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Abstract
Protecting network protocols within an encrypted tunnel,

using technologies such as Virtual Private Networks (VPNs),
is increasingly important to millions of users needing solu-
tions to evade censorship or protect their traffic against in/on-
path observers/attackers. In this paper, we present a series of
attacks from two threat models: an attacker that can inject
spoofed packets into the network stack of a VPN client (called
client-side), and an attacker that can spoof packets on the In-
ternet and send them to a VPN server (called server-side). In
both cases, we assume that the attacker is in/on-path, and can
count encrypted bytes or packets over time. In both threat
models, we demonstrate attacks to infer the existence of, in-
terfere with, or inject data into TCP connections forwarded
through the encrypted VPN tunnel. In the server-side threat
model, we also demonstrate an attack to hijack tunneled DNS
queries and completely remove the protections of the VPN
tunnel. For the attacks presented in this paper, we (1) assess
their feasibility in terms of packet rates and timing; (2) test
their applicability against a broad range of VPN technologies,
types, and vendors; and (3) consider practical issues with re-
spect to real-world attacks. We followed an ethical disclosure
process for all attacks presented in this paper. Client-side at-
tacks were addressed with two CVEs and partially mitigated
by a series of updates from some operating system and VPN
client vendors. Server-side attacks have not been addressed
and are still feasible with all operating systems and VPN
servers that we tested.

1 Introduction

Virtual Private Networks (VPNs), and other related technolo-
gies that form an encrypted tunnel for Internet traffic, have be-
come pervasive security and privacy tools that are relied upon
by a wide variety of users. As examples: government agen-
cies use VPNs to help protect national secrets; at-risk users
such as journalists and activists use tools that include VPNs,
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Lantern, Orbot, Psiphon, etc. [23] to protect free speech and
free assembly; and everyday users use similar technologies
to connect to the Internet via untrusted networks, or simply
to remain private online. VPNs were originally developed to
provide point-to-point access to remote resources, and later
retrofitted to forward any traffic generated at higher layers
in the network stack of a device running a VPN to a remote
VPN server through an encrypted tunnel. But, what security
and privacy guarantees do VPNs, as they are implemented
today, actually provide?

In this paper, we present attacks on connections that are
tunneled inside a VPN. Irrespective of VPNs, attacks on net-
work connections have traditionally fallen into two categories:
(1) In/on-path attacks, in which an attacker is part of the net-
work infrastructure and routes the packets to/from the client
and server so they can easily infer connections, count packets,
and interfere with data streams; and (2) Blind off-path at-
tacks in which side-channel inferences are necessary to carry
out that attack because the attacker cannot see packets in tran-
sit to learn about values such as sequence numbers. We refer
the reader to Marczak et al. [22] for a formal definition (and
distinction) of in- vs. on-path1. Because our attacks are easier
to implement as in-path rather than on-path (though both are
possible), we sometimes use simply “in-path” throughout the
rest of this paper.

Network protocols such as TCP or DNS contain secret ran-
domized values to protect them from off-path attacks, i.e.,
attackers who do not see communications going back and
forth between client and server but attempt to interfere with,
or infer information about, connections via side-channels in
protocol implementations. For example, previous works have
shown that off-path attackers can infer the existence of con-
nections [3], count packets between end-points [18], or even
interfere with or inject data into the data stream [11, 15].
To mitigate such attacks, the TCP protocol randomizes the
ephemeral port chosen by a client making a connection re-
quest, and the initial sequence number is randomized by both

1Basically, on-path attackers can delay or drop packets while in-path
attackers cannot.



client and server. For DNS, a protocol that is typically UDP-
based, the ephemeral port of the client is randomized, and
there is a random transaction ID (TXID) to protect against
spoofed responses from off-path attackers.

For in-path attacks, session-layer encryption between
the client and server, such as TLS [19] or DNS over
HTTPS/TLS [8, 9, 28], can mitigate some attacks but they
cannot protect metadata about the connection, and can be
thwarted by an attacker with a forged certificate. Thus tech-
nologies such as VPNs are often used to add another layer of
security and privacy to protect against in-path attackers.

In this paper, we propose and demonstrate a third category
of attack against encrypted tunnels: blind in/on-path attacks
where the fields necessary for the attack (e.g., port numbers
and sequence numbers) are encrypted and not directly visible
to the in-path attacker. We use attacks on VPN tunnels as
example applications to demonstrate blind in/on-path attacks.
Figure 1 shows the differences between the different types of
attacks in a scenario with standard TCP/UDP connections as
well as in a VPN scenario. A key insight of our work is that
encryption can hide contents for packets (specifically headers
and data), but it cannot hide properties such as the number
of packets, their size, and their timing. Thus the attacker is

“blind” in the sense that they cannot directly see/modify tun-
neled headers and data, but can still infer headers and modify
headers or data because of the same properties that make
off-path attacks possible.

We show that the randomized values used for protection
against off-path attacks can easily be inferred by a blind in/on-
path attacker despite being sent through an encrypted tunnel.
This can lead to a complete breakdown of the security and pri-
vacy of protocols such as TCP and DNS that is supposed to be
added when they are tunneled inside a VPN or other VPN-like
technology. The attacks presented in this paper challenge the
current understanding of real-world VPN’s security by show-
ing that even a properly configured and secured VPN is still
vulnerable to connection tampering from a malicious actor
with the ability to access and control the gateway (including
network adjacent attackers who have altered the victim’s rout-
ing through ARP cache poisoning, for example) or any router
between the VPN server and client. The attacks disclosed in
this paper allow a malicious actor to determine if a person
using a VPN is connected to a particular application server,
and to subsequently reset or hijack any identified TCP/IP con-
nections within the encrypted tunnel that are identified; or
spoof responses to UDP-based DNS queries.

