tinctiveness has four contributors: (1) intrinsic physiological

features of a speaker, e.g., the vocal tract shape, (2) speech

contents, e.g., words with various phonetic alphabets, (3) ASV

models that are used to derive and compare voiceprints, and

(4) the environment and equipment factors, e.g., environmen-

tal noises, acoustic channel responses, or variance caused by

device properties, as shown in Figure 1. Instead of study-

ing all influential factors, we study the distinctiveness metric

by analyzing the impact of speech contents, complementary

to existing research on voiceprint security that focused on

performance optimization of models [8–14], attack strategy

and defense countermeasures against spoofing, synthesizing,

voice conversion, and adversarial samples[1, 15–18].

We aim to define a PROLE Score† such that the voiceprint

distinctiveness can be directly calculated from the speech

contents, yet it reflects the distinctiveness of the voiceprints

associated with ASV models||. From a linguistics perspec-

tive, a speech is a sequence of phones, i.e., the basic unit of

phonetic speech analysis [19], and can be modeled by four

phonetic factors: the richness (the number of phone types),

the order, the length, and the elements of phones. An ideal

PROLE Score definition shall reflect the underlying relation-

†PROLE: phonetic richness, order, length, elements.
||Online PROLE Score: https://github.com/USSLab/PROLE-Score.
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ship between the phonetic factors and voiceprints, yet cap-

turing it requires a comprehensive dataset with an unbiased

combination of phonetic factors. Such a dataset is not only un-

available but also difficult to generate due to the limitation of

languages: both the number of words and the combination of

phones are limited. We overcame the challenges by segment-

ing 1000-hour utterances of 2457 speakers in two English

speech datasets into phone clips and constructing a dataset

of 14,600,000 audio samples. To capture the relationship, we

selected three representative ASV models, i.e., i-vector [20],

x-vector [21], and the end-to-end U-LEVEL model [22], and

evaluated the false recognition rates using the constructed

dataset. In total, we executed verification tests more than 107

billion times, and the main observations are listed below:

• O1: Among all phonetic factors, the richness, the ele-

ment, and the length of phones can affect the ASV per-

formance, and their influence levels decrease in order.

Interestingly, the order of phones has almost no impact

on the voiceprint verification.

• O2: The increase of phone richness and length will re-

duce the false recognition rate, yet the improvement

saturates once a speech includes more than 15 phones

and 4 types of phones.

• O3: The element of phones matters. For instance, phone

[1] is better than phone [o], and the false recognition rate

of 20 [1]s is 2.43 times less than that of 20 [o]s.

We define PROLE Score to be linearly inversely propor-

tional to the false recognition rate of a given word, ranging

from 0 to 10, and we envision that PROLE Score is appli-

cable to both content dependent and independent voiceprint

systems. For instance, existing voice assistants (e.g., Google

Assistant) utilize content-dependent ASV, and extract users’

voiceprints by analyzing the pre-defined wake-up words, e.g.,

“OK, Google”. A PROLE Score can help to evaluate such

wake-up words and answer the following questions:

• Q1: Interjection. Is adding meaningless interjections

before wake-up words helpful? For example, is “OK

Google” better than “Google’?

• Q2: Repetition. Will a wake-up word repetition im-

prove voiceprint distinctiveness? Is “Alexa Alexa” better

than “Alexa”?

• Q3: Comparison. How to evaluate wake-up words of

existing commercial ASV systems? Is “Hey Cortana”

more distinct than “Hey Google”?

Without loss of generality, this paper evaluated content-

independent voiceprint and analyzed 30 wake-up words from

19 main-stream commercial voice assistant products, in both

English and Chinese. Our study confirms the choice of exist-

ing commercial wake-up words and answers the above three

questions: A1: An interjection is useful, especially when the

richness and the length of a wake-up word are below the

thresholds. Take i-vector as an example, turning “Google” to

“OK Google” can reduce the false recognition rate by 10%.

A2: Repetition can improve the voiceprint performance if the

length of a wake-up word is short. For example, repeating

“Alexa” once reduces the false recognition rate by 10%, and

twice by 14% under the i-vector model. A3: Words matter.

For instance, “Hey Cortana” outperforms “Hey Google” for

all the three voiceprint verification models. To further val-

idate the effectiveness of the PROLE Score, we conducted

a user study with 40 volunteers, and tested the 30 wake-up

words using a third-party ASV system. The measured false

recognition rates for each wake-up word match the calcu-

lated PROLE Score well. Thus, we believe PROLE Score can

help both manufactures and users to refine their choices of

words to be used for extracting voiceprint. In summary, the

contributions of the paper are as follows:
• We analyzed the correlation between speech contents

and false recognition rates using three representative

ASV models, with two datasets of 2457 speakers and

14,600,000 test samples.

• We defined the PROLE Score that can quantify the dis-

tinctiveness of voiceprints for any given speech content.

• We recommended words that can produce good

voiceprint distinctiveness to both manufacturers and

users, e.g., good wake-up word candidates.

2 Background and Threat Model

2.1 ASV and Voiceprint
Automatic speaker verification (ASV) systems utilize the

voiceprint for user authentication. The workflow of an ASV

system is shown in Fig.1. A typical ASV system involves

three stages: training, enrollment, and testing. In the training

stage, a large number of speech audios with speaker labels

are fed into the verification model for parameter optimiza-

tion. In the enrollment stage, a speaker, e.g., Alice, speaks

a phrase several times to register her voiceprint in the ver-

ification model. Finally, in the test stage, the ASV system

should deny all other unregistered users while accepting Al-

ice by authenticating Alice with her new audio inputs. As

a result, the verification accuracy of a given ASV system is

affected by three factors: the speaker, the speech content, and

the verification model.

Commonly-used verification models include two types:

(1) text-dependent models, and (2) text-independent models.

Most existing commercial voice assistant products, e.g, Ap-

ple Siri, Amazon Alexa, or Google Assistant, employ the

text-dependent model [23] for its superior performance, and

authenticate users as they speak pre-defined wake-up words,

e.g., “Hey, Siri” or“OK, Google”. However, text-dependent

models require the enrollment and testing sentences to be

the same while text-independent models have no such re-

striction on the speech contents. Therefore, it is a trend to

use text-independent models for speaker recognition [24].

Typical text-independent models include: (1) classic mod-

els such as i-vector [25–27], (2) DNN-based ones such as
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x-vectors [9, 21, 28], and (3) advanced end-to-end DNN mod-

els [10, 24, 29] such as U-LEVEL [22]. We study these rep-

resentative models i.e., i-vector, x-vectors, and U-LEVEL, in

this paper.

2.2 Threat Model
In this paper, we consider the following attack scenario:

An adversary aims to illegally access a voice assistant such
as Siri, Amazon Echo, etc., which however is protected by
speaker verification system. To break it, the adversary imitates
the voice of the victim and repeats the wake-up words or other
keywords to spoof the speaker verification system.

