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Abstract
The security of the entire cloud ecosystem crucially de-
pends on the isolation guarantees that hypervisors provide
between guest VMs and the host system. To allow VMs to
communicate with their environment, hypervisors provide
a slew of virtual-devices including network interface cards
and performance-optimized VIRTIO-based SCSI adapters.
As these devices sit directly on the hypervisor’s isolation
boundary and accept potentially attacker controlled input (e.g.,
from a malicious cloud tenant), bugs and vulnerabilities in
the devices’ implementations have the potential to render the
hypervisor’s isolation guarantees moot. Prior works applied
fuzzing to simple virtual-devices, focusing on a narrow subset
of the vast input-space and the state-of-the-art virtual-device
fuzzer, Nyx, requires precise, manually-written, specifications
to exercise complex devices.

In this paper we present MORPHUZZ, a generic approach
that leverages insights about hypervisor design combined with
coverage-guided fuzzing to find bugs in virtual device imple-
mentations. Crucially MORPHUZZ does not rely on expert
knowledge specific to each device. MORPHUZZ is the first
approach that automatically elicits the complex I/O behaviors
of the real-world virtual devices found in modern clouds. To
demonstrate this capability, we implemented MORPHUZZ in
QEMU and bhyve and fuzzed 33 different virtual devices (a
superset of the 16 devices analyzed by prior work). Addition-
ally, we show that MORPHUZZ is not tied to a specific CPU
architecture, by fuzzing 3 additional ARM devices. MOR-
PHUZZ matches or exceeds coverage obtained by Nyx, for
13/16 virtual devices, and identified a superset (110) of all
crashes reported by Nyx (44). We reported all newly discov-
ered bugs to the respective developers. Notably, MORPHUZZ
achieves this without initial seed-inputs, or expert guidance.

1 Introduction
While the cloud unveils unique opportunities to IT businesses,
it presents a host of fundamental security issues. From a
technical standpoint, virtualization is the core technology
powering cloud-infrastructure. Virtualization Hypervisors (or

VMMs) multiplex the hardware resources of a physical ma-
chine (the host), between multiple Virtual Machines (VMs or
guests). Cloud-ready hypervisors are complex pieces of soft-
ware, tasked with isolating the software running inside a VM
(i.e., a guest), from the other guests, and the hypervisor itself.
Beyond the cloud, hypervisors are commonly used to sandbox
applications (e.g., for malware research), and for desktop use,
to run applications not supported by the host OS. Regard-
less the application, hypervisors are trusted with providing a
layer of isolation between virtual machines and the host OS.
Crucially, to provide their functionality to guests, hypervisors
include a slew of implementations for virtual devices, and the
code for these devices commonly executes at the privilege
level of the hypervisor itself. Virtual devices play a critical
role in ensuring that the guest is isolated, but due to the com-
plexity of these devices, it can be difficult to safely implement
their functionality in software. Unfortunately exploits com-
promising this layer of isolation (and specifically the virtual
devices) are a tangible reality. In 2015, VENOM [14] was
highly publicized as a VM-Escape vulnerability, which allows
an attacker running within an untrusted guest to compromise
the underlying hypervisor and execute code outside the secu-
rity confines of the VM. VENOM is certainly not a unique
example, and security researchers have identified many vul-
nerabilities leading to potential VM-Escape. Ranked by the
size of bug bounties, VM-escapes are considered among the
most critical classes of vulnerabilities, along with iOS, An-
droid, and browser bugs [58]. Though VM-escape attacks
can take advantage of weaknesses in other hypervisor com-
ponents, such as shadow page tables, our work focuses on
virtual-devices which are responsible for the vast majority of
reported VM-escape vulnerabilities [37].

Software fuzz testing has proven to be a versatile tech-
nique, capable of exposing vulnerabilities in a wide range
of software [3, 12, 15, 19, 23, 24, 29, 30, 44, 50, 54, 57]. As
virtual devices are software components, it seems natural to
apply fuzzing techniques to identify lingering vulnerabilities
therein. Typically a “fuzzer” is tasked with providing random-
ized inputs to software through an interface such as a file, or a
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command-line argument. Unfortunately, hypervisors present
a series of unique challenges, which make it difficult to apply
“off-the-shelf” fuzzers. For example, the virtual devices do
not consume inputs as files or command-line arguments, but
rather as a sequence of memory read and write operations
at precise locations and pointers to memory buffers which
should abide by tight semantic constraints. As a result, the
cumulative input space for virtual-devices grows to gigabytes
or exabytes in size. Thus, without augmentations, this input-
space is intractable for an off-the-shelf fuzzer such as AFL,
which is well-suited to providing small inputs to parsers.

Recognizing the importance of hypervisor security, mul-
tiple works have implemented tailored fuzz-testing for the
virtual-devices provided by various hypervisors. As in the
physical world, VMs interact with virtual devices through a
combination of Port-mapped IO (PIO), Memory Mapped IO
(MMIO), or Direct Memory Access (DMA). IOFuzz [32] only
fuzzes the relatively-compact PIO address space. VDF [18]
uses selective coverage-guided fuzzing, combined with seed
traces recorded during normal VM usage, to fuzz devices that
receive inputs through PIO and MMIO.

Recently, Hyper-Cube [43] is the first fuzzer to consider
the last-remaining, and most sophisticated, widespread de-
vice interface: Direct Memory Access (DMA). Fuzzing DMA
devices is critical to protecting Cloud infrastructure, since
devices used on the cloud rely heavily on DMA. For example,
all four PCI devices (for disk, network, VM memory “balloon-
ing”, and random-number-generation) connected to a standard
Google Compute Engine virtual-machine rely on DMA. To
elicit DMA behavior, Hyper-Cube first writes random data
to a small scratch-buffer in memory. Then, by writing the ad-
dress of the scratch-buffer to the enumerated PIO and MMIO
regions, Hyper-Cube tries to trigger DMA activity. Unfortu-
nately, this approach is capable of triggering only the simplest
types of DMA transactions.

Recognizing this limitation, the state of the art virtual de-
vice fuzzer, Nyx [42], a follow-up to Hyper-Cube, augments
the unguided Hyper-Cube with coverage information col-
lected via Intel-PT. However, Nyx’ coverage-guided nature
alone does not resolve the issues encountered when fuzzing
complex virtual-devices. Thus, Nyx proposes a framework for
developing precise user-provided specifications for fuzzing
complex devices. While this allows Nyx to boost the cover-
age for virtual-devices such as USB controllers, and VIRTIO
block-devices, it essentially turns core-aspects of Nyx into
a grammar-based fuzzer with all its advantages and disad-
vantages. That is, provided a grammar, the fuzzer can elicit
“deep” behavior of virtual devices. However, expert knowl-
edge is required to create the grammar in a laborious and
error-prone process. Furthermore, the fuzzer loses the ability
to identify bugs that exist outside the confines of the grammar.
Even worse, the grammar is developed based on abstract spec-
ifications. Yet, the actual device code has ample leeway to im-
plement said specification. As such, disconnects between dis-

tilled grammars and actual implementations are highly likely,
potentially placing dangerous bugs outside of the fuzzer’s
reach. Considering the fact that the specifications require a
custom mutation engine, and took days of effort to create for
individual devices, this approach faces scalability issues. At
the time of this paper’s acceptance, Hyper-Cube/Nyx source
code had not been released, however, in our own analysis, we
found that DMA activity is not conducive to heuristic-based
fuzzers, such as Hyper-Cube, that rely on a single scratch
buffer (see Section 3.2). Furthermore, we found new bugs
in all the devices for which Nyx had specifications, further
illustrating the difficulty of writing accurate and complete
specifications.

We identified the core challenge faced by virtual-device
fuzzers is the fact that virtual devices rely heavily on semantic
dependencies, that are not conducive to off-the-shelf guided
fuzzers. These dependencies exist between data written to
PIO/MMIO addresses and the location of DMA buffers, but
more importantly within the structure of DMA buffers them-
selves (e.g., buffers can contain pointers to further buffers,
queues, rings, etc.). To satisfy the semantic constraints re-
quired by virtual-device implementations we leverage insights
from hypervisor design. Specifically, we observe that mod-
ern virtualization strategies require hypervisors to implement
functionality to mediate PIO, MMIO, and DMA activity. Com-
bined with the fact that the hypervisor must know about the
input-space(s) for all its virtual-devices, we devise a method-
ology called MORPHUZZ that leverages this information to
fulfill any semantic constraint arising from device I/O on-
demand. In addition to transparently fulfilling semantic con-
straints, this on-demand approach allows MORPHUZZ to lever-
age battle-tested off-the-shelf fuzzers (e.g., libFuzzer) to reach
“deep” virtual-device functionality. Importantly, MORPHUZZ
obviates the need for specifications and seed traces. Based
on the insights provided by the hypervisor, MORPHUZZ dy-
namically reshapes (i.e., bends) the input-space to conform to
the strict boundaries of the currently-accessible PIO, MMIO
and, most-importantly, DMA regions.

The input-space for virtual-devices is vast, encompassing
all the VM’s memory and port addresses. However, only a
small subset of these addresses is engaged in device I/O, at
any time. Furthermore, through technologies such as DMA,
and PCI, device I/O can happen at arbitrary, dynamically
changing, addresses. Hence, a random fuzzer would waste
most of its time interacting with addresses that are unrelated
to device I/O. By bending the input-space, the I/O activity
generated by MORPHUZZ, precisely, and exclusively interacts
with the PIO/MMIO and DMA regions engaged in device
I/O. Though, MORPHUZZ only fuzzes small areas of the
entire input-space at any time, these areas are representative
of the addresses engaged in I/O at any moment. With dynamic
reshaping, MORPHUZZ can interact with any address, as long
as the address is related in to device I/O. Additionally, MOR-
PHUZZ does not rely on architecture-specific knowledge to
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operate. Observing the growing influence of non-x86 architec-
tures, we applied MORPHUZZ to fuzz ARM virtual-devices,
with no changes to the MORPHUZZ code.