Our results include that for (as an example) Linux-based
systems, a network adjacent attacker utilizing a client-side
attack can infer and hijack or reset HTTP(S) connections of a
given website 91.6% of the time in a real-world environment.
In the case of DNS queries subjected to a server-side attack,
we find that for a timeout of 5 seconds (the DNS lookup
timeout for most modern browsers), the attack is successful
11.6% of the time, but the attack is successful 75.3% of the
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Figure 1: Outline of the different attacks and threats in a stan-
dard TCP/UDP connection and a VPN-tunneled TCP/UDP
connection. In this paper we focus on Blind in/on-path attacks
against traffic protected by encrypted VPN tunnels.

time for a timeout of 15 seconds (i.e., the default DNS lookup
timeout for Android).

The rest of this paper is structured as follows. Section 2
introduces our attack assumptions and discusses our ethical
disclosure process. Section 3 provides background informa-
tion on VPN technologies, source address validation at dif-
ferent levels of the Internet, and the TCP flags that are used
in our attacks. Section 4 provides an overview of our threat
model, and the different phases of our attack. In Section 5
we enumerate the experiments we carried out for different
types of attacks. Section 6 presents our findings and analysis.
Sections 7, 8, and 9 provide a discussion, related work, and
conclusion, respectively.

2 What Is the Vulnerability?

We developed two types of attack to demonstrate what can be
achieved by a blind in/on-path attacker:

• Client-side attacks inject spoofed packets into the net-
work stack of the VPN client. Because of the prevalence
of Network Address Translation and bogon filtering, for
all practical purposes this implies that an attacker is
network adjacent to the client. Because any network-
adjacent attacker can easily place themselves in-path via
ARP poisoning on a typical network, we do no distin-
guish between malicious access points and malicious
attackers who share the same network in layer 2. Many
clients (particularly those running UNIX-like operating
systems based on the weak host model) do not discrimi-
nate packets based on the interface through which they
entered the system, so it is possible for an attacker to
spoof packets appearing to come from a remote appli-
cation server to the VPN client’s IP address inside the



VPN network NAT.

• Server-side attacks inject packets by spoofing them to
the VPN server, appearing to come from a remote ap-
plication server. Such packets can be spoofed from ef-
fectively anywhere on the Internet, but since our attacks
assume that the attacker can view encrypted VPN traffic
(to count encrypted packets or bytes over time), server-
side attacks must, for all practical purposes, be carried
out by a router that is in-path between the VPN server
and VPN client. Because the packet arrives at the VPN
server on the same interface as legitimate packets, and is
otherwise indistinguishable from a legitimate packet in
terms of header information, we believe that server-side
attacks will be much more challenging to mitigate.

There is no operating system implementation detail, VPN
design decision, or configuration setting that we can point to
as being the vulnerability that enables our server-side attacks.
Rather, our server-side attacks are based on the general ar-
chitecture that defines how VPNs work. Filtering packets for
tunneled connections by interface (typically using a firewall
rule) or technologies such as Linux’s network name spaces
are ways to effectively mitigate our client-side attacks in most
cases, but the client-side attacks are still good demonstrations
of blind in/on-path attacks.

We demonstrate this new category of vulnerability by per-
forming the following series of attacks against connections
protected by an encrypted VPN tunnel:

1. A client-side attack to infer and hijack TCP connections
from the perspective of a malicious network adjacent at-
tacker (e.g., a WiFi Access Point).

2. A server-side attack to infer and hijack TCP connections
from the perspective of a middle router in-path between
the VPN server and the VPN client.

3. A server-side attack to hijack DNS queries from the per-
spective of a middle router in-path between the VPN server
and the VPN client.

For the sake of clarity, we assert the following about
our attacks:

• Both client- and server-side attacks work regardless
of the strength of the VPN’s encryption. Because we
inject packets into the network stack of the VPN client
or VPN server at the ends of the tunnel, where either en-
cryption has not happened yet or decryption has already
happened, our attacks are independent of any cryptogra-
phy implementation of the VPN tunnel.

• While client-side attacks can be mitigated by rea-
soning about which interface a packet arrives on to
distinguish between spoofed and legitimate packets,
server-side attacks cannot be mitigated in this way.

For our server-side attacks, spoofed packets arrive on
the same interface as legitimate traffic, and can be iden-
tical in every other way. No vendors have proposed any
mitigation for our server-side attacks, and all VPNs and
OSes that we tested are still vulnerable.

Responsible disclosure: Our work resulted in the assignment
of two CVEs, CVE-2019-9461 and CVE-2019-14899. The
former is because Android responds to unsolicited packets
sent to an incorrect interface in plaintext2, and the latter is be-
cause all UNIX-like operating systems that we tested (Linux,
BSD, and Apple’s macOS and iOS) respond to unsolicited
packets sent to the incorrect interface, and although the re-
sponses are encrypted, reveal enough information to infer the
existence of connections and the correct sequence and ac-
knowledgment numbers. In both cases, we show that the ker-
nel of these operating systems before disclosure does not cor-
rectly discriminate packets meant for the VPN interface from
normal traffic, which allows us to blindly probe the client until
we have the information needed to inject arbitrary data into
the connection. For all route-based VPN apps/configurations
that we tested before our disclosure, we found them to be
vulnerable on affected OSes.