In this case, the goal of the ASV system is to identify the

registered speaker while rejecting the illegal ones. Thus, the

ASV system shall (1) select distinct wake-up words or key-

words, (2) design the appropriate embedding that represents

the voiceprint, and (3) improve the accuracy of the classi-

fier. The latter two are usually improved by optimizing the

voiceprint model. In this paper, we study how to enhance the

security of the ASV system by selecting appropriate speech

contents, e.g., wake-up words or keywords.

3 Measurement Methodology
To quantify the distinctiveness of voiceprints in terms of

speech contents, we look into the basic unit of speech content,

i.e., phones. However, existing public datasets for speaker

verification are usually long audio clips without dedicated

phonetic information. To overcome this challenge and ana-

lyze the correlation between voiceprints and phonetic factors,

we design the following measurement methodology with 4

stages, as shown in Fig. 2. First, we dissect a speech into

phones and propose four intrinsic phonetic factors to represent

any speech content (section 3.1). Second, we derive seven test

variables based on the four phonetic factors plus three combi-

nations of two factors (section 3.2). Then, we construct the

dedicated test datasets for each test variable by segmenting

and reassembling audio clips (section 3.3). Finally, we feed

the constructed test datasets into pre-trained models (section

3.4) and measure the impacts of speech contents using two

metrics (section 3.5).

3.1 Speech Content Analysis
According to linguistics[30], the basic unit of a given

speech is a phone and a speech is a sequence of phones. Dif-

ferent from a phoneme which is a speech sound in a given

language, a phone is language-independent and thus more

suitable for speech content analysis. There are 107 phones

across all the languages and English has 48 of them. To quanti-

tatively model speech contents in terms of phones, we propose

four phonetic factors:

• � Richness: the number of phone types.

• � Length: the number of phones.

• � Element: the specific type of phones.

• � Order: the sequential relationship among phones.

By varying the test variables derived from these four pho-

netic factors, we measure the impact of speech contents on

voiceprint distinctiveness.

3.2 Test Variable Design
To validate the influence of speech contents, we design

seven test variables based on the aforementioned four pho-

netic factors as well as the combination of two factors (i.e.,

richness, length and element) as they have mutual influences

upon each other in practice:

• � Richness. This variable explores the impact of the

number of phone types while for each level of richness,

the lengths of audio samples are uniformly distributed.

• � Length. This variable studies the impact of the num-

ber of phones, and for each length, the phone types are

uniformly distributed.

• � Element. This variable explores the impact of each

phone when the length is fixed. We cycle through each

phone, and construct audios sample by repeating it.

• � Order. This variable explores the impact of the se-

quence of phones, while the length and the element are

fixed.

• � Synergies of Richness and Length (� + �). This

setup explores the impact of richness and length, as both

vary simultaneously.

• � Synergies of Length and Element (� + �). Simi-

lar to �, these two factors vary simultaneously, and we

construct audio samples by repeating a phone up to the

required length.

• � Synergies of Richness and Element (� + �). This

combination is meant to investigate the impact of repe-

tition and combination. For instance, will A+A or will

A+B improve the distinctness, given that A and B contain

different levels of distinctiveness.

With the 7 test variables, we then construct corresponding

test datasets for measurement.

3.3 Test Dataset Construction
To construct test datasets for each variable, we first select

appropriate speech datasets to reduce the biases caused by

speakers, then prepare the audios by pre-processing, and fi-

nally segment and reassemble the processed audios to get the

final test datasets.

Dataset Selection. As mentioned, the speaker is a subjec-

tive factor that may affect the voiceprint security. To reduce

its impact, we choose two popular English speech datasets,

i.e., VCTK [31] and LibriSpeech [32], which contain audios

from 2,457 speakers (45 from VCTK and 2,412 from Lib-

riSpeech) with various genders, speech rates, channel noises,

etc. The average speech duration of each speaker is more
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Figure 2: Measurement methodology overview. First, we regarded the phone as the atomic unit of speech content and propose

four phonetic factors, i.e., richness, length, element and order. Then, we used seven test variables from the four factors considering

the synergies of multiple factors. Under each variable, we constructed its dataset from two popular open speech datasets. Finally,

each test variable was validated by calculating the corresponding false recognition rate, i.e., the sum of false acceptance rate and

false rejection rate under a specific ASV model.

than 30 minutes in VCTK and more than 20 minutes in Lib-

riSpeech respectively, providing sufficient test samples. We

hope these two speech datasets can reduce the biases caused

by unbalanced speakers or insufficient test samples.

Audio Pre-processing. With the selected datasets, we pre-

process the speech audios. First, we extract the texts corre-

sponding to the speech contents from the datasets. According

to the International Phonetic Alphabet (IPA), there are 48

types of phones in English, including 16 vowels, 1 rhotic-

ity vowel, 5 diphthongs, 1 triple vowel, 22 consonants, 1 co-

articulated consonant, and 2 affricates. Among these phones,

diphthongs and triple vowel are composed of several vow-

els, and affricate is composed of several consonants. Then, in

line with the IPA, we employ the Phonemizer tool [33] and

the G2P tool [34] to convert the texts into phone sequences,

and employ the Montreal-Forced-Aligner (MFA) tool [35]

to calculate the timestamp and the duration of each phone

in the speech audios. By statistical analysis, the accuracy of

the MFA aligner is 92.4%, and we will discuss the impact of

MFA errors on the phonetic factors in Sec. 7.

Audio Segmentation and Reassembling. Based on the re-

sults of MFA, we segment the original audios in the open

datasets into audios in the unit of phone. Then, We randomly

select phone audios to avoid bias and reassemble them to

form test datasets designed for the seven variables.

Datasets for � � �: For these three datasets, we vary

the value of length, richness, or the (length,richness) pair

respectively while keeping the other phonetic factors evenly-

distributed to construct the test datasets. Since the diphthong

and the affricate consist of 2 single phones and the triple

vowel consists of 3 single phones, we count their richness as

2, 2, and 3, respectively. Thus, in these three datasets, we have

a total of 40 types of phones.

Datasets for � �: For these two datasets, we repeat each

phone to reach a specific length to construct various test sam-

ples. The difference lies in that the length used in the Dataset

for � is a fixed large one, while in the Dataset for �, it is a

variable one in the range of [1, 20]. Since the triple vowel

[aIU] is infrequent in speakers’ speech contents, and the vow-

els [a] and [e] do not appear alone in English, we do not

consider these phones in these two datasets.

Datasets for � �: For these two datasets, we first construct

a group of high-distinctiveness phones (denoted as A) and a

group of low-distinctiveness phones (denoted as B) based on

the experimental results of � and �. Then, to construct the

Dataset for �, we randomly select an A and a B, repeat both

of them for several times, and change their orders to construct

various test samples. For the Dataset of �, we construct three

types of test samples, i.e., AAAA, BBBB and ABAB. The

used phones A and B are also randomly selected from the

aforementioned groups.