Finally, in a head-to-head evaluation, MORPHUZZ outper-
formed Nyx’ manually written specifications for xHCI and
VIRTIO, and found all 44 bugs that Nyx reported in these
devices. Furthermore, MORPHUZZ identified an additional
66 bugs. Beyond the number of bugs, MORPHUZZ also con-
sistently outperforms prior work, with respect to coverage.
MORPHUZZ produces DMA behaviors that are more com-
plex than anything that can probabilistically be triggered by
Hyper-Cube. Moreover MORPHUZZ achieves this without the
manual effort required to fuzz complex devices with Nyx. In
summary, this paper makes the following contributions:

• We describe MORPHUZZ – our generic method that lever-
ages inherent characteristics of hypervisor designs to re-
shape the virtual-device input space, making it amenable to
fuzzing without seeds or specifications (§4). Our methodol-
ogy enables targeted, coverage-guided, fuzzing of virtual
devices in production hypervisors.

• We implement MORPHUZZ for the popular open-
source QEMU hypervisor (§4). Our implementation,
QMORPHUZZ produces self-contained and deterministi-
cally reproducible results (i.e., crashing inputs). In addition
to typical memory-corruption bugs, MORPHUZZ identifies
bugs that are characteristic of DMA virtual-devices, such as
data-races and double-fetches. For bugs that are not double-
fetches MORPHUZZ automatically generates reproducers
for recreating issues in an unmodified build of QEMU. To
demonstrate the ease of applying MORPHUZZ to other hy-
pervisors, we also ported MORPHUZZ to bhyve.

• As MORPHUZZ fuzzes virtual-device implementations, we
evaluate MORPHUZZ on 28 virtual-devices (§5) in QEMU,
a strict superset of the 15 devices analyzed in prior work.
Our experiments demonstrate that MORPHUZZ effectively
identifies previously known, as well as, new bugs in a wide
range of virtual device implementations.

• By working directly with the QEMU developer commu-
nity, we reported 61 bugs identified by QMORPHUZZ, 22
of which have already been fixed, by their corresponding
maintainers. Nine of these issues have been assigned CVE
IDs, and published. We also responsibly disclosed the issues
found by MORPHUZZ in bhyve.

• A fully functional implementation of virtual-device fuzzing,
based on QMORPHUZZ, is already contained in the QEMU
repository, where it is used to continuously fuzz virtual-
device implementations via Google’s OSS-Fuzz [33].

2 Background
In this section, as background for our work, we describe rele-
vant aspects of hypervisors, virtual devices, and fuzzers.

Computers normally communicate with the outside world
through peripheral devices (e.g. hard disk, network and USB
controllers). Since the operating systems running in VMs
expect to communicate through peripherals too, hypervisors
implement virtual-devices in software that create the illu-
sion of peripherals for the guest. However, physical hardware
is often designed around a different set of constraints than
software. Thus, software virtual devices that mimic physical
hardware, often achieve sub-optimal performance. As VMs
became ubiquitous and VM performance inefficiencies re-
sulted in monetary costs, hypervisor developers designed and
implemented paravirtual devices, such as VIRTIO-type de-
vices. These devices are not based on any physical device.
Instead, they are designed and optimized specifically for vir-
tualization.

2.1 Interfacing with (virtual) devices

Common computer architectures provide some, or all of the
following interfaces for the CPU to interact with devices.

Port-mapped IO (PIO) is an x86-specific interface that re-
lies on special CPU instructions (in/out on x86) to pass data
from registers or main memory to a separate address-space
dedicated to devices. PIO is constrained to a limited address
space (64k total addresses) and the small size (1-4 bytes)
of each transfer. PIO often serves as a primary interface for
low-bandwidth communication with devices, such as timers,
interrupt controllers, or serial ports.

Memory-Mapped IO (MMIO) sets aside regions of physi-
cal main memory for device I/O. Unlike regular read/write
access to physical memory, operations to memory-mapped
regions are forwarded by the memory-controller to the periph-
eral. Similar to PIO, transferring data to and from the device
via MMIO is a blocking/synchronous operation for the CPU.

Direct Memory Access (DMA) provides peripherals with
rapid, direct access to physical memory, bypassing the CPU.
When the CPU wishes to signal to a device that some data
is available for DMA transfer, it can simply communicate
the location of the data in physical memory to the device
using PIO or MMIO. The device can then, independently,
access the data in memory. Notably, the CPU is not involved
in the actual transfer of the data. From the perspective of the
CPU, it simply signaled a pointer to some data, by writing
to a PIO/MMIO register. As we will see in Section 3.2, a
single PIO/MMIO command can result in many levels of
DMA-accesses, since the DMA data can itself contain the
locations of additional data. The format and protocol of DMA
buffers is prescribed by the implementation of the virtual-
device. Due to its performance benefits, DMA is used for high-
throughput devices such as storage controllers, network, and
graphics adapters. While DMA-capabilities require additional
hardware/costs for physical devices (i.e., DMA controllers),
paravirtual-devices are not constrained by hardware costs, and
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rely on DMA extensively for “free”.

The pointers and data-structures involved in DMA trans-
fers, are by no means the sole semantic dependency that occur
in device-usage. For example, PCI-based devices are unavail-
able, until the CPU interacts with the PCI controller to config-
ure each device’s base-address-registers (BARs), which spec-
ify the location of each MMIO/PIO region associated with
the device. Thus, the MMIO/PIO regions for PCI devices are
semantically tied to prior interactions with the PCI controller.
Prior systems rely on heuristics, or expert-knowledge to ad-
dress these semantic connections, and typically prevent the
fuzzer from tampering with the PCI state, after it has been
initialized. On the other hand, MORPHUZZ can transparently
fuzz the PCI controller, and PCI devices.

2.1.1 Emulating Virtual Devices

In a VM, when the guest attempts to access a device using
PIO, or MMIO, the hypervisor must stop the virtual CPU to
handle the access within a virtual-device. Hypervisors imple-
ment a mechanism to “trap” on PIO and MMIO accesses. For
example, by unmapping the memory-pages that correspond
to the guest’s physical MMIO regions, the hypervisor ensures
that any IO activity within the guest results in an exception.
Similarly, PIO relies on privileged instructions which raise
exceptions, when the guest invokes them, providing the hyper-
visor with control over execution. The hypervisor handles the
exception, calling into the virtual-device code corresponding
to the PIO/MMIO access. After the virtual-device handles the
request, the hypervisor updates the register/memory state of
the guest, and resumes the virtual CPU.

2.2 Virtual Device Vulnerabilities

Virtual-device code has been found to contain bugs such as
buffer-overflows, heap-overflows, stack-overflows, use-after-
frees, use of uninitialized memory, infinite loops, and pre-
mature terminations [7–11, 38, 39]. Additionally, we high-
light two types of issues that are characteristic of virtual-
devices: reentrancy vulnerabilities and double-fetch bugs. Vir-
tual DMA can introduce guest-exploitable reentrancy and
data-race issues. These bugs arise from insufficient precau-
tions when handling IO commands that originate from the
guest. For example, DMA data often contains sensitive in-
formation, such as buffer-lengths, or element-count. Virtual-
devices must take care when handling this metadata, since
a malicious guest can modify the metadata while a virtual-
device is processing a request to exploit a double-fetch bug.
In other cases, if a device negligently performs a DMA access,
it can, inadvertently touch a region of memory that is mapped
to its own MMIO space, which may not be designed to handle
multiple concurrent accesses, resulting in a guest-triggerable
reentrancy bug in the implementation of the virtual-device.

2.3 Testing Virtual Devices
Hypervisor developers have recognized the importance of test-
ing virtual-devices. For example, QEMU’s testing framework,
qtest, provides an interface for directly performing memo-
ry/IO through an API, rather than through assembled CPU
instructions. This allows qtest to run test-suites against virtual
device implementations without relying on a purpose-built
testing guest-OS. Usually a guest interacts with devices us-
ing CPU instructions such as inb %Port_Number, or movl
%MMIO_Address,value, which trap into the hypervisor code
and are handled by virtual-device code. With qtest, the de-
veloper specifies I/O requests using a simple ASCII protocol.
qtest interprets the ASCII instructions using the same APIs
that are used to route vCPU I/O accesses that trapped into the
hypervisor. For example, the trace in Figure 1 can be directly
provided to qtest to reproduce a crash. Some hypervisors,
such as bhyve, do not provide testing facilities. However, we
were able to trivially implement the subset of qtest operations
helpful for fuzzing bhyve in 90 lines of code.

3 Motivation
In this section, we outline the challenges facing a virtual-
device fuzzer. First, we describe the randomized inputs pro-
vided to a virtual-device fuzzer by a fuzzing engine. Next,
we describe an output of the virtual-device fuzzer - an I/O
sequence used to crash a hypervisor. Finally, we provide a
summary of the challenges faced by a fuzzer aiming to convert
randomized inputs into I/O sequences that crash hypervisors.

3.1 Fuzzer Inputs
Fuzzer engines provide randomized bytes that can be fed as
inputs to a program. Most modern fuzzers typically gener-
ate discrete inputs. This makes it simple to store inputs that
resulted in interesting behaviors (e.g. crashes). One benefit
of separate inputs is that a fuzzer can operate over external
inputs provided by the developer. For example, a developer
fuzzing an image library, can provide the fuzzer with “seed”
inputs, which the fuzzer can use as the basis for future mu-
tations - increasing the chance of triggering interesting code
over a purely-randomized approach. Coverage guided fuzzers
further augment the mutation process by gathering coverage
feedback from the target program, used to guide future muta-
tion of inputs.