However, despite major OS and VPN vendors issuing
patches in response to our disclosure (e.g., Android, Apple,
and WireGuard), many of our attacks presented in this pa-
per are still possible even with the latest versions. There are
two reasons our attacks stay unmitigated. First, for client-side
attacks, operating systems often need the weak host model
for connectivity reasons, e.g., so a mobile device can switch
seamlessly between different cellular interfaces. Thus the fil-
tering of malicious packets needs to be precise and is probably
best carried out by the VPN client application because it has
the most information about the VPN tunnel configuration.
The other reason why many of our attacks remain unmiti-
gated is because, despite our disclosures, no vendors have
proposed or implemented any mitigation for our server-
side attacks. Our server-side attacks are not associated
with any vulnerability; instead, they only assume that the
VPN server correctly performs network address transla-
tion.

3 Background

Here we present prerequisite background information, some
of which (VPN Basics in Section 3.1) is general and the rest
of which only applies to specific attacks for specific proto-
cols, operating systems, or implementations. For example,
IP source address validation (Section 3.2) is only directly
relevant as a solution for client-side attacks.

2Our attacks do not assume this behavior, but it is something we noticed
during testing that is specific to Android.



3.1 VPN Basics

There are two commonly used methods for controlling traffic
in VPN software: policy-based implementations and route-
based implementations. Route-based VPNs, which are the
most common tunneling methods used in typical commodity
VPNs, use virtual interfaces on both the client and server to
act as endpoints on a virtual network. In the typical config-
uration, the VPN software on the client device modifies the
routing table to send all of the traffic to the tunneling interface
(e.g., tun0) by giving it a more specific route than the default
gateway. All of the traffic that is received by the tunneling
interface is encrypted and encapsulated by the VPN software
and then routed on the public-facing interface to the VPN
server, where it is NATted to the VPN server’s public IP and
sent on to the ultimate packet’s destination over the Internet.
Policy-based VPNs, however, do not use an additional inter-
face as an endpoint for a virtual connection, but instead use
firewall rules to determine which traffic belongs to the VPN
and encrypts any traffic matching the policy.

The purpose of VPNs is to prevent anyone in-path between
the VPN client and the VPN server from seeing the con-
tents of the user’s traffic, and it is generally assumed that this
portion of the tunnel is protected. Even if an attacker can
see the packets sent between the VPN server and the final
server (e.g., a web server), they would not be able to determine
the VPN client on the other side of the VPN server through
analysis of the packets alone. An attacker can still perform
traditional in-path attacks between the VPN server and web
server, particularly when the application-generated traffic is
not additionally encrypted by SSL/TLS standards. However,
the encrypted tunnel between the VPN client and VPN server
is meant to prevent these attacks from happening between the
VPN client and VPN server.

3.2 IP Validation in Modern Protocol Stacks

On modern Linux, and other UNIX-like systems, source ad-
dress validation for IPv4 is disabled by default, meaning that
any packet received on any interface will be processed by the
kernel, and if that IP address is a known local address, for-
warded to the application or service associated with it. This is
known as the weak host model.3 In modern operating systems,
this allows a user to have multiple interfaces receiving pack-
ets from the same source (e.g., multi-homing), thus providing
redundancy and more reliable network connectivity as users
roam across network access technologies.

In an attempt to address the lack of source address valida-
tion, the concept of reverse path was developed in RFC 2827
and RFC 3704, which added filtering to check that incoming
packets are routable via the interface on which they are re-
ceived [7]. That is, if the packet is not routable through the

3In the strong host model, a packet received on an interface is only routed
if the destination IP address is associated with the interface.

incoming interface, the packet should be dropped, and only
if the packet is routable through the incoming interface, will
it be routed to its destination. This is implemented in most
Linux-based systems through the rp_filter kernel variable,
which offers three options defined in RFC 3704:

1. Strict Mode: In this mode, the source address from an
incoming packet is compared to the Forwarding Informa-
tion Base (FIB) and the packet is dropped if the incoming
interface is not the best outgoing interface for responding
to the packet.

2. Feasible Mode: In this mode, the source address from in-
coming packets is compared against the FIB, but maintains
alternative routes and only drops packets which are not
routable at all via the incoming interface.

3. Loose Mode: This mode compares the source address for
incoming packets against the FIB, but will only drop the
packet if it is not routable via any local interface.

RFC 3704 recommends using strict mode unless there is
a specific reason for using feasible or loose mode, e.g., in
multihomed networks. A mobile phone offers an example of
a device that relies on asymmetric routing, since it will likely
have a WiFi interface and multiple interfaces for receiving
packets from cell towers. The mobile phone needs to main-
tain persistence as the user switches networks as they travel
beyond the range of their current cellular tower, change their
WiFi network, re-connect to the network after losing coverage,
get IP addresses re-assigned due to Carrier-Grade NATs or
DHCP [24,26], or switch from WiFi to mobile and vice versa.
The reasons cited in a git commit from November 2018 to
the systemd project [27] for setting the default for reverse
path filtering to loose mode included default route changes
(e.g., plugging in an Ethernet cable while connected to WiFi)
and connectivity checks. As a result, most Linux distributions
using systemd, such as Arch, Debian, Fedora, and Ubuntu,
will no longer drop packets with source addresses matching a
connection inside the tunnel (using the tun0 interface), and
will accept them on any interface.