3.4 Model Selection
The constructed test datasets are then fed into voiceprint

verification models to evaluate their impacts. Similar to the

speaker, the model is another factor that affects the voiceprint

distinctiveness, yet is provided by manufacturers and thus

can not be controlled by users. Without loss of generality,

we study three representative voiceprint models in the paper:

(1) i-vector [20, 25], (2) x-vectors [9, 21, 36], and (3) an ad-

vanced end-to-end DNN model, i.e., U-LEVEL [22]. The first

two models are most commonly used in speaker verification

at present, while the third one represents the state-of-the-art

performance. All three models have different feature extrac-

tion methods and network structures. We model these impact

factors with a global variable ‘model type’. Models are trained

beforehand (in Sec. 4.1) and demonstrated usabilities. The

goal of using multiple models is two-fold: (1) reducing the

biases of measurement results, and (2) exploring the consis-

tency and diversity of measurement results across models. Of

course, more models can be supported and currently we take

the three models as examples to derive the distinctiveness of

voiceprints from phones.

3.5 Evaluation Metrics
We define the evaluation metric as false recognition rate,

which is the sum of (1) False Acceptance Rate of distinguisha-

bility (FAR), and (2) False Rejection Rate of consistency

(FRR). The former refers to the probability that any illegit-

imate person’s voiceprint in the test dataset is incorrectly

verified as a legitimate one. The latter refers to the probability

that any other speaker is classified to be a given registered
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Table 1: Experiment Setup

Model

Model Training Set Test Set Performance (EER)

i-vector

x-vector

U-LEVEL

85 speakers in VCTK; over 3,400 utterances

over 7,300 speakers in VoxCeleb; over 1.2 million utterances

over 5,900 speakers in VoxCeleb; over 1 million utterances

40 speakers

in VoxCeleb

5.446%

3.13%

3.22%

Test/
Enrolling
Dataset

Speakers Data Source Enrolling Utterances Test Utterances

45

2,412

VCTK

LibriSpeech
5 per speaker 5946 per speaker

speaker. In practice, the FAR and FRR are supposed to be

relatively balanced. Unbalanced FAR and FRR may lead to

the bias of model performance. To avoid it, we adjust the

threshold of the verification model during the measurement

to keep the two metrics balanced. We hope it can help derive

more unbiased measurement results.

4 Experiments

4.1 Experiment Setups
Models. As mentioned in Sec. 3.4, we used three text-

independent models in this paper: (1) i-vector [25], (2) x-

vectors [21], and (3) U-LEVEL [22]. To get rid of the influ-

ence from ASV models, we trained and tested these models

with the training and test datasets described in Tab. 1 and

the performances of these models are trained to approach

the state-of-the-art, with detailed Equal Error Rates (EERs)

shown in Tab. 1. During the following experiments, we con-

duct measurements for the aforementioned test variables on

each model respectively.

Enrolling Dataset. The enrolling dataset is extracted from

the VCTK and LibriSpeech datasets as well but has no overlap

with the test datasets. It consists of 12,285 randomly selected

utterances in total, i.e., 5 utterances for each speaker. Each

enrolling utterance lasts for more than 2 s, to provide sufficient

information for voiceprint extraction [37].

4.2 Experiment Results
4.2.1 Influence of Richness �

In this experiment, we investigate how the richness (R)

of the speech content affects voiceprint distinctiveness by

varying the number of phone types in the test audios.

Setup. Given 40 types of single phones in English, we varied

R in the range of [1,40]. For any R, the length (L) (i.e., the

number of phones) in the test samples is uniformly distributed

over the range of [R,40], and we randomly selected (41−
R0)×6 phone sequences as the test samples, i.e., 6 sequences

for each value of L. Thus, the test dataset of each speaker

consists of 4,920 audio samples. For each speaker, FAR and

FRR are calculated at each value of the variable. The final

results are the aggregation of all the speakers and presented

in a form of box plots as shown in Fig. 3. As the trend of

the results is similar across 3 models, we show the results of

U-LEVEL model in Sec. 4.2, and the results of i-vector and

x-vector can be found in Appendix. A. We show the results in

the same way for Sec. 4.2.2 and Sec. 4.2.4-4.2.7.

Result. From the results, we can see that as the number of

phone types increases, the FRR is significantly reduced while

the FAR increases slightly. This observation is consistent

across models but differs slightly. Specifically, we find: (1)

Richness can enhance the distinctiveness of voiceprint loga-

rithmically but the improvement saturates after a threshold,

i.e., Rth. (2) The saturation thresholds differ across models,

i.e., Rth is 15 for i-vector, 12 for x-vector, and 7 for U-LEVEL,

respectively.

Insights 1: The richness variable has an impact on the

voiceprint distinctiveness and the enhancement by the rich-

ness improvement is approximately logarithmic.

Analysis. We assume it is because the model may fail to ob-

tain enough voiceprint information and reject all verification

requests when the phone richness is low. As a result, the FRR

approaches 1 while the FAR approaches 0 on the left side of

the sub-graphs in Fig. 3. As the number of phones increases,

the test samples carry more voiceprint information, and thus

the FAR and FRR converge to equilibrium. The logarithmic

changes in false recognition rates may be caused by the over-

lap in the voiceprint information provided by different types

of phones. With high richness, adding another phone may

provide limited additional information. However, the impact

of phone richness will be saturated when the value of richness

exceeds a threshold.

4.2.2 Influence of Length �

In this experiment, we investigate how the length (L) of the

speech content affects voiceprint distinctiveness by varying

the number of phones in the test audios.

Setup. The test dataset for length is similar to that for rich-

ness, except that the requirements of L and R are interchanged,

i.e., for each L, R is uniformly distributed in the range of [1,L],
and the number of test samples is L×6. The results can be

found in Fig. 4.

Result. The trends of the FRR and FAR under the length

variation show similarity as that under the richness variation.

We also find: (1) The increase of phone length improves the

distinctiveness of voiceprints logarithmically with a threshold

Lth, beyond which the distinctiveness stops raising. (2) The
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(a) FRR of Consistency (U-LEVEL) (b) FAR of Distinguishability (U-LEVEL)

Figure 3: False recognition rate vs. Richness �. (a) shows the FRR of consistency in U-LEVEL. (b) shows the FAR of

distinguishability. FRR decreases logarithmically with an increasing R and FAR has a slight increase. (The lower and upper

bound of the box are the values of the first quartile and the last quartile, the black line is the maximum and minimum, the green

triangle is the mean, the red line is the median, and the blue circles mean outliers.)

(a) FRR of Consistency (U-LEVEL) (b) FAR of Distinguishability (U-LEVEL)

Figure 4: False recognition rate vs. Length �. (a) shows the FRR of consistency in U-LEVEL. (b) show the FAR of distinguisha-

bility. FRR decreases logarithmically with the increase of L and FAR has only a slight increase.

thresholds differ across various models, i.e., the Lth is 31 for

i-vector, 26 for x-vector, and 24 for U-LEVEL.

Insights 2: The length variable has an impact on the

voiceprint distinctiveness and the enhancement by length

improvement is approximately logarithmic.