Complex interfaces such as code compilers and operating-
systems require highly structured inputs, that off-the-shelf
fuzzers are unlikely to produce. For such targets, even a
rich corpus of valid inputs might not be enough for effec-
tive fuzzing, since small mutations often compromise the
structural validity of the input, producing inputs that are un-
likely to reach interesting code-paths within the target. To
fuzz such complex targets, developers usually implement ad-
ditional layers of machinery between the fuzzer and the ac-
tual target. For example, the fuzzer’s random bytes can be
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PCI
Controller

CPU

xHCI (USB)
Operational

Transfer Ring 1

Data Block

Transfer Ring 2

01 outl 0xcf8 0x80001010
02 outl 0xcfc 0xc0200
03 outl 0xcf8 0x80001004
04 outl 0xcfc 0x1c77695e
05 write 0xc0040 0x4 0x55000000
06 write 0xc2000 0x4 0x00000000
07 write 0x1d 0x1 0x27
08 write 0x2d 0x1 0x2e
09 write 0x3d 0x6 0x2700002e7201
10 write 0x4d 0x3 0x2e0001
11 write 0x17232 0x1 0x03
12 write 0x17254 0x1 0x05
13 write 0x17276 0x3 0x72002 
14 write 0x2007c 0x1 0xc7
15 write 0x20070 0x1 0x80
16 write 0x20078 0x1 0x08
17 write 0x2007c 0x2 0xfe08
18 write 0x20080 0x3 0x00ff0b
19 write 0x20089 0x1 0x8c
20 write 0x2008d 0x1 0x04
30 write 0x2009d 0x1 0x10
31 write 0xc2000 0x4 0x00000000
32 write 0xc2000 0x4 0x00000000
33 write 0xc2004 0x4 0x01000000

xHCI (USB)
Doorbell

Memory

Port IO

0110111000000
0111000110101
0100111010101
1111010000111
0011010110101
1001100111001
1111010011001
1011011010...

?

Figure 1: On the right, a crashing input found by MORPHUZZ for the xHCI
(USB) controller. In color, we highlight addresses that depend semantically
on previously written values (in bold). Note that the addresses may have
swapped-endianness. In italics, we highlight the lines that serve to populate
DMA regions in memory. In the diagram, the regions with rounded edges
represent DMA buffers that could be located anywhere in memory. The solid
lines represent the Port/Memory accesses performed by the virtual CPU. The
dashed lines represent implicit semantic dependencies.

used to seed a program generator, the output of which is, in
turn, used to fuzz a compiler. Commonly, fuzzer develop-
ers rely on fuzzing-grammars and structure-aware fuzzers,
which covert random bytes, into a structured input based on
manually-created grammars or descriptions. Such grammars
are used by the renowned syzkaller OS-fuzzer.

3.2 Crashing Virtual Devices
As we are interested in finding potential VM-escape vulner-
abilities in virtual-device code, the fuzzer must be capable
of interacting with virtual-devices over the major device I/O
interfaces (PIO/MMIO and DMA). To illustrate the com-
plexity of producing complex virtual-device interactions, we
describe a reentrancy issue found by MORPHUZZ in QEMU’s
xHCI(USB) controller. Figure 1 features the crash reproducer
generated by QMORPHUZZ, along with a diagram. Instead
of attempting to summarize the 645-page xHCI specification,
we highlight the five layers of semantic-dependencies that the
fuzzer addressed to produce a crashing input.

The xHCI controller is a PCI-based device. As such, the
first I/O interactions (lines 01-04) use PIO outl instructions
to communicate with the PCI controller (on ports 0xCF8 and
0xCFC) and configure the xHCI’s first BAR to 0xC0200,
which is automatically page-aligned to 0xC0000 (line 03).
Once the BAR is configured and enabled, the xHCI device
accepts MMIO requests at the specified address. In particu-
lar, the crash requires interacting (lines 05-06, 31-33) with
the xHCI’s operational range (based at 0xC0040) and the
doorbell range (Based at 0xC2000). Note that only five lines
interact with the xHCI controller’s MMIO range. The vast
majority of the operations (lines 07-30) configure data in
three distinct DMA buffers (starting at 0x1D, 0x17232, and
0x2007C). These three buffers correspond to segments of
a xHCI Transfer Ring (containing pointers to DMA buffers
describing transfers), and an Input Data Block, all of which
are represented in main memory, and accessed via DMA.

As mentioned in Section 2.1, CPUs can provide the address
of DMA buffers by writing pointers over PIO/MMIO. In our
example, the CPU only communicates one DMA location to
the xHCI device over MMIO (the location of Transfer Ring 1
sent at line 06). Subsequently, the location of the Data Block
is derived from Transfer Ring 1 (line 09). The location of
Transfer Ring 2 is derived from the Data Block (line 13).
There are, in-fact, four valid DMA addresses required to re-
produce the crash. The address of the final buffer (a pointer
to an Output Data Block) is derived from Transfer Ring 2.
Instead of pointing to some free space in memory, though, the
address of the output Data Block (written on line 18) points
to a location (0xBFF00) that is near the xHCI’s “Operational”
MMIO Region. Thus, when the xHCI device attempts to write
3,584 bytes to the output Data Block, it inadvertently writes
to its own MMIO registers. By writing to its own MMIO
region, the device initiates a new DMA transfer, while the
original request is still in progress. As the implementation
of the xHCI controller is not reentrant, this nesting of xHCI
activity frees resources that are still referenced by the original
request. Thus, when the nested MMIO access is complete, the
device triggers a use-after-free.

Note that in addition to the appearance of all major modes
of device I/O (PIO, MMIO and DMA), there are five layers
to the implicit semantic dependencies involved in trigger-
ing the crash in Figure 1 (follow the dashed arrows). For a
grammar-based fuzzer to find such a crash, its grammar must
accurately reason about each of the five levels of xHCI seman-
tics. Each inaccurate assumption, or heuristic, greatly reduces
the fuzzer’s ability to reach the next layer of interaction.

3.3 Summary of Challenges
In summary, fuzzers face several challenges in finding bugs
such as the one detailed in Fig. 1:

1. The virtual device fuzzer must be capable of producing
inputs that operate across all the modes of device I/O.
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That is, a fuzzer attached to an off-the-shelf fuzzing en-
gine, must ingest randomized bytes and convert them
into virtual-device IO.

2. As the input space accessible through each mode of I/O
is enormous, the fuzzer must identify and target only the
I/O regions that are associated with virtual-devices.

3. The fuzzer must be aware of the implicit semantic de-
pendencies that occur in device I/O.

One straightforward solution to address these challenges
is to create a grammar specification for each device - essen-
tially creating specialized fuzzers for each device. However,
as virtual-devices specifications are often complex (and some-
times inaccurate), creating quality specifications requires sig-
nificant time investment and expert domain-knowledge.

4 MORPHUZZ

MORPHUZZ closes the existing gap that inhibits fuzzers from
exercising virtual-devices that implement complex I/O pro-
tocols, without days of manual specification effort, for each
device. The two core tenets of our design are the reshaping
of input space to account for dynamic changes in I/O mem-
ory layout and optimizing for arbitrary DMA activity. To this
end, MORPHUZZ leverages fundamental characteristics of
VMMs to precisely and exclusively fuzz memory regions
associated with virtual-devices. First, we describe how MOR-
PHUZZ works with a fuzzing mutation backend to produce
sequences of IO operations. Then we explain how MOR-
PHUZZ isolates PIO and MMIO regions, to guarantee that
each fuzzer-produced PIO/MMIO interaction triggers virtual-
device code (§4.2). Then, we cover MORPHUZZ’s strategy
for leveraging the hypervisor’s DMA APIs to transparently
produce inputs that satisfy complex semantic dependencies
(§4.3). Combining these capabilities yields a generic fuzzing
approach (MORPHUZZ) that reshapes the virtual-device input-
space and successfully fuzzes virtual device implementations.
Importantly, the generic nature of MORPHUZZ ensures that no
prior knowledge in the form of I/O protocols (such as PCI enu-
meration), seed inputs, or explicit specifications is required.
If MORPHUZZ identifies a crash in a virtual-device, the final
step “unbends” the reshaped input-space into a standalone
reproducer (§4.4.3). This capability is particularly useful to
communicate identified crashes to virtual-device developers
who can use the reproducer to deterministically trigger the
bug in a regular build of the hypervisor. Figure 2 presents a
conceptual overview of our MORPHUZZ design.

We describe QMORPHUZZ, our implementation of virtual-
device fuzzing for QEMU. We explain our automated sys-
tem for reproducing crashes found by QMORPHUZZ in an
unmodified version of QEMU (§4.4.3). To emphasize the
applicability of MORPHUZZ’s techniques to other hypervi-
sors, we describe the straightforward steps necessary to adapt
MORPHUZZ for this task. We also provide an account of
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Figure 2: 1 We identify and provide MORPHUZZ with insight into the
DMA-access API and Guest-Address Map, reshaping the input-space. 2
MORPHUZZ fuzzes virtual-devices over PIO, MMIO and DMA, in a precise,
and targeted manner. 3 We “unbend” the crashes found by MORPHUZZ to
report bugs.

how we followed these steps to rapidly deploy fuzzing with
MORPHUZZ for bhyve (§4.5.1).

4.1 The Interpreter
As we mentioned in Section 3, fuzzers such as AFL and
libFuzzer provide inputs in the form of buffers. While such
inputs are well-suited for fuzzing e.g., image-libraries with
interfaces that operate on buffers, virtual-devices have no such
interface. Instead, virtual-device interactions involve many
individual PIO/MMIO and DMA operations.

To address this, MORPHUZZ follows canonical guidelines
for splitting fuzzer inputs [22] to implement an interpreter.
MORPHUZZ’s interpreter relies on a simple opcode language.
Individual operations in the input are divided by a 4-byte
“separator”1. For MORPHUZZ to perform two operations, the
fuzzing backend must provide a byte-buffer that contains one
“separator”. As an added benefit, the separator ensures that
small changes, such as bit-flips within an instruction, do not
result in a cardinally different set of I/O operations. That is,
similar inputs are likely to result in similar behaviors.