For our client-side attacks, this lack of source address vali-
dation gives an in-path attacker the ability to spoof packets
to potential virtual IPs on the client machine and learn the
virtual IP used by the tun0 interface for the VPN connection.
Additionally, the attacker can spoof packets with the source
address of a given end-host to the virtual address and deter-
mine if an active connection exists by the timing and size of
the client’s responses, as we will describe in the next section.
This is the root cause of our client-side attacks.

In an effort to prevent DDoS attacks, RFC 2827 establishes
methods for limiting spoofed attacks by performing ingress
filtering on the provider’s routers between the client and the
network edge. These recommendations are defined in BCP 38
and BCP 84 and require that the router that provides connec-
tivity to downstream users drop packets that contain source



addresses not included in the prefixes they provide connec-
tivity for [7]. These rules mirror the strict, feasible, and
loose modes listed above for reverse path filtering on client
machines. Previous work has shown that BCP 38 and BCP 84
are not universally implemented [37] across the Internet, but
even if all the machines on the network edge implemented the
filtering described in BCP 38 and BCP 84, this does nothing
to prevent routers in the core of the Internet from spoofing
source addresses. Additionally, these recommendations do not
consider an attack from a malicious provider at the network
edge, such as a state-level ISP.

3.3 Challenge ACKs and PSH/ACKs

The original specification of TCP in RFC 793 considered a
connection to be reset if a RST packet was received anywhere
in the receive window [1]. This made it relatively easy for an
off-path attacker to reset connections compared to requiring
the exact sequence number blindly, so RFC 5961 introduced
the concept of a challenge ACK [30]. When a TCP host re-
ceives a RST in the receive window but where the sequence
number is not an exact match, it sends a challenge ACK that
should cause a RST with an exact sequence number as a re-
sponse from the remote host only if that remote host truly has
no record of the connection. Thus in-window RSTs succeed
only when the off-path attacker guesses the exact sequence
number or the remote host that is the other party to the TCP
connection effectively agrees that there is no connection. For
our purposes in this paper, the important aspect of challenge
ACKs is that they are part of an actual connection and therefore
get TCP timestamps added to them.

The PSH flag in TCP informs a receiver that data should be
pushed up to the application layer immediately. Combining
PSH with ACK is a way to ensure that both a sequence and
acknowledgment number for a connection are committed into
the state of the connection and related data is sent to the ap-
plication, even if overlapping sequence and acknowledgment
numbers are received with different data later.

4 Vulnerability Set Overview

As discussed in Section 2, there is no operating system im-
plementation detail, VPN design decision, or configuration
setting that we can point to as being the vulnerability that
enables our server-side attacks. Because blind in/on-path at-
tacks are a general class of attacks, which we demonstrate in
this paper by focusing on VPNs and attacking two specific
protocols (TCP and DNS) as examples, in this section we
review the general set of vulnerabilities that in/on-path attack-
ers pose to a user’s connections. We then consider how each
of these vulnerabilities can be extended into the threat model
of a blind in/on-path attacker attacking connections inside a
VPN tunnel.

Table 1 discusses and compares the feasibility of five dif-
ferent in-path attacks for three different scenarios:

• “No VPN”, where users are not protecting their traffic with
VPN tunnels so all attacks are “trivial” because the attacker
can see and spoof or modify any byte, header, or data.

• “Ideal VPN”, where users benefit from a hypothetical VPN
where the existence of packets and their size and timing
are completely hidden from the attacker. The dominant
paradigm for reasoning about what kinds of attacks are
possible against connections that are tunneled through an
encrypted VPN tunnel is based on “Ideal VPN” implemen-
tations, but modern VPN technologies are far from this
model.

• “Real-world VPNs” subject to blind in-path attacks. All the
VPN technologies that we tested fall under this category
and the five attacks are practical in this scenario. This calls
into question the current paradigm for reasoning about what
security properties VPN tunnels provide.

The objective of this paper is to demonstrate the feasibility
of the attacks against “Real-world VPN” implementations.

Due to the fact that the TCP connections inside the VPN
are tunneled, the headers of the tunneled connection are not
visible to the attacker as shown in Figure 1, but it is possi-
ble to infer the information in the headers by analyzing the
responses from the client and server to spoofed packets. Us-
ing the methods described below, we can determine if a user
has an active connection to a given IP address and find the
SEQ and ACK numbers required to reset or hijack the TCP
connection from either the perspective of a network adjacent
user or an in-path router between the victim and the VPN
server. Similarly, for DNS, we can infer when a DNS query
is likely to have been made for a given domain by the victim
machine and spoof acceptable responses back to the client via
the server’s NAT.

Our client-side attacks are network adjacent attacks where
the client does not have reverse path filtering or any other kind
of source address validation enabled (Section 4.2), and we
take the role of the attacker (e.g., a WiFi Access Point) and
spoof packets of the tunneled connection to the wireless or
Ethernet interface where they are processed by the kernel on
the victim’s machine. If we can correctly guess the four-tuple
associated with an active connection, the kernel will respond
to these packets and we can determine from examining their
timing and size that there is an active connection. Once we
determine that there is an active connection, we can continue
to spoof packets and use the client’s responses to narrow
down the sequence and acknowledgment windows, giving us
everything we need to inject data into the connection.

Our server-side attacks are from the perspective of the ISP,
or any in-path router en-route to the VPN server4 as shown

4For asymmetric routes, it is actually the route from VPN server to VPN
client that matters. We assume that the attacker is positioned in the network
so as not to be affected by asymmetric routing.