Analysis. The reasons for Insights 2 are similar to those for

Insights 1. However, the results of this experiment have higher

stability values and slower convergence speed compared to

the experiment of richness. These two impacts are further

synergistically analyzed in Sec 4.2.5.

4.2.3 Influence of Element �

In this experiment, we investigate how the element (E)

of the speech content affects voiceprint distinctiveness by

changing the types of phones in the test audios.

Setup. The test dataset consists of 45 audio samples of the

same length for each speaker, which are constructed by repeat-

ing 45 types of phones separately. Each audio sample includes

90 phones. To avoid unbalanced FAR and FRR and obtain

unbiased results, we adjust the thresholds of the verification

models during the experiment. Results are presented in the

form of cumulative histograms in Fig. 5, where CFRR refers

to the cumulative false recognition rate.

Result. From the results, we find that the distinctiveness of

phones differs greatly and the difference is highly related to

the model. We observe that: (1) For i-vector, consonants are

slightly more distinct than vowels. For U-LEVEL, most vow-

els are more distinct than consonants. The trend of distinctive-

ness ranking for x-vector is similar to that of U-LEVEL. (2)

For i-vector, plosive and non-sibilant fricative consonants are

more distinct, and the difference between voiced and unvoiced

consonants is not significant. For x-vector and U-LEVEL, sibi-

lant fricative and tongue coronal consonants lack distinctive-

ness. For U-LEVEL, unrounded and central vowels perform

better in distinctiveness while for x-vector, there is no obvious

distinctiveness difference between vowels.

Insights 3: The element variable influences voiceprint dis-

tinctiveness differently across models. There are, however,

magic phones showing consistently good and poor distinc-

tiveness, e.g., [@] and [o] respectively.

Analysis. The results of x-vector are similar to that of U-

LEVEL, which we assume is because they are both neural-

network-based models. U-LEVEL shows a better perfor-

mance for phone-repetition-based utterances and a large dif-

ference between phones. We assume it is because of the im-

proved performance for short speeches, where a large number

of repetitions of most phones can provide sufficient voiceprint

information.

4.2.4 Influence of Order �

In this experiment, we investigate whether the order of

phones affects voiceprint distinctiveness by changing the se-

quential order of phones in the speech content.

Setups. We regard the top 10 types of distinct phones ob-

served by Sec. 4.2.3 as Class A (e.g., [i], [@]), and the least 10

as Class B (e.g., [o], [S]). We repeat and reassemble A and B
into 4 groups of sequences ABAB, BABA, AABB, and BBAA
respectively, each consisting of 10 utterances. The results are

as shown in Fig. 6.

Result. We can observe that four groups of utterances with

order changes are identical in FAR, FRR, and CFRR, which

indicates that order has little effect on the voiceprint distinc-

tiveness.

Insights 4: The order of phones in a speech has little impact

on the voiceprint distinctiveness.
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(a) False Recognition Rate (i-vector)

(b) False Recognition Rate (v-vector)

(c) False Recognition Rate (U-LEVEL)

Figure 5: False recognition rate vs. Element� in i-vector, x-vector and U-LEVEL. Individual phones behave differently across

models while there are some magic phones such as [@] that has low false recognition rate than others for all three models.

Figure 6: False recognition rate vs. Order � in U-LEVEL.

The effects of element and richness are about identical.

Analysis. The low impact of phone order on the voiceprint

distinctiveness may be because ASV systems usually extract

features by operations such as sampling, framing and Fourier

transform. The change in the order of phone-length audio

clips has barely effect on either the frame-length audio or the

frequency features.

4.2.5 Influence of Synergies of Richness and Length �

In this experiment, we vary the number of phone types and

the number of phones simultaneously. These two factors are

relevant, and we study both their stand-alone distinctiveness

improvement abilities and their synergistic effects.

Setups. We vary L and R of test audios in the range of [1,40],
with L greater than or equal to R. For any (L,R) pair, 6 se-

quences are randomly selected, and the test dataset for each

speaker consists of 4,920 audios. We obtain FAR and FRR at

each value of the variable pair, and show the averaged results

across speakers in Fig. 7.

Result. It can be observed that the false recognition rate

varies more in the direction of R. Specifically, it can not be

kept at a low level when R is less than or equal to 5 even when

L has reached 40. Based on the experimental results in Fig. 4

and Fig. 5, we find that richness shows a better performance

in improving the voiceprint distinctiveness compared with

(a) FRR of Consistency (U-LEVEL) (b) FAR of Distinguishability (U-

LEVEL)

Figure 7: False recognition rate vs. Synergies of Richness and

Length �. (a) shows the FRR of consistency and (b) shows

the FAR of distinguishability respectively in U-LEVEL. The

distinctiveness thresholds i.e., (13,5) with FRR = 0.04 for

synergistic changes in richness and length, as well as the

corresponding FAR and FRR, are marked in the figure.

length. In addition, both richness and length have distinctive-

ness thresholds, beyond which the voiceprint distinctiveness

does not improve. The length threshold T hL, richness thresh-

old T hR, and the corresponding FAR and FRR are marked in

Fig. 7.

In general, we have the following observations: (1) Rich-

ness has a greater impact on distinctiveness compared with

length, and repetition only has a limited improvement. (2)

When the number of phone types increases, the length thresh-

old decreases. (3) When the number of phones increases, the

richness threshold first falls and then rises.

Insights 5: Richness has a larger impact on voiceprint dis-

tinctiveness than length.
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(a) FRR of Consistency (U-LEVEL) (b) FAR of Distinguishability (U-LEVEL)

Figure 8: False recognition rate vs. Synergies of Length and Element �. (a) shows the FRR of consistency in U-LEVEL, and

(b) shows the FAR of distinguishability. Distinctiveness growth rate differ for diverse types of phone and is not consistent with

stable value ranking.

Figure 9: False recognition rate vs. Synergies of Richness and

Element � in U-LEVEL. The effect of phone ordering is low.

Analysis. The reason is that the voiceprint information con-

tained in two repeated phones overlaps compared with two

different phones, resulting in a less amount of information

gain. The results of this experiment can be used to assess the

security scores of both richness and length in Sec. 5.1.

4.2.6 Influence of Synergies of Length and Element �

In this experiment, we change both the length and element

of the speech content to investigate whether distinct phones

under saturated length perform equally after being repeated a

few times.

Setup. We repeat 45 phones respectively with L varying

in the range of [1,20], and the test dataset for each speaker

consists of 900 audios. When L of diphthong and affricate

is singular, the audio used is identical to that of the adjacent

double. The confusion matrices of FRR and FAR across all

the speakers for three models are shown in Fig. 8.

Result. From the results, we can see that the effect of rep-

etition on the distinctiveness of various phones is different.

Compared with the results of Sec. 4.2.3, we find that the dis-

tinctiveness ranking of phones under the sufficient length

differs from the ranking when the length changes. Specifi-

cally, we find: (1) Element has a greater impact on voiceprint

distinctiveness compared with length, and it is difficult to en-

hance the distinctiveness of an indistinct phone by increasing

the length alone. (2) Various phones show different distinc-

tiveness sensitivities to the length.