The first byte of each operation acts as the “opcode”. The
interpreter examines the byte, and executes the corresponding

1Modern fuzzing backends, such as libFuzzer, automatically identify the
separator and add it to their “dictionary” of byte patterns to be used when
generating new inputs.
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opcode handler. MORPHUZZ’s operations can be of variable-
length. If the operation contains too few bytes to encode all of
the parameters required by the opcode, MORPHUZZ discards
the corresponding operation and moves on to the next decoded
operation in the input. Conversely, if an operation contains too
many bytes, MORPHUZZ reads only the number of operands
specified by the opcode’s implementation and discards the
excess bytes.

The interpreter ingests all of the fuzzer inputs. However, it
is the actual types of operations that enable MORPHUZZ to
effectively fuzz virtual-devices. Throughout the rest of this
section, we will introduce these operations.

4.2 Distilling the MMIO and PIO Input Space

As mentioned in Section 2.1, the CPU can communicate di-
rectly with virtual-devices by reading/writing to Memory-
mapped and Port-mapped addresses. For simple devices, such
as keyboards, and timers, the locations of the ports are usually
standardized across the architecture. However, complex PCI
devices provide the guest OS with flexibility to configure the
locations of PIO and MMIO regions. For example in Figure 1,
the first four instructions (with ports 0xCF8 and 0xCFC) are
programming the PCI controller, to specify PIO and MMIO
locations and enable the xHCI device.

At system-startup, PCI-device MMIO and PIO regions are
not accessible. Instead, low-level kernel drivers are respon-
sible for dynamically, configuring and enabling PCI-devices.
To effectively fuzz virtual-devices, MORPHUZZ must have
an accurate view of the locations of active PIO and MMIO
regions at all times, to avoid interacting with PIO and Memory
Regions that are not mapped to devices. Fortunately, there
is a fundamental solution to this problem: hypervisors must
themselves keep track of active PIO and MMIO regions, so
they can trap-and-emulate upon accesses to those regions and
call the proper virtual-device handlers. As such, hypervisors
keep a Guest-Address Map - a mapping of guest physical ad-
dresses to the underlying virtual hardware. When I/O regions
are created and removed, the mapping is updated. When a
guest I/O access raises an exception, the hypervisor compares
the exception details against the Guest-Address Map to route
the I/O request to the corresponding virtual-device handler.

MORPHUZZ monitors changes to the Guest-Address Map,
tracking the IO regions associated with virtual-devices. Lever-
aging these hooks, MORPHUZZ provides opcodes that allow
the fuzzer input to interact with devices over PIO and MMIO:

in[b,w,l](addr) perform a PIO read
out[b,w,l](addr, value) perform a PIO write
read[b,w,l,q](addr) perform an MMIO read
write[b,w,l,q](addr, value) perform an MMIO write

For these operations, the byte,word,long,quad suffixes specify the
size of the access. Devices, such as the VIRTIO family handle I/O
differently, depending on the size of the access, making this distinction
important.

MORPHUZZ consults the Guest-Address Map every time
the fuzz-input initiates an MMIO/PIO access. Instead of re-
quiring the mutation engine to produce inputs containing
actual MMIO/PIO addresses, MORPHUZZ’s addr parameters
are [index, offset] tuples. MORPHUZZ simply uses these tu-
ples to select a region from the PIO and the MMIO regions
listed in the Guest-Address Map, and to choose an offset
within the region. By bending the input space, MORPHUZZ
ensures that this address falls within an active I/O region
listed within the Guest-Address Map. As such MORPHUZZ
guarantees that each fuzzer PIO and MMIO access results in
a hypervisor trap, with a subsequent call to a software virtual-
device handler. Since, immediately after boot, PCI devices
provide no PIO/MMIO regions the initial Guest-Address Map
contains only a few entries (including the PCI controller regis-
ters). Once MORPHUZZ discovers a fuzz-input that configures
BARs, the hypervisor updates the Guest-Address Map. As
MORPHUZZ keeps track of the Guest-Address Map, subse-
quent I/O actions produced by the same fuzz-input can inter-
act with the newly-mapped PIO/MMIO regions. Essentially
MORPHUZZ’s inputs quickly learn to configure and enable
virtual-devices, automatically.

4.3 On-demand Fuzzing of DMA Accesses
At first glance, the DMA input-space is intractable for a fuzzer.
DMA buffers can reside anywhere in guest memory, and the
VM does not trap, when the CPU accesses them. As such, hy-
pervisors do not need to keep track of DMA buffers, unlike for
PIO/MMIO regions. Instead, virtual devices interpret values
written over MMIO and PIO as DMA buffer addresses2 and
use them to index into the guest’s physical memory. This mas-
sive input-space is a clear roadblock for virtual-device fuzzing.
As a result, prior approaches have, ignored DMA entirely
[18], relied on coarse heuristics of DMA accesses [43], or
required precise specifications for each device [42]. Recogniz-
ing the flexibility, and corresponding complexity introduced
by DMA, MORPHUZZ avoids guessing the proper format and
location of DMA buffers, altogether. Instead, MORPHUZZ
produces precise DMA-based interactions, by leveraging in-
trinsic behaviors of hypervisors, as follows.

2Furthermore, as we will see in Section 5.2.3 devices can transform
the values received over MMIO or PIO before accessing the actual guest-
physical memory (e.g., interpreting the value as a page-frame-index rather
than treating it as a physical address proper).
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When the vCPU provides a virtual device with a pointer to
a DMA buffer over MMIO, or PIO, the hypervisor traps into
the virtual-device code. As the implementation of the virtual
device executes in the context of the hypervisor (i.e., in host-
virtual memory), the device code cannot simply dereference a
pointer into guest-physical memory. Instead, the pointer must
first be “translated” into the hypervisor’s address space. To
provide this “translation” functionality to virtual-devices, hy-
pervisors expose a DMA-access API, which cross-references
the address of the DMA access against the hypervisor’s inter-
nal representation of the guest’s memory.

Hence, the DMA-access API provides a lightweight and
clear mechanism for fuzzing the data communicated over
DMA channels. MORPHUZZ’s interpreter implements two
opcodes to fuzz DMA access. However, reflecting the device-
initiated nature of DMA, these opcodes are simply used to
prime MORPHUZZ with fuzzer-provided data in anticipation
of future DMA accesses. These opcodes maintain a ring of
patterns in MORPHUZZ’s internal memory:

add_dma_pattern(offset, stride, pattern[]) Add a pat-
tern to MORPHUZZ’s DMA pattern-ring.

clear_dma_patterns() Clear the pattern-ring.

To put these patterns to use, MORPHUZZ hooks all calls
into the DMA-access API and populates the guest-memory
corresponding to DMA regions with a repeating pattern from
the pattern-ring, on-demand, for the device to read. Internally,
each time MORPHUZZ hooks a DMA access and fills the
corresponding memory with a pattern, it advances the pattern-
ring pointer, so that the next DMA access is filled with a
different DMA pattern (if one is available). Patterns can be
of arbitrary length to represent data of any complexity. How-
ever, MORPHUZZ’s add_dma_pattern operation also enables
even short patterns to encode interesting structures using the
“offset” and “stride” parameters. When these parameters are
specified, each time MORPHUZZ repeats the pattern, it incre-
ments the “offset-th” byte by “stride”. This allows even short
patterns to represent complex DMA data-structures, such as
pointer-rings with many unique addresses3.

Note that, as explained in Section 3.2, virtual-device imple-
mentations frequently impose stringent semantic constraints
on the contents of DMA buffers (e.g., buffers must contain
pointers to other valid buffers). As MORPHUZZ responds to
DMA accesses on-demand, such nested accesses are transpar-
ently handled by the exact same mechanism. This on-demand
operation is crucial and allows MORPHUZZ to reach the “deep”
and nested code paths in virtual device implementations. Sec-
tion 5 provides quantitative evidence for this claim.

Through its awareness of the fundamental Guest-Address
Map and DMA-access API, MORPHUZZ achieves a uniquely-
precise view of active PIO, MMIO and DMA regions.

3E.g. add_dma_pattern(1, 2, 10 01 00 00) expands out to
10010000 10030000 1005 ...

4.4 Fuzzing QEMU
We focused on implementing MORPHUZZ for QEMU be-
cause QEMU is a popular open-source hypervisor, com-
monly used for cloud-applications. Due to its large number of
virtual-devices, and their complexity, QEMU has been the pri-
mary benchmark used for evaluating prior works [18, 42, 43].
QEMU features a large selection of devices, ranging from
legacy PC components, to models of complex network and
storage controllers, and paravirtual VIRTIO interfaces.

MORPHUZZ’ design calls for tapping into the Guest-
Address Map and DMA-access API that are implemented
in hypervisors. Locating the implementation of these APIs
within QEMU is a simple task: QEMU provides developer-
documentation about the DMA-access API, and implements
an mtree command that prints information about all currently-
configured regions in the Guest-Address Map.

4.4.1 Initializing QEMU

QMORPHUZZ is implemented as a build of QEMU aug-
mented with additional code for interpreting fuzzer inputs,
and a thin layer of hooks tapping into QEMU’s Guest-
Address Map and DMA-access API. For QMORPHUZZ we
use libFuzzer as our fuzzing-backend. The interface between
QMORPHUZZ and libFuzzer consists of an init() and an
exec(input) function. This minimal init/exec interface
is also supported by other fuzzers, such as AFL[++], and
hongfuzz, making it straightforward to swap the fuzzing-
engine. init() is executed once, prior to fuzzing, and exec()
invokes the opcode interpreter used to translate individual
fuzzing inputs into sequences of I/O commands.