Attack No VPN Ideal VPN Real-world VPN
Infer the existence of a
TCP connection

Trivial, look at port and IP address fields
in the TCP and IP headers

TCP and IP headers are protected by
encryption

Ports and IP addresses can be inferred via
packet timings and sizes (see Section 4.2)

Reset a TCP connec-
tion

Trivial, spoof a RST based on ports and IP
addresses

RST cannot be injected because of the
encrypted VPN tunnel, and port and IP
address information is hidden by the
encrypted VPN tunnel

RST can be injected at the client end of the
VPN tunnel depending on client OS and
configuration, RST can be injected at the
server end of the VPN tunnel regardless of
OSes or configurations (See Section 4.2.3)

Hijack a TCP connec-
tion to inject arbitrary
data

Trivial if there is no application-layer
encryption/authentication (such as TLS),
simply read the sequence and acknowl-
edgement numbers from the TCP header

Regardless of application-layer encryp-
tion/authentication, data cannot be in-
jected because of the encrypted VPN
tunnel

Sequence and acknowledgment numbers
can be inferred via packet timings/sizes,
data packets can be injected just like above
(see Section 4.2.3)

Hijack a DNS query Trivial, intercept it and reply with the fake
one

DNS query and response are protected
by the VPN tunnel encryption

Ports can be inferred, transaction IDs brute
forced, DNS responses injected at the
server end of the VPN tunnel regardless
of OSes or configurations (see Section 4.3)

Perform a man-in-the-
middle attack

Easy, if the attacker is in-path and has a
valid SSL/TLS certificate

VPN tunnel would protect the traf-
fic even if the attacker has a valid
SSL/TLS certificate for a tunneled con-
nection

Easy, if a server-side attacker is in-path
and has a valid SSL/TLS certificate (see
Section 6.3)

Table 1: In/on-Path attacks and how they change the way we should think about VPNs and other technologies based on encrypted
tunnels. In the No-VPN case, in/on-path attacks are trivial. In the Ideal VPN case, we consider a hypothetical VPN in which
packets and their size and timing are completely hidden from the attacker. The Real-world VPN scenario considers real-world
VPN implementations in which blind in/on-path attacks are feasible.

in Figure 1 (See Section 4.3). The process is essentially the
same, except that the packets are not being sent to the incor-
rect interface; instead, they are instead sent to the VPN server
(which should be reachable from anywhere on the Internet)
with the same properties as legitimate traffic. Attacking con-
nections at the server-side end of the tunnel has two major
advantages. The first advantage is that there is no way for
the VPN server to distinguish between attacker probes and
legitimate packets from the actual connection because they
will be identical and come in from the same interface. The
other advantage is that any router along the path between the
VPN client and the VPN server can now carry out the attack;
they only need the (very common) ability to spoof packets
on the Internet with arbitrary return IP addresses. A major
challenge for attacking TCP at the other end of the tunnel is
that packet loss, packet reordering, and packet delay can play
a significant factor. Conceptually, the prospect of attacking at
the other end of the tunnel renders all the types of mitigation
offered for our client-side attacks moot because they are all
based on reasoning about interfaces and IPs.

4.1 Attack Considerations and Scope
Our attacks have many aspects to them that are dependent
on the attacker’s position in the network, the protocol being
attacked, and whatever types of Network Address Translation
(NAT) or filtering may be being applied. It is important to
note that any tunneled protocol can be attacked from either
side of the tunnel (spoofing to the VPN client or VPN server),
and our attacks on TCP and DNS/UDP are simply based on
our choice to demonstrate simple attacks for illustration of the
underlying concepts. While we chose to distinguish between

client-side and server-side attacks for the presentation in this
paper, leading to network adjacent and in-path attacks, respec-
tively, it is important to note that injecting packets either way
combined with the powerful primitive that a blind in/on-path
attacker can count encrypted bytes or packets over time can
lead to many different attacks. For example, an in-path at-
tacker could carry out some of our attacks that are labeled as
network adjacent if they had the ability to spoof packets to
the client from arbitrary return IP addresses despite not be-
ing network adjacent (e.g., in the absence of NAT and bogon
filtering). We only mention the possibility here and it is not
part of our main presentation. In fact, two major advantages,
from the perspective of the attacker, of spoofing packets to
the VPN server rather than the VPN client are:

• It is safe for the attacker to assume that the VPN server has
an Internet-routable IP address. Thus any type of bogon
filtering applied by routers between the attacker and VPN
server is moot. It also means that the attacker can reach the
VPN server without having to go through any NAT.

• The VPN server has a well-defined behavior that the at-
tacker can use to inject traffic into the tunnel, which is that
NAT is specified in RFCs (particularly RFC 2663 [29]) to
work based on the five-tuple of protocol, source and des-
tination IP address, and source and destination port. So
an attacker can easily infer the ephemeral port5 and then
inject data into the VPN tunnel at will. This is compared to
spoofing packets to the client, which requires that the client
5This ephemeral port is chosen by the VPN server, but typically is chosen

to match the ephemeral port chosen by the client when possible. Our server-
side attacks only care what the ephemeral port of the VPN server is, it does
not matter if they match.



respond with some type of error that enters the tunnel and
carries information that is useful to the attacker.