Insights 6: Element shows a larger impact on the voiceprint

distinctiveness compared with length.

Analysis. The distinctiveness improvements caused by

phone repetitions can be abstracted as a joint effect of the

initial value and the growth rate, neither of which is related

to the stable value. The results of this experiment can be

used to assess the distinctiveness scores of phone elements in

Sec. 5.1.

4.2.7 Influence of Synergies of Richness and Element �

In this experiment, we construct audios of the same length

but with different phones to compare the distinctiveness im-

provement abilities of richness and element.

Setup. Similar to Sec. 4.2.4, we repeat and reassemble A
and B to generate 3 groups of sequences: AAAA, BBBB, and

ABAB, each consisting of 10 utterances. The thresholds of

the verification models are adjusted during the experiment.

The averaged results are shown in Fig. 9.

Result. It can be seen that for U-LEVEL, sequence AAAA
is slightly more distinct than ABAB, and more distinct than

BBBB. However, for i-vector and x-vector, ABAB is more

distinct than AAAA. We find (1) When the difference be-

tween phones is large, richness is slightly more influential

than element for i-vector and x-vector, but it’s opposite for

U-LEVEL. (2) Element and richness are both significant in

general, but the speech content constructed purposefully by

selecting phones is more distinct than that generated by ran-

domly increasing the number of phone types.

Insights 7: Both element and richness show comparable

impact on the voiceprint distinctiveness.

Analysis. The reason is that the voiceprint information de-

rived from repeating high distinct phones is comparable to

that of adding low distinct phones.

4.3 Comparison with Real Words
To investigate whether disordered phone combinations and

real English words share the same insights and observations,

we conduct an additional experiment with real English words

whose length is in the range of [7,12] and richness is in the

range of [5,10] within which most commercial wake-up words

fall. The experiment settings including model training are

identical to those in 4.2.5.

The result of i-vector is shown in Fig. 10 while results for

the other two models can be found in Appendix. A. Compar-

ing the CFRRs of real words and random phones, the mean of

the difference is 0.0009 and the standard deviation is 0.063.

From the result, we can see that the absolute value and vari-

ation trend of FAR/FRR in the two test cases are similar for

the same model. In several squares in Fig. 10, the FRR of

real words is substantially high than that of random phones
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(a) FRR of Consistency (i-vector,

random phones)

(b) FRR of Consistency (i-vector,

actual words)

(c) FAR of Distinguishability (i-

vector, random phones)

(d) FAR of Distinguishability (i-

vector, actual words)

Figure 10: False recognition rate vs. Synergies of Richness and Length �. (a), (b) show the FRR of consistency from test cases

composed of random phone sequences and real words in i-vector. (c), (d) show the FAR of distinguishability for both. Real

English words and generated phone sequences show little difference in terms of FRR under the i-vector model.

because real words are limited in the changes of variables,

which brings biases to the element of test utterances. There-

fore, we believe that the impact of speech contents is similar

in both cases while random phone sequences can provide

more unbiased test utterances.

5 PROLE Score Design and Validation

In this section, we first provide the design of PROLE Score
based on the insights from Sec. 4. Then, we test 30 wake-

up words from commercial products to provide an informa-

tive conclusion about the security level as well as alterna-

tive secure phrases. Finally, to validate the effectiveness of

PROLE Score, we conduct a user study involving 46 users to

compare the voiceprint distinctiveness from the user study

with that given by PROLE Score.

5.1 PROLE Score Design
In this subsection, we formally provide the definition and

the calculation method of the PROLE Score followed by an il-

lustration. We also introduce the meaning of a PROLE Score.

Definition. As phone richness, length, and element have

influence upon the voiceprint distinctiveness, we design

PROLE Score as a function with richness R, length L, and

element E as well as model M as parameters. Specifically, the

formula of PROLE Score is:

S = f M(L,R,E)

= 10∗ (1−FM
L+R −ΔFM

E )

= 10(1−FM
L+R(L,R)−

∑E
α FM

E_α(L)×L(α)
L

+FM
E_eq(L))

(1)

where FM
L+R is the score component from length and rich-

ness, ΔFM
E is the deviation value of the score component from

element, α is a phone from the input words, FM
E_α is the score

component of α, L(α) is the length of α, and FM
E_eq is the score

component of equally distributed elements.

Parameter calculation. We illustrate the parameter calcula-

tion process with ‘Hey’ as an example:

• Step 1: Calculate the richness R, length L, and element

E of the input words. For example, ‘Hey’ with [heI] has

richness 3 and length 3.

• Step 2: Obtain the bi-variate function FM
L+R by curving

the relationship between the false recognition rates and

the synergies of richness and length (�) based on the

results in Sec. 4.2.5. Then obtain FM
L+R(L,R) with the

function FM
L+R, richness R, and length L. For example,

the estimated false recognition rate derived from length

and richness metric is FL+R(3,3) for ‘Hey’.

• Step 3: Obtain the phone function FM
E_α by curving the

relationship between the false recognition rates and the

length of α based on the results in each column in Fig. 8.

After that, obtain the equally-distributed element func-

tion FM
E_eq by averaging the phone function FM

E_α for each

phone α. For ‘Hey’, FE_eq of [heI] is FE_eq(3), and an-

other part is (FE_[h](3)×1+FE_[eI](3)×2)/3 ‡.

Meaning of a score. The meaning of a PROLE Score is to

reflect the security level of a word/phrase under a specific

ASV model, in terms of voiceprint distinctiveness. For a spe-

cific word, its PROLE Score is linearly inversely proportional

to the estimated false recognition rate of the word. For ex-

ample, ignoring bias from other factors, a phrase with the

PROLE Score of 9 is expected to has a false recognition rate

of 0.1 in a given ASV model. For example, from the distinc-

tiveness threshold in Fig. 7 we regard 0.08 as a good false

recognition rate in U-LEVEL, so we can define 9.2 as a good

score of U-LEVEL.

5.2 Assessment of Wake-up Words from Com-
mercial Products using PROLE Score

To test the behavior of PROLE Score, we collect the wake-

up words in both Chinese and English of commercial ASV sys-

tems and calculate their PROLE Score. The wake-up words

and ASV models with their scores are shown in Tab. 2 and

listed alphabetically according to their brands. For each wake-

up word, we calculate its PROLE Score under all three mod-

‡[eI] is a diphthong with the length of 2, where [e] cannot exist alone in

English, so it is calculated as a whole.