To initialize QEMU, QMORPHUZZ simply passes a user-
provided set of command-line arguments to QEMU’s main
function. This is necessary as the virtual hardware available
to VM’s in QEMU is configured through command-line op-
tions. For example, adding -nic tap,model=ne2k_pci to
the command-line arguments, configures the VM to have a
NE2000 network-interface card connected to the PCI bus, re-
lying on a TAP-based network-backend. As QEMU initializes
the VM, it registers I/O regions (such as the PCI controller
ports) using its Guest-Address Map. QMORPHUZZ hooks
registration and de-registration of I/O regions in the Guest-
Address Map and keeps a record of them in an I/O region
vector. QMORPHUZZ also configures QEMU with the qtest
CPU backend. Instead of booting binary CPU code, qtest ex-
poses a small text-based API that directly accesses memory
and PIO (see Section 2.3 for details). Once the VM is ini-
tialized and awaiting qtest commands, QMORPHUZZ passes
control to libFuzzer, which begins its fuzzing loop.

4.4.2 Executing Inputs

For each input, libFuzzer calls the exec(input) callback,
implemented by QMORPHUZZ. In its default configuration,
QMORPHUZZ forks the process, to ensure that each input exe-
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cution is independent of all other executions. In Section 4.4.4,
we describe alternatives to forking that we experimented with.

To produce complex I/O behavior, MORPHUZZ feeds each
input into its interpreter (described in § 4.1).

When MORPHUZZ’s interpreter parses a PIO/MMIO oper-
ation, it issues the corresponding qtest instruction. In the case
of the DMA-related instructions, there is no need to perform
any immediate I/O operation; instead, QMORPHUZZ simply
updates the internal ring of DMA-patterns.

As virtual-devices handle PIO/MMIO requests, they may
invoke the DMA-access API to copy data to and from the
VM’s main memory, over DMA. QMORPHUZZ hooks to
each of these API functions. When the virtual-device code in-
vokes the DMA API to read data from guest-physical memory,
QMORPHUZZ examines the location and size of the access,
and fills the corresponding guest-physical memory with a pat-
tern previously added to the DMA pattern-ring. Filling the
memory is as simple as invoking the qtest_memwrite API.

Once QMORPHUZZ finishes executing the commands spec-
ified by the fuzzer’s input, it destroys the process. The parent
process waits on the child to exit, and returns control to lib-
Fuzzer. libFuzzer examines the coverage data collected during
the child’s execution and determines whether the input trig-
gered new behaviors and should be added to the input corpus.
Finally, libFuzzer’s mutation engine generates a new input,
calls exec(), and hence continues the fuzzing cycle.

4.4.3 “Unbending” Inputs

Reproducing crashes with MORPHUZZ is trivially possible
by simply providing the same input to the opcode interpreter
that led to the crash in the first place. However, virtual-device
developers should not be forced to acquaint themselves with
the fuzzer just to be able to reproduce a bug. That is, a self-
contained and stand-alone representation of a crashing input
that is readily usable with a regular build of QEMU is strictly
preferable. Since qtest is widely used by QEMU developers,
MORPHUZZ “unbends” each crash into a standalone qtest
reproducer. MORPHUZZ replays the crashing input through
the opcode interpreter and logs the resulting linear sequence
of MMIO/PIO and DMA-related device I/O commands, in the
order they were issued. Since real VMs do not populate DMA
buffers on-demand, MORPHUZZ annotates all I/O commands
used to fulfill DMA accesses in the log, with a prefix. Then,
MORPHUZZ simply re-arranges the logged I/O commands
so that each command filling a DMA request precedes the
direct PIO/MMIO command that triggered it. This process is
illustrated at the bottom of Figure 2.

The result is a linear qtest API trace, which can be
piped into a standard QEMU process to reproduce the
crash. The qtest trace can be sent to virtual-device devel-
opers along with the command-line used to specify the
connected virtual-devices, as a simple, self-contained, and
straightforward way to reproduce crashes. Additionally, MOR-
PHUZZ’s automatically-generated reproducers have been used

as regression-tests, alongside manually-written test-cases.

We “unbend” all crashes, except double-fetches which are
difficult to consistently reproduce without instrumentation.
Due to their time-sensitivity, there is no straightforward way
to automatically and reliably reproduce double-fetches in
an unmodified hypervisor. However, the developer can still
reliably reproduce crashes due to double-fetches with a build
of MORPHUZZ and the crashing input.

4.4.4 Resetting State

Hypervisors are large, stateful, applications. For fuzzing such
applications, it is important to roll-back the state-changes
caused by a fuzz-input, prior to the next execution. Other-
wise, the same input can lead to different program-behaviors
(nondeterminism). MORPHUZZ is not tied to any particular
method for resetting state. In practice, QMORPHUZZ supports
resetting the hypervisor in between inputs by either rebooting
the VM, VM-Snapshotting, or using process-level forking.
While rebooting VMs and Snapshotting are often more per-
formant than forking a large process, they require a correct
implementation of those features to guarantee fuzzer stability.
While many vital devices in QEMU have precise rebooting
and snapshotting handlers, others have lacking implementa-
tions. Relying on incomplete snapshotting implementations
exposes the fuzzer to the state leakage between individual
inputs and, therefore, nondeterminism. As such, throughout
our evaluation, we use MORPHUZZ in a process-level forking
mode, to ensure consistent results. Note that MORPHUZZ’s
approach is compatible with emerging systems for full-system
snapshot-based fuzzing, such as Agamotto, and Nyx [42, 48].

4.4.5 Implementation Complexity

In total, QMORPHUZZ consists of 714 lines of C/C++ code.
Of these, 68 lines are changes to existing QEMU code. The
rest implement QMORPHUZZ’s init and exec functions.
QMORPHUZZ is already integrated into QEMU’s code-base
and available upstream where it continuously fuzzes QEMU’s
virtual devices on Google’s OSS-Fuzz.

4.5 Beyond QEMU

We described in Sections 4.2 and 4.3, that trap-and-emulate
hypervisors implement a DMA-access API and Guest-
Address Map. Interactions with guest memory are tightly cou-
pled to the particular VM’s configuration. As such, individual
virtual-devices are obligated to use centralized APIs for in-
teracting with the guest’s address-spaces. Since calls to these
APIs pervade virtual-devices, we were able to easily identify
them for popular hypervisors. Table 2 in the Appendix lists
the DMA-access APIs for well-known hypervisors. MOR-
PHUZZ’s hooks are non-invasive, and can be implemented
using an external debugger.
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4.5.1 Implementing MORPHUZZ for bhyve

Bhyve is a hypervisor shipped as part of FreeBSD. We ported
MORPHUZZ to bhyve. In total, it took a researcher with no
prior bhyve experience 4 hours to implement fuzzing with
MORPHUZZ. Our implementation reuses the core fuzzing
code from QMORPHUZZ. To tap into bhyve’s Guest-Address
Map and DMA-access API, we added a total of four lines of
C code. Bhyve does not provide a testing framework so, we
implemented an API mimicking QEMU’s qtest, in 90 lines
of C code. This API simply calls into the same functions that
bhyve traps into upon MMIO and PIO accesses. In total, our
implementation required 451 lines of code (including the 357
lines of fuzzing code copied directly from QMORPHUZZ).
As bhyve does not have an upstream qtest-like interface, we
unbend bhyve crashes into a standalone guest-kernel image
(called ReprOS) which simply invokes the CPU instructions
that correspond to the I/O operations that caused the crash.

5 Evaluation

We evaluate MORPHUZZ’s fuzzing capabilities to answer the
following research questions.

RQ1 Can MORPHUZZ discover and reproduce bugs in
virtual devices? (see § 5.2, § 5.2.1 and Table 1)

RQ2 Is MORPHUZZ’s implementation generic? Can MOR-
PHUZZ be used to find crashes in multiple hypervi-
sors, and architectures? (see § 5.2.2)

RQ3 How does MORPHUZZ’s performance compare to
the state-of-the-art hypervisor fuzzers? (see Table 1)

RQ4 How does QMORPHUZZ’s choice to isolate each
input (reset state) affect performance? (see § 5.4)

RQ5 Can MORPHUZZ stimulate complex DMA behav-
iors? (discussion in § 5.3 and case studies in § 5.2.3)

5.1 Experimental Setup

We performed our experiments in Debian 10 VMs on a univer-
sity cluster. The underlying hosts were a mix of small (2 Xeon
CPUs with 16 logical cores and 128 GB of RAM) and larger
(2 Xeon CPUs with 28 logical cores and 384 GB of RAM)
machines. We assigned two cores and 4gb of RAM to each
VM. Our experiments were conducted against QEMU version
5.0, and bhyve 12.1 – the same versions used by recent related
work. In addition to fuzzing all of the devices covered by prior
work, we fuzzed VMs configured with DMA-heavy devices,
such as USB controllers, and VIRTIO devices (almost twice
as many QEMU devices as prior works).

We dedicated each VM on the cluster to fuzzing a QE-
MU/bhyve guest configured with each virtual-device in our
evaluation set. Following standard practice, we ran the fuzzer
with AddressSanitizer enabled and disabled (one fuzzing pro-
cess each) [31]. ASAN instrumentation allows MORPHUZZ to
detect more memory-corruption bugs, but adds considerable
overhead (especially when forking).

5.2 Bug-finding

MORPHUZZ found all4 16 QEMU and 28 bhyve bugs reported
by Nyx. Furthermore, MORPHUZZ discovered 61 unique new
Bugs in QEMU and 5 in bhyve, for a total of 110 bugs. We
manually confirmed each new bug (Appendix C lists all 66
new bugs). The final column in Table 1 shows the devices for
which QEMU found bugs. Notably, MORPHUZZ found new
bugs for every single Block, Network, and USB controller
fuzzed – all devices that are particularity DMA-intensive. In
total, across the x86 QEMU and bhyve machines, MORPHUZZ
found 7 use-after-free, 7 buffer-overflow, 8 stack-overflow, 8
segfaults, 3 resource-exhaustion, 29 abort issues, and 4 mis-
cellaneous crashes.

5.2.1 Reproducing the Crashes

For each of these crashes, MORPHUZZ recorded the qtest
commands produced by MORPHUZZ and “unbent” the traces,
as explained in §. 4.4.3. The resulting order of commands in
the qtest recording ensures that DMA buffers are filled prior
to the command that triggers the DMA access.