We also want to stress that the specifics of any attack we
present do not represent vulnerabilities in themselves. For
example, for inferring the sequence number to reset or hijack
a TCP connection for client-side attacks we take advantage of
the fact that TCP challenge ACKs are larger than RSTs because
they contain an optional timestamp that RSTs do not. This is
only the simplest one of a plethora of ways we could have
implemented this part of that specific attack, and changing
that behavior of challenge ACKs will not prevent the attack.
The underlying vulnerability is a more general one: secret
randomized values are used to protect protocols from blind off-
path attackers but those values currently have no protection
against being inferred by a blind in-path attacker.

4.2 Client-side Attacks
In the case of the client-side attacks, which we assume are
network adjacent for this paper, we consider a person using
a VPN because they are concerned about their security and
privacy on a public WiFi access point. When connected to the
VPN, all of their packets are routed through the local gateway
on to the VPN server, and the gateway will only see encrypted
packets traveling between the local IP of the client and the
public IP of the VPN server. Since the gateway does not know
the virtual IP address assigned to the tun0 interface, the public
IP address of the web server that is communicating with on
the other end of the tunnel, or the the ports associated with
either end of the connection, they cannot perform traditional
in-path hijacking attacks.

A client-side attacker can, however, infer the existence of
connections to a given website, determine the sequence and
acknowledgment numbers of an existing TCP connection,
and reset that connection with a TCP RST. In the case that
there is no additional encryption at the application layer, via
SSL/TLS or otherwise, they can also inject arbitrary data into
the connection. To perform this attack, the attacker needs to
perform the following steps, further outlined in Figure 2:

1. Determine the VPN client’s virtual IP address;

2. Use the virtual IP address to make inferences about active
connections; and

3. Use the replies to unsolicited packets to determine the
sequence and acknowledgment numbers of the active con-
nection to hijack the TCP session.

4.2.1 Phase 1: Finding the Client’s Virtual IP

In the first part of client-side attacks, after the client has con-
nected to the malicious access point and then to the VPN
server, we probe the connected user with SYN packets across

the virtual IP space, which for most VPNs is a subset of the
10.0.0.0/8 block, to solicit a response from the victim machine
that leaks information about the state of the active connection
inside the encrypted VPN tunnel, allowing us to infer both the
existence of a VPN connection and the victim’s private IP ad-
dress on the VPN server’s subnet. For example, if the attacker
spoofs a SYN packet to the device’s WiFi interface with the
source address of the local network gateway (and this works
the same for any other interface, such as a cellular network),
Linux will always respond with a RST with the source address
of the virtual IP address in plaintext.

Furthermore, when sending a SYN packet to the incorrect
virtual IP address, the packet is dropped and there is no re-
sponse from the victim machine. A SYN packet sent from the
access point gateway to the correct private VPN IP address,
however, will send a RST packet on the wireless interface noti-
fying the gateway that the address is receiving packets which
were not intended for it. Conversely, probing with SYN/ACK
packets will generate the exact opposite behavior, responding
with RST packets for each SYN/ACK packets with the incorrect
private IP, and not responding at all when sending SYN/ACK
packets to the correct private IP.

Note that for server-side attacks this phase can be skipped
because the server will NAT the spoofed packet to the client
for us based on port information.

4.2.2 Phase 2: Making Inferences About Active Connec-
tions

Similarly, for client-side attacks, if we want to determine if
a VPN user is connected to any particular application server
address over the VPN tunnel, we can send SYN or SYN-ACKs
from that address to the victim’s private VPN IP across the
entire ephemeral port space. The observed behavior for both
SYN and SYN/ACK packets is similar to that of the SYN probe
used above to determine the private VPN IP address. That is,
when sending a SYN packet to the correct four-tuple, a RST
packet will be sent on the wireless interface, but when sending
to the incorrect four-tuple, nothing is sent back to the gateway.

After we have determined that there is an active VPN con-
nection on a connected device, we will test for an active con-
nection by spoofing SYN packets from a given server IP to the
VPN user. We can assume that the website will be running
on either port 80 or 443, and since we learned the victim’s
virtual interface IP from the previous step, we now only need
to scan the entire ephemeral port space6, looking for a RST to
indicate that there is an active connection.

4.2.3 Phase 3: Hijacking Active Connections

Finally, once we have determined that the user has an active
TCP connection to an external server on a given port, we

632768 to 60999 on most Linux machines, for example.
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Figure 2: Outline of the three phases of a client-side attack on TCP.

will attempt to infer the exact next sequence number and in-
window acknowledgement number needed to inject spoofed
packets into the connection. For client-side attacks, to find
the appropriate sequence and ACK numbers, we will trigger
responses from the client in the encrypted connection found in
Phase 2. The attacker will continually spoof RST packets into
the inferred connection until it observes challenge ACKs. The
attacker can reliably determine if the packets flowing from the
client to the VPN server are challenge ACKs by looking at the
size and timing of the encrypted responses in relation to the
attacker’s spoofed packets. For example, an Android device
will trigger a TCP challenge ACK for each reset it receives with
an in-window sequence number for an existing connection. If
the client uses OpenVPN to exchange encrypted packets with
the VPN server, the client will always respond with an SSL
packet of length 79 when a challenge ACK is triggered.

We spoof RST packets to different blocks across the en-
tire sequence number space until one triggers an encrypted
challenge ACK. The spoof block’s size plays a significant role
in how long the sequence inference takes but should be con-
servative as to not skip over the client’s receive window. In
practice, when the script observes an encrypted challenge ACK,
it can verify this is true by spoofing additional packets with
the same sequence number. If there were the same number of
encrypted responses with size 79 triggered, then we know it
is triggering challenge ACKs.