USENIX Association 31st USENIX Security Symposium    1139



Table 2: Commercial Wake-up Words distinctiveness Scoring
English Wake-up Words Scores Chinese Wake-up Words Scores

Developer Wake-up Words i-v1 x-v2 U-L3 Developer Wake-up Words i-v x-v U-L

Amazon Alexa 3.28 2.89 8.16 Alibaba TianMaoJingLing 6.80 7.32 9.60

Amazon Amazon 3.29 2.89 8.39 Baidu XiaoDuXiaoDu 5.30 5.52 9.60

Amazon Computer 4.61 4.38 8.68 Huawei NiHaoXiaoE 4.90 5.35 9.93

Amazon Echo 1.50 1.26 6.06 Huawei NiHaoYoYo 4.72 4.63 9.27

Apple Hey Siri 4.20 4.43 9.32 Huawei XiaoEXiaoE 4.76 4.81 9.92

Google Hey Google 4.33 4.56 8.88 JD DingDongDingDong 4.61 4.38 8.55

Google Ok Google 5.55 6.04 9.00 JD Hey XiaoJingYu 6.86 7.49 9.82

Huawei Hey Celia 4.44 4.21 9.24 Lenovo NiHaoLianXiang 6.42 7.17 9.82

Microsoft Hey Cortana 5.60 6.00 9.42 MeiZu NiHaoMeiZu 6.06 6.25 9.52

Multiverse Extreme 4.02 3.72 8.76 Microsoft NiHaoXiaoNa 6.26 6.81 9.83

MyCroft Hey Mycroft 5.57 6.01 9.02 Mobvoi NiHaoWenWen 5.01 5.44 9.58

Nuance Hello Dragon 6.01 6.76 9.46 OPPO XiaoBuXiaoBu 5.17 5.39 9.43

OPPO Hey Breeno 5.19 5.46 9.20 OPPO XiaoOuXiaoOu 4.62 4.57 9.75

Samsung Hey Bixby 4.85 4.79 9.05 Tencent XiaoWeiXiaoWei 5.84 6.66 9.90

SoundHound OK Hound 5.41 5.80 9.31 XiaoMi XiaoAiTongXue 6.85 7.36 9.87
1 Abbreviation for i-vector model. 2 Abbreviation for x-vector model. 3 Abbreviation for U-LEVEL

model.

Table 3: The Effect of Interjection Words on Distinctiveness

Suffix Words Alexa Bixby Breeno Celia Cortana Google Siri

Average

PROLE Score
and Growth

Ratio

Initial 4.77 4.89 4.74 4.16 5.53 3.55 3.70

+Hey 6.92,21.43%1 6.74,18.51% 6.88,21.36% 6.31,21.60% 7.28,17.51% 6.25,27.03% 6.33,26.30%

+OK 7.32,25.41% 6.78,18.92% 7.09,23.52% 7.09,29.39% 7.60,20.73% 7.07,35.29% 7.13,34.27%

+Hello 7.00,22.30% 7.36,24.65% 6.96,22.21% 6.53,23.76% 7.50,19.69% 6.42,28.73% 6.62,29.13%
1 The last three lines of each suffix word are the PROLE Score after adding interjections and score growth rate.

els, i.e., i-vector, x-vector and U-LEVEL. The left side of

Tab. 2 shows the scores of English wake-up words while the

rights side shows the Chinese ones. Moreover, we provid

a tool website (https://sites.google.com/view/voiceprint-sec)

which can generate PROLE Score for any words.

Models matter in PROLE Score. From Tab. 2, we can

find that both English and Chinese wake-up words show

variances and the scores can be greatly different, e.g., 1.5

(Amazon Echo, i-vector) vs. 6.06 (Amazon Echo, U-LEVEL)

across models and words. Among the three models, U-

LEVEL, as a representative DNN-based ASV model, behaves

the best for all the wake-up words, regardless of languages.

Note that we did not directly compare the scores of English

and Chinese wake-up words since there are four types of

phones that are different between the two languages.

Why current wake-up words work? From Tab. 2 we can

also answer that most of the current wake-up words are effec-

tive to represent voiceprints. Take “Hey Cortana” as an exam-

ple whose phone sequence is [heI kO:ôtA:n@] in IPA. First, the

Richness (number of types) and Length (number of phones)

are all 10, which is close to the distinctiveness thresholds

for i-vector and x-vector and larger than the distinctiveness

thresholds for U-LEVEL, indicating that the influences from

the Richness and Length are nearly saturated. While for the

Element factor, [I], [ô], [n], [@] can be ranked in the top half

for distinctiveness on all three models, and [h], [t], [A] are

ranked in the top third on at least one model, thus phone types

score is also high enough.

In addition to the above findings, we especially highlight

the following three interesting observations for the readers, as

they can reveal what is a good/bad choice of a wake-up word.

Observation 1: Both English and Chinese wake-up words

favor a prefix word such as “OK”, “Hey” or “Nihao”¶ while

Chinese ones prefer repeating.

Analysis. Among the commonly used wake-up words, 10/15

and 7/15 have prefix words in English and Chinese respec-

tively. For the Chinese wake-up words, 6/15 has a repeating

style, such as “DingDongDingDong” or “XiaoDuXiaoDu”.

This is mainly because of the cultural difference between the

two nations.

Observation 2: Interjections like ‘OK’, ‘Hey’, ‘Hello’ pre-

fixed to the content can significantly improve the voiceprint

distinctiveness while repeating does not necessarily.

Analysis. To investigate the effectiveness of a prefix word

such as the interjection words, we list the prefix as well as the

suffix words (e.g., “Google” or “XiaoNa”) in Tab. 3. We com-

prehensively compare the derived scores with and without the

prefix words for 7 ASV systems and three interjection words,

i.e., “Hey”, “OK” and “Hello”. It is interesting to find that

interjections can increase the PROLE Score by around 24%.

The reason is that an interjection word increases the phone

length and phone richness of the wake-up word. Although

¶Nihao means hello in Chinese.
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Table 4: Recommended Words and Scores

High
Scoring
Words

In i-v1 Scores In x-v1 Scores In U-L1 Scores
i-v x-v U-L i-v x-v U-L i-v x-v U-L

unfortunately 6.53 7.33 9.28 unfortunately 6.53 7.33 9.28 surprisingly 5.89 6.62 9.53

surprisingly 5.89 6.62 9.53 surprisingly 5.89 6.62 9.53 realize 4.00 3.70 9.43

frustration 5.84 6.53 9.19 frustration 5.84 6.53 9.19 cafeteria 4.57 4.29 9.43

uncomfortable 5.80 6.41 8.80 particularly 5.77 6.46 9.15 immediately 4.95 4.89 9.41

conversation 5.77 6.41 9.12 conversation 5.77 6.41 9.12 cafeteria 5.34 5.38 9.38

Self-
created

and
Similar
Words

In i-v1 Scores In x-v1 Scores In U-L1 Scores
i-v x-v U-L i-v x-v U-L i-v x-v U-L

[tiv@dEgD@z]

towards ers
5.86 6.43 9.16

[gEzith@gwA]

jes dog wa
5.81 6.47 9.20

[wij@Uzi@Ud]

we ears out
4.86 5.09 9.74

[dædt@giDEm]

dad together
5.84 6.35 9.21

[itzAgbæTg@]

it third best
5.80 6.43 8.99

[t@h@Uzi@Ut]

ter house out
4.98 5.16 9.70

[dibutgEh@N]

double hang
5.83 6.31 9.22

[@glizÃuti]

a glass duty
5.77 6.43 9.11

[h@Nidætn@u]

her that now
5.67 6.08 9.65

[mæthUdD@gi]

master key
5.83 6.30 9.25

[lEgæbgiÃ@]

Le ga bridge
5.77 6.42 9.00

[j@UhædnitO]

your had little
5.62 6.08 9.65

[b@dAgtiD@m]

product them
5.82 6.36 9.05

[gitiz@bkwE]

git the booker
5.77 6.42 9.06

[n@izh@Ulæt]

nice outlet
5.63 6.09 9.64

1 The abbreviations are the same as in Tab. 2.

most of the suffix words only include around 8 phones, which

is far from the distinctiveness threshold, the increase by inter-

jections can help the phonetic factors of the combined word

approach the threshold.