We successfully reproduced the 61 QEMU bugs in an un-
modified build of QEMU 5.0 by simply replaying the qtest
recordings. For the 5 bhyve bugs found by MORPHUZZ, we
converted each qtest recording into a separate build of Re-
prOS, which successfully reproduced all the bhyve bugs. Note
that though the number of bugs found for bhyve is signifi-
cantly lower than those found for QEMU, this is likely due
to the fact that bhyve’s codebase is less than 2% the size of
QEMU. Including the bugs already reported by Nyx, MOR-
PHUZZ found 33 bugs in bhyve. Furthermore Nyx relied of
descriptions to fuzz the VIRTIO and USB devices in bhyve,
whereas QMORPHUZZ had no such aids.

5.2.2 Strength of MORPHUZZ’s generic design

As stated in Section 4, the core insights of bending the input
space and fulfilling DMA requests on-demand are indepen-
dent of any given hypervisor. Previously, we discussed our
implementation and evaluation of MORPHUZZ for bhyve. To
further illustrate the generic applicability of MORPHUZZ we
performed cross-pollination experiments and assessed MOR-
PHUZZ’s applicability to architectures other than x86/x86-64.

Bugs in ARM Devices Without changing a single line of
code, QMORPHUZZ can fuzz devices only available to VMs
targeting a CPU architecture other than x86/x86-64. Specif-
ically, MORPHUZZ found 5 bugs in ARM-specific devices.
These bugs include a heap-use-after-free(write) on the ARM
Global-Interrupt-Controller, included in all ARM QEMU
VMs targeting the cloud. This bug was introduced over 13
years ago. Note that prior works that rely on custom-built
operating systems to perform fuzzing (e.g., Hyper-Cube and

4Though prior work did not release reproducers for the security bugs, we
manually confirmed that MORPHUZZ found bugs matching the Nyx paper’s
bug descriptions (indicating the type of bug, and location in the source code)
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Nyx) would require a re-implementation of the kernel before
they can fuzz a different CPU architecture. Since ARM was
outside of the scope of all prior works, to allow for a head-to-
head comparison, we do not count the 5 ARM-specific QEMU
bugs, when tallying the 110 bugs found by MORPHUZZ.

In summary, MORPHUZZ is highly successful at finding
and reproducing bugs in virtual-devices (RQ1). Furthermore,
MORPHUZZ’s generic approach transparently applies across
VM/CPU architectures and hypervisors (RQ2).

5.2.3 Case-Studies

In addition to the example in Section 3.2, here we showcase
two bugs found by QMORPHUZZ. These bugs are representa-
tive of MORPHUZZ’s focus on generically fuzzing the entire
virtual-device PIO/MMIO and DMA input-space, while pro-
ducing inputs that satisfy the complex semantic dependencies
required by individual devices.

5.2.3.1 Double-fetch in PCNET The PCNET network
adapter is emulated by hypervisors such as QEMU and Virtu-
alBox, with drivers available for all major operating systems.
The device accesses two ring-buffers over DMA (one each
for sending/receiving packets). Each ring-buffer consists of
a set of descriptors that contain pointers to the actual data
along with a length field. Prior to sending a packet from the
ring-buffer, PCNET checks that the descriptor’s length fits
alignment requirements. Instead of reading the entire descrip-
tor, before checking the length, the virtual PCNET performs
two DMA reads to access the same length data, creating a
double-fetch issue. The fuzzer found inputs that leverage this
issue to trigger a heap-overflow. Finding and reproducing this
timing-sensitive crash would be nearly impossible, without
MORPHUZZ’s instrumentation of the DMA API.

5.2.3.2 Reentrancy Problem in virtio-gpu The virtio-
gpu is a paravirtual adapter designed to provide graphics
support with optional hardware-acceleration. The virtio-gpu
device relies on a set of “Virtqueues”, accessed over DMA, to
communicate with the guest. The virtio-gpu is designed with
performance and reentrancy in mind, so it splits I/O jobs into
lightweight “top-halves”, and deferred “bottom-halves” that
handle the bulk of the I/O processing. In theory, this approach
can combat reentrancy issues, since the nested call into the
device simply schedules a deferred bottom-half. In practice,
it is difficult to consider all possible reentrancy cases. The
fuzzer found inputs that provide a page-index to the virtio-
gpu device, via MMIO. The device uses this index to locate
a virtqueue in the guest’s memory via DMA. The fuzzer
proceeds to notify the virtio-gpu of a new request waiting
on the command virtqueue. The virtio-gpu schedules and
executes the request in a deferred, asynchronous manner. The
input provides an address for outputting the response for the
I/O, but instead of specifying an address in RAM, the fuzzer
provides a generic VIRTIO MMIO register which resets the
device. Since the original I/O request still refers to some

global virtio-gpu data, this reset triggers a use-after-free. The
device failed to consider the VIRTIO MMIO reset register
when accounting for reentrancy. Even though Nyx relied on
a manually-written VIRTIO spec, it did not find this crash.
In fact, the Nyx paper reported no VIRTIO bugs found in
QEMU.

When compared with prior works, MORPHUZZ’ ability to
reshape the input-space was essential for identifying the com-
plex issues presented here (RQ5). Furthermore, as demon-
strated by the re-entrancy issues found in virtio-gpu and xHCI
(described in Section 3.2), we observe another weakness of
grammar-based approaches. While a detailed grammar has
potential to reach some deep code-paths, it can overlook dis-
crepancies between the specification (encoded in the gram-
mar) and the actual virtual-device implementation. While
Nyx’ specifications have not been released, MORPHUZZ likely
found a superset of the bugs reported by Nyx precisely be-
cause its inputs can encode complex, unspecified datastruc-
tures that would not be represented in a grammar.

5.3 Coverage
To gauge MORPHUZZ’s capability to exercise device-code,
we collected branch-coverage and compared MORPHUZZ’s
performance with prior-work. Table 1 presents these com-
parative results. Since, at the time of writing, neither VDF,
Hyper-Cube, nor Nyx have released fuzzer source-code, we
had to rely on the numbers published in each paper for this
comparison. Note that, VDF [18] and Hyper-Cube [43] pre-
sented coverage data for QEMU 2.2, a version released in
2014. Since then, QEMU’s C code has more than doubled in
size. The Nyx paper, by virtue of being by the same authors,
provides Hyper-Cube coverage, updated for a 24-hour experi-
ment over QEMU 5.0, so we present those numbers in Table 1,
rather than those found in the original paper. Unfortunately,
there is no up-to-date coverage data for VDF, so we provide
the original numbers collected for QEMU 2.2.

To determine whether the coverage increase demonstrated
by MORPHUZZ actually arises from it’s approach to DMA,
rather than some unrelated discrepancy, we performed iden-
tical experiments for two modified versions of MORPHUZZ.
Essentially, as the source-code for prior systems is not public,
we simulated their approaches to DMA within MORPHUZZ.
We present the coverage results in Table 1. For the No-DMA
experiment, we ran QMORPHUZZ with all of the DMA hooks
disabled, to simulate a fuzzer that only interacts with devices
over Port-IO and MMIO (such as VDF). The Scratch-Buffer
experiment is identical to No-DMA, however, we filled the
first 3 GB of the guest’s RAM with bytes randomly generated
from a seed, and added fuzzer opcodes that write pointers
within this random buffer to the virtual device’s PIO and
MMIO ranges. As a result, the fuzzer has a high chance of
providing devices with a pointer to randomized data that can
be accessed over DMA. However, the actual randomized data
is not controlled by the fuzzer’s mutations; the fuzzer can
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VDF‡ Hyper-Cube* Nyx‡ No-DMA Scratch-Buffer QMORPHUZZ
Device 25-65 Days 24 Hours 24 Hours 24 Hours 24 Hours 24 Hours Bug

Source File Cov. Cov. Cov. Cov. Cov. Cov.
Audio

ac97 53.0% 100% 98.92% 96.38% 96.38% (0.00) 96.38% (0.00)
cs4231a 56.0% 74.76% 74.76% 92.20% 92.20% (0.00) 92.20% (0.00)
es1370 72.7% 91.38% 91.38% 93.66% 93.66% (0.00) 93.66% (0.00) 4

intel-hda 58.6% 79.17% 78.33% 78.18% 79.10% (+0.92) 81.18% (+2.08) 4
sb16 81.0% 83.80% 81.34% 86.88% 86.88% (0.00) 86.68% (-0.20) 4

IBM PC
fdc 70.5% 84.51% 83.10% 85.43% 86.12% (+0.69) 88.19% (+2.07) 4

parallel 42.9% 38.61% 38.61% 38.61% 38.61% (0.00) 38.61% (0.00)
serial 44.6% 73.76% 73.76% 73.76% 73.76% (0.00) 73.76% (0.00)

Block
ide/core 27.5% 74.87% 74.69% 72.32% 73.55% (+1.23) 78.63% (+5.08) 4

ahci 55.62% 57.36% (+1.74) 80.86% (+23.50) 4
sdhci 90.5% 81.15% 88.93% 79.65% 80.55% (+0.90) 84.8% (+4.25) 4

virtio-blk 52.12% 54.12% (+2.00) 68.51% (+14.39) 4
virtio-scsi 52.32% 55.80% (+3.48) 66.78% (+10.98) 4

megasas 26.41% 34.52% (+8.11) 88.41% (+53.89) 4
sd 64.47% 66.43% (+1.96) 70.11% (+3.68) 4

scsi-disk 62.36% 65.44% (+3.08) 74.09% (+8.65) 4

Network
eepro100 75.4% 83.82% 83.82% 87.13% 87.13% (0.00) 89.26% (+2.13) 4

e1000 81.6% 66.08% 54.55% 65.77% 66.14% (+0.37) 89.23% (+23.09) 4
e1000e_core 75.24% 75.84% (+0.60) 90.54% (+14.70) 4

ne2000 71.7% 71.89% 71.89% 82.95% 83.47% (+0.52) 98.71% (+15.24) 4
pcnet 36.1% 78.71% 89.49% 71.38% 72.72% (+1.34) 96.35% (+23.63) 4

rtl8139 63.0% 74.68% 79.28% 81.78% 84.92% (+3.14) 94.01% (+9.09) 4
vmxnet3 45.37% 47.63% (+2.26) 63.89% (+16.26) 4
virtio-net 50.67% 51.58% (+0.91) 60.23% (+8.65) 4