After we have inferred the in-window sequence number for
the client’s connection, we can quickly determine the exact se-
quence number and in-window ACK needed to inject. First, we
spoof empty push-ACKs with the in-window sequence while
guessing in-window ACK numbers. Once the spoofed packets
trigger another challenge ACK, an in-window ACK number is
found. Finally, the attacker continually spoofs empty TCP
data packets with the in-window ACK and sequence numbers
as it decrements the sequence number after each send. The vic-

tim will respond with another challenge ACK once the attacker
spoofs the exact sequence number minus one. The attacker
can now inject arbitrary payloads into the ongoing encrypted
connection using the inferred ACK and next sequence number.

4.3 Server-side Attacks

The server-side attacks, which are assumed to be in-path for
this paper, follow a similar procedure to the one described
above for client-side attacks, but do not need to know the
client’s virtual IP address, since the VPN server will NAT
packets to it.

To determine if the victim is communicating with a given
online application, the attacker will spoof packets with the
destination IP of the public VPN server and the source IP
address of the application server. The source port of the probes
will typically be 80, 443, or 53 depending on if the attacker
is trying to infer an existing web connection or a DNS query.
The attacker only needs to determine the destination port of
the VPN server to complete the four-tuple that will solicit a
response that will be forwarded to the victim from the VPN
server.

In order to find the port being used on the VPN server to
communicate with our target web address, the attacker can
probe each ephemeral port the server could have chosen for
that connection. The attacker can send empty UDP or TCP
packets depending on the type of connection they are trying
to infer to each port on the VPN server. If the spoofed packet
matches an existing conntrack entry on the VPN server, it will
be NATed and forwarded back via the encrypted tunnel to the
victim, thus the attacker will be able to observe it. Otherwise,
the packet does not match an existing connection and will be
dropped by the server.

Instead of probing each individual port and waiting to see
if it responds, the attacker can dramatically increase the speed



and accuracy of the connection inference by sending different
sized UDP or TCP probes throughout the probe so that when
a match is found, the attacker can narrow down the exact port
based on the size of the response. Typically, Ethernet limits
the maximum frame size to ~1500 bytes, but for simplicity we
chose to split the entire ephemeral port range into blocks of
1000 (e.g. 32k-33k, 33k-34k, ..). The attacker scans through
each 1k-block by sending a random payload with a size that
increases by 1 after each send and resets back to 0 at the start
of the next 1k-block. We inject pseudorandom data to avoid
the effects of compression on the size of the ciphertext.

The attacker can use the size of the now encrypted probes
they observe to narrow down the range where the exact port
in use is located. For example, if the attacker observes an
encrypted packet of size 500, then they know the last three
digits of the exact port in use is around 500, but could have
been triggered by a few different 1k-blocks of ports. After
the initial rapid scan with 1k-block buckets, the attacker does
one final scan to determine which 1k-block triggered that size
of packet. Our script jumps back five 1k-blocks to account
for any forwarding delay, then begins probing while increas-
ing the packet size until another one of the probe packets is
observed. To further increase accuracy, the attacker can send
multiple copies of the probes to ensure the amount of identical
sized packets that are sniffed match the amount of probes sent
to each port. In this final scan there are no packets spoofed
with identical sizes so the attacker can know exactly which
port was matched based on the size of the packet. At this point
with the port inferred on the VPN server, the attacker has all
four values of the 4-tuple needed to inject packets into the
TCP connection or UDP flow.

UDP is most naturally attacked by spoofing packets to the
VPN server rather than the VPN client. The VPN server’s
NAT leads to a behavior that is easy to see: incorrect ports
lead to no encrypted/tunneled packets, and the correct port
leads to encrypted/tunneled packets. Spoofing UDP packets
to the VPN client (for example, in a network adjacent attack)
is possible, but UDP’s behavior of sending ICMP errors for
all the incorrect ports and (typically) nothing for the one
correct port is harder to detect with traffic analysis. In general,
spoofing to the VPN client causes packet responses to be
tunneled through the VPN, whereas spoofing to the VPN
server causes the spoofed packets to be NATed only when the
4-tuple is correct. This an important qualitative difference,
and is why we hijack DNS on the VPN server side of the
encrypted tunnel.

4.3.1 Server-side DNS Hijacking

Once the attacker has inferred a UDP connection as shown
in Figure 3, the flow on the VPN server that corresponds to
a current domain query from the victim machine, they can
start trying to inject an acceptable DNS response. In order for
the victim to accept the attacker’s spoofed response as valid
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Figure 3: Outline of a server-side attack on DNS.

it must include the correct transaction ID (TXID), domain
name, and reach the client before the lookup times out. The
attacker can quickly cycle through each of the ~65k possible
TXIDs since they are not concerned with sniffing any more
packets from the victim machine at this point.

4.3.2 Spoofing Transaction IDs and the Hostname

DNS packets contain a 16 bit transaction ID field to help pre-
vent DNS injection attacks. However, this means the attacker
only needs to send ~65k packets to the inferred UDP flow to
try each possible TXID it could have chosen. Therefore, DNS
hijacking involves significantly less work to inject packets
into compared to TCP which has two different 32 bit identi-
fiers in the SEQ and ACK number. The attacker can determine
which target hostname to attempt in the injection by using
the TCP version of this attack to infer long-lasting connec-
tions on the client machine. Preferably, web connections that
will repeatedly need to query for the same hostname once the
domain entry’s TTL expires in the browser’s DNS cache.