Observation 3: The improvement of voiceprint distinctive-

ness depends on both the prefix words as well as the suffix

words and prefix words should have as little overlap as pos-

sible with the suffix one.

Analysis. The tone words that have little overlap with the

suffix word can maximize the phone types, richness or length.

For example, ‘OK Google’ is better than ‘Go Google’ because

‘OK’ ([oUkeI]) brings more benefits than ‘Go’ ([goU]) does

as it overlaps with ‘Google’ ([gug@l]) by the phone of [g].

We selected 10 words with high scores from 2,000 En-

glish common words dictionary [38] as the recommended

recognition words to manufacturers. Words and scores for 3

models are shown in Tab. 4, and the scores are for reference

only because problems such as inaccurate pronunciation and

awkward-sounding may degrade distinctiveness. Moreover,

we listed some phone sequences that we created based on the

formation rules of English words and gave words with simi-

lar pronunciation, as a reference for manufacturers to create

wake-up words.

5.3 User Study of PROLE Score
To validate the effectiveness of PROLE Score in practice,

we conduct a user study.

Setup. We recruited 46 volunteers aged between 19 and 50

years old from our campus, including both native and non-

native speakers, with 23 females and 23 males §. During the

user study, the volunteers are required to read five randomly

§We followed the local regulations to protect the rights of human partici-

pants despite the absence of Institutional Review Board (IRB).

selected sentences from the VCTK as the enrolling set, and the

30 wake-up words three times from Tab. 2 as test set in a quiet

room. We recorded their speeches with microphones from

4 phones to prevent bias resulting from recording devices.

i-vector and U-LEVEL are used as the verification models.

For comparison, we also used a commercial voiceprint API,

i.e., iFlytek [39]. The sum of FRR and FAR, i.e., CFRR for

each wake-up word were averaged among repetition times

and speakers. For a better illustration, we show the value of

reversed score as 10-PROLE Score and compare it with the

CFRR under each wake-up word.

How PROLE Score behaves. The results are shown in

Fig. 11. We used the distance correlation method[40] to eval-

uate the correlation coefficient between the CFRR and the

reserved score. The correlation coefficient ranges from 0 to

1, with a larger value more correlated. The correlation coeffi-

cient between the CFRR and the reversed score is 0.781 for

i-vector, 0.748 for U-LEVEL. What is more, we also find that

the correlation coefficients between CFRR under iFlytek and

the reversed value under both i-vector and U-LEVEL are high,

e.g., > 0.78.

In summary, CFRR and PROLE Score show a strong cor-

relation, indicating that our PROLE Score indeed can reveal

the security level of a chosen word/phrase.

English vs. Chinese. Besides, We try to understand whether

PROLE Score from the test in English can evaluate the dis-

tinctiveness of speech content in other languages, so we eval-

uate Chinese wake-up words. The user study indicates that

the CFRR of Chinese wake-up words has relevance with

PROLE Score derived from English test samples. Through

the statistical analysis, we find that the distance correlation

between Chinese speech content and PROLE Score is 0.752

averaged in models, while between English speech content

and PROLE Score is 0.783. From the results we can find that
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(a) Test Results and Scores (i-vector)

(b) Test Results and Scores (U-LEVEL)

(c) Test Results (iFlytek) and Scores

Figure 11: CFRR values vs. reversed score (i.e., 10-PROLE Score) for the 30 wake-up words in the user study for three models.

CFRR of user study results highly correlate with the PROLE Score, indicating PROLE Score is a effective scoring system

representing the security level of a given wake-up word.

the phonetic factors do have a similar influence on both Chi-

nese and English. Theoretically, the types of single phones of

Chinese and English are 29 and 40 respectively, among which

22 are the same. Most of the Chinese phones can be evaluated

by PROLE Score derived from English.

Text-dependent vs. Text-independent. To improve the

comprehensiveness, we repeat the user study by using the

same wake-up words as enrolling and test utterances (i.e.,

Method 1), compared with the results from random enrolling

sentences and wake-up words as test samples (i.e., Method

2), and present the results of iFlytek in Fig. 12 while other

models in Appendix. A. We can find that the CFRR in Method

1 is obviously lower than in Method 2, while the difference of

distinctiveness between wake-up words is similar for the two

methods. The distance correlation between CFRRs for both

Methods are 0.750 (i-vector), 0.729 (U-LEVEL) and 0.826

(iFlytek). The decrease of false recognition rate is because

text-independent models perform better when the enrollment

and test phrases are the same.

6 Suggestions

We propose suggestions on how to improve the security of

voiceprint from both manufacturer and user sides.

Wake-up Words and Commands For manufacturers, we

suggest they can repeat the tests in our paper for their mod-

els, calculate the PROLE Score for all the candidate wake-up

words and avoid choosing low-PROLE Score ones. Similar

to wake-up words, when specifying commands with high

relevance to the user’s personal and property safety, manufac-

turers should select phrases that achieve the distinctiveness

threshold in length and richness, and include elements with

high distinctiveness. If users can set their own wake-up words

or voice commands, we suggest that manufacturers can de-

velop an evaluation system which returns the PROLE Score
for the user-selected speech contents to help users choose

high-PROLE Score ones.

Models. From the model perspective, voiceprint distinctive-

ness can be improved in a targeted way. If the wake-up words

or commands must be simple for usability reasons, the model

threshold on specific speech contents can be modified to

ensure higher and more balanced performance for wake-up

words or commands with insufficient information.

Users. The distinctiveness of voiceprint needs improvement

at present. Users should be careful in employing voiceprint

recognition or verification in sensitive applications or sce-

narios, e.g., electric payment, if only short and monotonous

verification utterances are supported.