Graphics
virtio-gpu 37.64% 39.11% (+1.47) 70.40% (+31.29) 4
cirrus_vga 90.55% 90.56% (+0.01) 90.55% (-0.01) 4

USB
hcd-ehci 49.28% 58.09% (+8.81) 78.94% (+20.85) 4

hcd-xhci 64.40% 87.7%† 60.72% 62.10% (+1.38) 90.52% (+28.42) 4

ARM
arm_gic 67.94% 67.94% (0.00) 67.94% (0.00) 4

smc91c111 92.14% 92.14% (0.00) 92.14% (0.00) 4
xgmac 56.00% 64.50% (+8.50) 94.40% (+29.90)
bhyve

pci_xhci 48.18% 50.35% (+2.17) 71.32% (+20.97) 4
virtio_block 54.60% 62.31% (+7.71) 74.36% (+12.05) 4

Average (Nyx devices)§ 61.67% 76.35% 78.16% 77.93% 78.58% 85.76%
Average (All devices) 67.51% 69.42% 81.08%

Table 1: QMORPHUZZ Coverage results side-by-side with results reported
by prior work. Empty cells indicate that prior work did not include the corre-
sponding device in its evaluation. In parentheses, we indicate the increase in
coverage over the previous column. The final column indicates whether we
found bugs, for each device.
*Numbers for Hyper-Cube are taken from the Nyx paper, since the original
paper only presents data for 10-minute experiments, while Nyx provides data
for 24-hour periods, which matches our experiments.
‡Source is not available. The numbers are copied from the respective papers.
†Nyx relied on a manually-written specification to achieve this coverage
§For this row, we provide the average over 15 VDF devices. The rest of the
columns represent averages over the 16 devices evaluated in Nyx [42].

only point the virtual-devices with different offsets within the
randomized buffer. This functions similarily to the approach
described in Hyper-Cube and Nyx (without virtual-device
descriptions). Note that though these experiment employ the
strategies for fuzzing DMA described in prior works, the ac-
tual implementation details (such choice of fuzzing engine,
use of a guest OS, PIO/MMIO range enumeration) differ.

QMORPHUZZ achieves equal or higher coverage for most
(13/16) of the devices tested in prior work. Notably, MOR-
PHUZZ, achieved higher coverage over the DMA-intensive
xHCI controller than Nyx, despite the manually-written spec
necessary for Nyx. Additionally, for 24/33 configurations,
QMORPHUZZ outperformed the Scratch-Buffer and No-DMA
configurations which mimic the DMA approaches of prior
works. Manually examining the code of the remaining 9 de-
vices, we confirmed that none of them are controlled by DMA
data. As the configurations are identical to QMORPHUZZ

except for the DMA strategy, it is clear that MORPHUZZ’s
increased coverage and bug-finding capability is primarily
due its treatment of DMA as a first-class I/O transport.

MORPHUZZ performed especially well for devices with
complex DMA-interactions, such as block and network-
devices. Prior work achieved matching or higher coverage
than MORPHUZZ for four legacy devices and devices with low
DMA complexity. Interestingly, though MORPHUZZ achieves
less coverage over the SDHCI device, we found long-standing
SDHCI issues, that were not reported by prior works.

We manually sampled the code that MORPHUZZ did not
cover. We found that coverage is limited for devices that
contain code which is executed only when certain command-
line options are configured. For example, the virtio-net device
provides 69 configurable options on the command line; a large
part of the code in the virtio-net.c file is only accessible, when
the corresponding set of options is configured. Additionally
we found that many virtual devices dedicate a sizable amount
of code for hot-plugging and live-migration support, which
cannot be reached by interacting with virtual-devices from
a VM. Instead these functions are only reachable from the
hypervisor, and hence are out of scope for our threat model.

In summary, MORPHUZZ found a superset of the bugs
reported by prior works that target virtual device implementa-
tions. Importantly, MORPHUZZ achieved significantly higher
coverage for complex devices that required the fuzzer to per-
form PCI configuration, PIO, MMIO and multiple layers of
DMA communication to reproduce a single crash. MOR-
PHUZZ’s ability to effectively fuzz devices across all of these
modes of I/O, without seeds or specifications, is unparalleled
by prior approaches (RQ3).

5.4 Throughput
We measured MORPHUZZ’s performance in terms of qtest
instructions/second. QMORPHUZZ’s qtest instructions are
guaranteed to interact with address ranges associated with
virtual devices (through PIO and MMIO) or DMA buffers
read by these devices. We ran the fuzzer for 10 minutes on
a single core and calculated the number of qtest instructions
executed per second in three configurations. We found that
in the standard configuration, QMORPHUZZ executes 4,170
qtest instructions per second. Additionally, we experimented
with other state-resetting mechanisms, and found that though
they improve throughput, though, usually, at the cost of sta-
bility(RQ4). We provide further details in Appendix B.

MORPHUZZ’s reports have already led to 22 issues fixed
in QEMU (9 of these have been assigned CVEs). In fact,
MORPHUZZ had the second-most report credits in QEMU’s
5.2 release (the first spot is held by an automated system
that reports errors encountered during compilation and unit-
testing). MORPHUZZ has, since, been deployed on OSS-Fuzz,
where it has found and reported additional bugs. In total,
QMORPHUZZ has found 81 QEMU bugs on OSS-Fuzz, that
are in various stages of triage. The QEMU repository docu-
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ments the trivial steps for configuring QMORPHUZZ to fuzz
additional virtual-devices, on OSS-Fuzz.

6 Discussion
Despite QMORPHUZZ’s positive results, we briefly discuss
limitations and avenues of further improvement.
Hypervisor Configurations. MORPHUZZ fuzzes a given
“hardware”-configuration of a VM. Our current implemen-
tation aggregates a set of virtual-device configurations by ex-
ecuting QEMU’s test suite. However, these tests do not elicit
the complete spectrum of viable QEMU configurations (such
as the 78 virtio-net options). We found that certain devices
were not configured by any of the test cases, and other devices
had certain features disabled. A dedicated analysis (e.g., over
QEMU’s command line parser) could enrich the available set
of configurations and directly benefit QMORPHUZZ.
Independent Virtual-Devices. With KVM, users can com-
plement QEMU’s virtual-devices, with kernel-modules. For
example, vhost-net is a host-kernel-driver that accelerates the
virtio-net device by avoiding expensive context-switches to
user-space QEMU that occur each time the guest accesses a
virtual-device. In the future, for security purposes, hypervisors
may run virtual-devices in isolated processes. MORPHUZZ
relies on libFuzzer, which is designed to collect coverage of a
single user-space process. As these approaches gain traction,
they will open new opportunities for virtual-device fuzzers.
Reproducing Double-Fetches As we mentioned in Sec-
tion 4.4.3, MORPHUZZ does not “unbend” double-fetch bugs
into standalone reproducers. That is, though double-fetches
can be consistently reproduced in an instrumented version
of the hypervisor, we have no reliable way to automatically
re-create them in an unmodified build. The underlying reason
for this is that with MORPHUZZ’s hooks, DMA becomes a
synchronous operation from the fuzzer’s point of view - the
fuzzer does not have to race against the device to overwrite
guest memory since the DMA access is effectively paused
until the fuzzer’s hooking code returns. Once the fuzzer and
the hooks are removed, we are faced with the DMA’s natural
asynchronicity. In the future, it may be possible to use a brute-
force approach, or instrumentation such as ThreadSanitizer
to consistently reproduce double-fetches in hypervisors.

7 Related Work
Since its appearance in the ’80s, fuzzing has gained
widespread attention in the academic community. A major
catalyst reviving interest, was the release of the American
Fuzzy Lop (AFL) [57] fuzzer, which popularized, coverage-
guided, fuzzing for a wide range of software. Researchers
have focused on improving fuzzing performance, with ad-
vancements in input scheduling [24, 41, 52], mutation algo-
rithms [4,30,40], and input feedback [1,16,59]. Other systems
focus on applying concolic execution [25,26,56] to overcome
roadblocks, such as comparisons against “magic constants”,
and checksums [35]. Fuzzers such as AFL with laf-intel [27]

and libFuzzer [46] have applied source-code instrumentation
to identify comparisons against magic bytes and produce in-
puts that can pass them. Other works have adapted fuzzers to
complex targets such as code-interpreters [17,21,50,55], com-
pilers [5, 28, 29], and network-protocols [2, 12, 15]. Operating
system kernels have received widespread attention within the
academic community, with systems purpose-built for kernel-
drivers [6], kernel race-conditions [23], file-systems [54], and
the system-call interface [13, 19, 44]. Other works, such as
Periscope [47] examine MMIO and DMA communication
between a kernel and peripherals to identify vulnerabilities in
a kernel exposed to a compromised device. Periscope, oper-
ates from a different viewpoint that MORPHUZZ, by reacting
to DMA activity initiated by guest drivers running within
Linux. Unlike Periscope, MORPHUZZ constructs entire de-
vice “converstations”, starting with PCI configuration and
continuing with DMA buffer-setup, and PIO/MMIO activity.
This allows MORPHUZZ to exercise code paths, that well-
behaved guest-drivers would never touch. Similarly, VIA [20]
fuzzes OS-drivers to identify bugs that could compromise of
security-guarantees in a confidential-computing environment,
where virtual-device code is not trusted. Works have also
applied static [51, 53] and dynamic [45] techniques to detect
and analyze double-fetch issues in software.