7 Discussions
Accuracy of Test Dataset Construction. We consider most

of the error in test dataset construction derives from calcu-

lating timestamps and durations of phone audios by MFA

tool. We took 100 samples randomly from phone audios and

recruited 5 people to evaluate whether the timestamps of

phones are accurate. By statistical analysis, the accuracy of

MFA aligner is 92.4%. We believe the error of MFA may lead

to more severe errors on elements while having a slight effect

on length and richness. Because the error of segmentation is
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Figure 12: False recognition rates of wake-up words for Method 1 and Method 2 in iFlytek. In Method 1 the enrollment utterances

are different from the test, while in Method 2 are the same. There is similar regularity in distinctiveness gap between wake-up

words when using Method 1 and Method 2.

averaged over a large amount of data, so that the length and

richness of phone sequences approach the desired values. But

the phone audios may be mixed with other phones so that it

may lead to a smaller score difference among elements. We

compensated for the reductive differences among elements

by increasing the weight of element metric in PROLE Score.

Impact of Pronunciation. In practice, words with higher

distinctiveness scores may not necessarily show lower false

recognition rates if they are difficult in pronunciation. For

instance, “particularly appreciate” has a higher distinctive-

ness score but “particularly” shows a lower false recognition

rate. We assume it is because phrases composed of long and

complex words are difficult to pronounce especially for those

non-native speakers, resulting in inaccurate and slur pronun-

ciation and thus the distinctiveness decrease.

Transferability across Models. We tested several typical

and popular voiceprint verification models in this paper for

the sake of exploring common insights and observation across

models. We note that it requires further study on more mod-

els and larger datasets to obtain more accurate and general

conclusions. We remain it as one direction of the further work.

8 Related Work

Voiceprint Security Affecting Factors. Several researches

have studied the influencing factors of voiceprint security,

most of which focus on the model optimization, the subjec-

tive factors related to speakers and speech content. In terms

of models, existing work [41] mainly focuses on improving

the model structure and features, defending spoofing and imi-

tation attacks, and reducing the effects of short speeches and

noises to improve the performance of the voiceprint model,

while this work [42] studies the impact of the training dataset

size on the model performance. In terms of speakers, some

studies focus on the impact of the recording environmental

noise [43] and health state [44]. In terms of speech contents,

existing studies focus on the model optimization against the

negative effects of short speech contents [45], the difference

of users’ preference and performance between numbers and

complete sentences [46], and the information of voiceprint

in the feature space for speeches of different lengths [47].

These studies are most related to our work but we analyze

from an aspect of phonetic factors, which can model any con-

tents and explore the impact of speech contents on voiceprint

distinctiveness in a finer-granularity manner.

Impact of Phone in Speech Content. For the impact of

phonemes or phones on speaker recognition, existing studies

mainly focus on the performance comparison [48] and model

fusion [12–14] of individual phoneme-trained ASV models.

Specifically, Alsulaiman et al. [48] investigated the effect of

phonemes in Arabic on the performance of ASV systems.

Fatima et al. [12] defined the vowel category formed by the

combination of English and Chinese, and used them to train a

universal background phoneme model based on the conven-

tional GMM-UBM system. Fatima et al. [13] discussed the

importance of phones for speaker recognition and showed that

vowels represent a large amount of speaker-specific informa-

tion. Zhang et al. [14] proposed individual phoneme-trained

ASV models to solve the problem of poor performance in

short speech testing. Different from these studies, our work

focuses on the speech contents with phonetic factors, and

analyzes the impact of speech contents by adjusting phones.

9 Conclusion

In this paper, we investigate the impact of speech contents

on the distinctiveness of voiceprint with 2457 speakers and

14,600,000 test samples. We experimentally obtain the cor-

relation between the false recognition rates and the richness,

the length, the order, and the elements of phones. We define

PROLE Score that can be calculated based on speech content

yet can reflect the voice distinctiveness. Under the guidance of

PROLE Score, we test 30 wake-up words of 19 commercial

voice assistants and provide recommendations for both users

and manufacturers on selecting secure wake-up words.
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Appendix

A Supplementary Experiment Results
It is the figure of results in Sec. 4.2. The results in i-vector

and x-vector of 4.2.1, 4.2.2, 4.2.4, 4.2.5, 4.2.6, 4.2.7 are

shown in Fig. 19, Fig. 20, Fig. 15, Fig. 13, Fig. 14, Fig. 16,

separately. The results in x-vector and U-LEVEL of 4.3 isc

shown in Fig. 17. The results in i-vector and U-LEVEL of

5.3 is shown in Fig. 18.

(a) FRR (i-vector) (b) FRR (v-vector)

(c) FAR (i-vector) (d) FAR (v-vector)

Figure 13: False recognition rate vs. Synergies of Richness

and Length �. (a), (b) show the FRR in i-vector and x-vector.

(c), (d) show the FAR of distinguishability.

(a) FRR of Consistency (i-vector)

(b) FAR of Distinguishability (i-vector)

(c) FRR of Consistency (v-vector)

(d) FAR of Distinguishability (v-vector)

Figure 14: False recognition rate vs. Synergies of Length and

Element �. (a), (c) show the FRR in i-vector and x-vector.

(b), (d) show the FAR.
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(a) False Recognition Rate (i-vector) (b) False Recognition Rate (v-vector)

Figure 15: False recognition rate vs. Order �.

(a) False Recognition Rate (i-vector) (b) False Recognition Rate (v-vector)

Figure 16: False recognition rate vs. Synergies of Richness and Element �.c

(a) FRR of Consistency (v-vector,

random phones)

(b) FRR of Consistency (v-vector,

actual words)

(c) FAR of Distinguishability (v-

vector, random phones)

(d) FAR of Distinguishability (v-

vector, actual words)

(e) FRR of Consistency (U-LEVEL,

random phones)

(f) FRR of Consistency (U-LEVEL,

actual words)

(g) FAR of Distinguishability (U-

LEVEL, random phones)

(h) FAR of Distinguishability (U-

LEVEL, actual words)

Figure 17: False recognition rate vs. Synergies of Richness and Length �. (a), (e) show the FRR of consistency from test cases

composed of random combinations of phones in x-vector and U-LEVEL. (b), (f) show the FRR of consistency from test cases

composed of actual words in x-vector and U-LEVEL. (c), (g) show the FAR from test cases composed of random combinations

of phones in x-vector and U-LEVEL. (d), (h) show the FAR from test cases composed of actual words in x-vector and U-LEVEL.

(a) Test Results for Method 1 and Method 2 (i-vector)

(b) Test Results for Method 1 and Method 2 (U-LEVEL)

Figure 18: False recognition rates and reversed score (i.e., 10-PROLE Score) from the 30 wake-up words for Method 1 and

Method 2.
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(a) FRR of Consistency (i-vector)

(b) FAR of Distinguishability (i-vector)

(c) FRR of Consistency (v-vector)

(d) FAR of Distinguishability (v-vector)

Figure 19: False recognition rate vs. Richness �. (a), (c) show

the FRR of consistency in i-vector and x-vector. (b), (d) show

the FAR of distinguishability in the two models.

(a) FRR of Consistency (i-vector)

(b) FAR of Distinguishability (i-vector)

(c) FRR of Consistency (v-vector)

(d) FAR of Distinguishability (v-vector)

Figure 20: False recognition rate vs. Length �. (a) show the

FRR of consistency in i-vector and x-vector. (b), (d) show the

FAR of distinguishability.
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