Most related to our work, others have identified that vir-
tual devices pose many of the same challenges for fuzzers
as kernel system-calls and drivers. IOFuzz [32] finds bugs
in virtual devices, by writing random values to port-mapped
IO. VDF [18] collects MMIO and PIO traces, and uses these
traces as seeds for coverage-guided fuzzing. VDF does not
fuzz DMA traffic or fully reset state between input execu-
tions. Hyper-Cube [43] and Nyx [42] are state of the art
virtual device fuzzers, based on a custom-built guest operat-
ing system. Hyper-Cube uses PCI enumeration to identify
IO ranges mapped to virtual devices and sets up a single
scratch buffer which it uses to trigger DMA activity, by writ-
ing addresses within the scratch buffer to MMIO and PIO
ranges. These properties make Hyper-Cube portable to var-
ious hypervisors supporting x86, but limit Hyper-Cube on
virtual-devices which rely on magic constants, and, impor-
tantly, DMA semantics. Nyx augments Hyper-Cube, by using
a full-system snapshotting and hardware-assisted coverage
framework. To fuzz complex DMA devices, Nyx requires a
manually-written specification. Unlike Nyx, MORPHUZZ re-
shapes the virtual-device input-space in response to feedback
collected from fundamental hypervisor APIs. This allows
MORPHUZZ to achieve high coverage over complex devices
without specifications or seed-inputs and intrinsically enables
MORPHUZZ to generate device interactions that lie outside
the manually-crafted specification. Concurrently and indepen-
dently, V-Shuttle [34] developed a method to fuzz the DMA
input-space in a targetted fashion, by replacing DMA access
calls with reads from a file generated by AFL. Notably, V-
Shuttle performs a static-analysis to annotate DMA accesses
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and treats and fuzzes each one using a separate fuzzer mu-
tator. Unlike V-Shuttle, MORPHUZZ does not require any
preliminarty analysis or manual work to convert crashes into
reproducers.

In an industrial setting, there has been work to fuzz virtual
devices [49] using a minimal OS connected to AFL. MOR-
PHUZZ builds upon the lessons of prior-works to present the
first design that can fuzz arbitrary device across all major
modes of I/O.

8 Conclusion
MORPHUZZ is the first generic and coverage-guided fuzzer
capable of interacting with virtual devices that implement
complex DMA interactions. To this end, MORPHUZZ lever-
ages insights from hypervisor design (e.g., inferring IO ranges
from Guest-Address Maps) and adds support for on-demand
DMA buffer identification and provision thereof. MORPHUZZ
features an opcode interpreter that leverages the hypervisor’s
APIs to directly communicate with virtual devices, obviating
the need for a custom-built guest OS. The evaluation of our
QMORPHUZZ prototype shows that it is highly performant
reaching an average 81% branch coverage over 33 virtual
device implementations. QMORPHUZZ is particularly suc-
cessful when analyzing devices that rely on complex DMA
interactions. The system identified 66 new and unique crash-
ing bugs, which we reported upstream. MORPHUZZ is already
included in QEMU’s code-base where it continually fuzzes
virtual device implementations via OSS-Fuzz.
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A Guest memory access APIs in various open
source hypervisor implementations

Hypervisor DMA-access API Functions
QEMU address_space_{ld,st,map}

bhyve paddr_guest2host
VirtualBox pfnPhys{Read,Write}

Bochs DEV_MEM_{READ,WRITE}_PHYSICAL_DMA

Table 2: Guest memory access APIs in various open source hypervisor
implementations

B Throughput Discussion
First we ran MORPHUZZ in its default configuration, where
each test-case is executed within an isolated, forked child.
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Secondly, we ran MORPHUZZ built with AddressSanitizer,
which carries performance overheads, but uncovers additional
classes of bugs (e.g., non-crashing memory corruptions). Fi-
nally, we ran QMORPHUZZ without resetting any state, only
restarting the fuzzer after a crash brings down the process.

With ASAN enabled, this number drops to 1,610 qtest in-
structions per second. ASAN’s overheads are exacerbated
by the fact that, for a 64-bit executable, ASAN maps 20 ter-
abytes of virtual memory as part of its detection capability.
Since QMORPHUZZ relies on a fork server, the kernel must
make a copy of the large page-tables resulting from ASAN’s
virtual-memory use. Using perf [36], we found that close
to 40% of the execution time was spent in the kernel, dur-
ing the fork() system-call. Finally, without resetting any
state, QMORPHUZZ executes 5,850 instructions per second.
Though, this is a sizable (i.e., 40%) gain over the first configu-

ration, it comes at the cost of input stability and MORPHUZZ’s
reproducible-crash guarantee. Additionally, performance is
hurt by the fact that the entire process must be restarted, each
time a crash is triggered.

Note that QMORPHUZZ’s pattern instruction and on-
demand DMA fulfillment , can produce inputs that populate
megabytes of data just-in-time (e.g., filling entire ring-buffers
in DMA). Though we configured libFuzzer to limit inputs to
2,048 bytes, MORPHUZZ’s use of DMA patterns results in
much longer qtest sequences. Thus, there can be drastic differ-
ences in execution times for each qtest command. In summary,
MORPHUZZ trades performance for input-stability. In addi-
tion to enabling MORPHUZZ to reproduce crashes with no
post-processing, this stability allows MORPHUZZ to achieve
higher coverage and bug-finding performance for complex
devices, than prior works (RQ4).
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C List of Bugs Reported by MORPHUZZ

QEMU
Stack-overflow in ahci_cond_start_engines
Stack-overflow in _eth_get_rss_ex_dst_addr
Stack-overflow in rtlNUMBER_transmit_one
Stack-overflow in pcnet_poll_timer
Stack-overflow in e1000_receive_iov
Stack-overflow in flatview_do_translate through e1000
Stack-overflow in intel_hda_corb_run
Stack-overflow in xhci_pci_intr_raise
Buffer-underflow in xhci_runtime_write
Global-buffer-overflow in mode_sense_page
Heap-buffer-overflow in sdhci_write_dataport
Heap-buffer-overflow in sdhci_data_transfer
Heap-buffer-overflow in sd_erase
Heap-buffer-overflow in msix_table_mmio_write
Heap-buffer-overflow in pcnet_receive
Heap-use-after-free in e1000e_write_packet_to_guest
Heap use-after-free in e1000e_write_to_rx_buffers
Heap-use-after-free in ehci_flush_qh
Heap-use-after-free in usb_packet_copy
Heap-use-after-free in usb_packet_unmap
Heap-use-after-free in virtio_gpu_ctrl_response
Heap-use-after-free through double-fetch in ehci
Memcpy-param-overlap in flatview_write_continue
Memcpy param-overlap in ip_stripoptions
Memcpy param-overlap through e1000e_write_to_rx_buffers
Memory Exhaustion in vmxnet3_activate_device
Memory Exhaustion in hpet_timer
Segfault in virtio_write_config
Segfault in address_space_to_flatview through ide
Segfault in blk_bs
Segfault in megasas_command_complete
Segfault in megasas_handle_frame
Segfault in tcg_handle_interrupt
Segfault in usb_bus_from_device
Infinite Loop in sdhci_data_transfer
Floating-point exception in ide_set_sector
Assertion-failure in audio_bug
Assertion-failure in mch_update_pciexbar
Assertion-failure in vmxnet3_validate_interrupt_idx
Assertion-failure in vmxnet3_validate_queues
Assertion-failure in address_space_stw_le_cached through virtio-net
Assertion-failure in address_space_stw_le_cached through virtio-blk
Assertion-failure in address_space_cache_invalidate through virtio-gpu
Assertion-failure in address_space_unmap through ahci_map_clb_address
Assertion-failure in address_space_unmap through virtio-blk
Assertion-failure in virtio_blk_reset
Assertion-failure in bdrv_aio_cancel
Assertion-failure in bmdma_active_if
Assertion-failure in e1000e_write_lgcy_rx_descr
Assertion-failure in e1000e_write_rx_descr
Assertion-failure in e1000e_write_to_rx_buffers
Assertion-failure in e1000e_intrmgr_on_throttling_timer
Assertion-failure in e1000e_intmgr_collect_delayed_causes
Assertion-failure in eth_get_gso_type through e1000e
Assertion-failure in iov_from_buf_full through e1000e
Assertion-failure in net_tx_pkt_add_raw_fragment through vmxnet3
Assertion-failure in net_tx_pkt_reset through vmxnet3
Assertion-failure in pci_bus_get_irq_level
Assertion-failure in scsi_dma_complete, with megasas
Assertion-failure in usb_detach
Assertion-failure in ati_reg_read_offs and ati_reg_write_offs

bhyve
Segfault in vq_getchain
Assertion in modify_bar_registration
Assertion in unregister_mem
Assertion in pci_vtnet_proctx
Assertion in pci_vtnet_cfgwrite

QEMU (ARM)
Heap-use-after-free in gic_dist_writeb
Segfault in smc91c111_writeb
Assertion-failure in gic_clear_pending_sgi
Assertion-failure in bcm2835_thermal_read
Assertion-failure in dwc2_hsotg_write

Table 3: New bugs found by MORPHUZZ

1238    31st USENIX Security Symposium USENIX Association


	Introduction
	Background
	Interfacing with (virtual) devices
	Emulating Virtual Devices

	Virtual Device Vulnerabilities
	Testing Virtual Devices

	Motivation
	Fuzzer Inputs
	Crashing Virtual Devices
	Summary of Challenges

	Morphuzz
	The Interpreter
	Distilling the MMIO and PIO Input Space
	On-demand Fuzzing of DMA Accesses
	Fuzzing QEMU
	Initializing QEMU
	Executing Inputs
	``Unbending'' Inputs
	Resetting State
	Implementation Complexity

	Beyond QEMU
	Implementing Morphuzz for bhyve


	Evaluation
	Experimental Setup
	Bug-finding
	Reproducing the Crashes
	Strength of Morphuzz's generic design
	Case-Studies

	Coverage
	Throughput

	Discussion
	Related Work
	Conclusion
	Guest memory access APIs in various open source hypervisor implementations
	Throughput Discussion
	List of Bugs Reported by Morphuzz