4.3.3 Timing Considerations

One of the main obstacles for the attacker trying to inject the
malicious response will be the victim’s DNS query timeout
period. The attacker must infer the victim source port chosen
and try every possible transaction ID before the client system
closes the port. For most desktop browsers, including Chrome
and Firefox, the default DNS timeout is 5 seconds for each
lookup. However, mobile browsers including Firefox and
Chrome on Android use 10 second DNS timeouts. Many
applications control the timeout of each DNS query, but if
not they will fallback to the system’s default settings. On
modern Linux systems (i.e., Ubuntu 20.04) the default system
setting is 5 second timeouts with 2 retransmissions meaning
the port will be open for 10 seconds. The attacker’s accuracy
in terms of successful injections depends on the length of this



Figure 4: Description of the testing environment for Experi-
ment IV.

DNS timeout setting. In order to not race with the legitimate
DNS response, we carry out a per-IP-address denial-of-service
attack on the DNS server so that it stops replying to the VPN
server’s IP address.

5 Methodology

Below, we describe the instrumentation required to showcase
the client- and server-side attacks described in the previous
section and our methodology for testing both attacks. We
used Ubuntu 18.04 on all of the machines in our experiments
running scripts which utilized libtins7, a C++ packet crafting
and sniffing library, to craft and spoof the packets and analyze
the returning traffic8. We used NordVPN as our test VPN
for the client-side attack and for testing the prevalence of
the vulnerability on multiple operating systems as it is one
of the most popular consumer VPNs and provides servers
running both OpenVPN and Wireguard9, as well as support
for a variety of operating systems.

Our experiments include:

I Do the attacks work at all?

II Timing of each phase of the client-side attack on TCP

III Success rate of the client-side attack on TCP

IV Success rate of the server-side attack on DNS

V An end-to-end “real-world” attack to put the server-side
attack on DNS into context

VI Analysis of vulnerability on a variety of OSes

VII Prevalence of vulnerability on Android Apps

Experiment I is an integral part of all of the other experi-
ments, so we did not perform a separate experiment. That our
attacks work can be seen in each of the following experiments.

7http://libtins.github.io/
8The source code for our attacks can be found here:https://git.

breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks
9At the time of testing, this also included L2TP/IPSec which NordVPN

has since discontinued.

Client-side Attack: For Experiments II and III, our testing
environment consisted of two machines, one acting as a gate-
way, broadcasting a wireless access point, and a victim con-
nected to this gateway. The victim then connects to a single
NordVPN server located in the United States. The victim then
connects to NeverSSL, a website which only utilizes HTTP.
We performed this test 1,000 times and note the success of
this attack and the amount of time the attack takes. For the
spoof block size, i.e., how much we increment our guessed
SEQ number by in each probe in Phase 3, we used 50,000.
This is reasonably conservative in modern network stacks
because of TCP receive window scaling.
Server-side Attack: For Experiment IV, we created a virtual
lab consisting of seven virtual machines configured to emulate
the routes of a connection to a VPN server and website or
DNS server as depicted in Figure 4. We have an “Internet”
consisting of three routers, with the VPN server, a DNS server,
and a gateway, each connected to one of the routers. The
VPN client connects to the gateway, where their connection
is NATted.

In order to test the ability of a server-side attacker to inject
a malicious DNS response to the VPN client via the VPN
server’s NAT, we tested the attack script against client queries
with different timeouts between 5 and 15 seconds. We capped
the victim DNS timeouts at 15 seconds, which is the maxi-
mum DNS query timeout we ran into in practice on Android
11.0.X. Most modern desktop applications including up to
date web browsers (i.e., Firefox 80.0.1) uses a 5 second query
timeouts so we chose this as the minimum bound for the tests.

We ran 1,000 tests against each of the three standard DNS
timeout configurations to test the ability and accuracy of the
server-side attack on DNS. In each test, the victim VPN client
issues a single DNS lookup using nslookup and the specified
query timeout for that experiment. The attacker node starts the
injection script a half second later in each test and attempts to
infer the UDP flow and inject a malicious response in time.

For Experiment V, to illustrate what a real-world attack
might look like, and the ways in which VPN security can be
fundamentally undermined by blind in-path attacks, we devel-
oped a server-side attack that effectively removes all security
and privacy properties of a VPN tunnel. In 2009, attackers
in Iran with access to the national backbone obtained a valid
TLS/SSL certificate for facebook.com and used man-in-the-
middle attacks to steal Facebook passwords and view the Face-
book activities of Iranian users. In this subsection we explore
how that attack might have been carried out if Iranian users
had had access to the latest version of WireGuard as of our ex-
periment (version 1.0.20200827), which contains all patches
WireGuard has released or intends to release based on our
ethical disclosures. By tunneling all Internet traffic, including
DNS requests and web traffic to/from Facebook, to a secure
WireGuard VPN tunnel outside the country users should, in
theory, have been protected from man-in-the-middle attacks
in the backbone of the Iranian Internet. In this experiment we

http://libtins.github.io/
https://git.breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks
https://git.breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks


seek to demonstrate that a blind in-path attacker can remove
the VPN encryption layer and perform the man-in-the-middle
attack to strip off TLS encryption of the HTTPS traffic.

For Experiments VI we tested the client-side attack against
different operating systems to determine if they are vulnera-
ble, and tested a variety of OS combinations for VPN client
and VPN server for the server-side attacks to confirm that it is
independent of OS. Additionally, since Android was a particu-
lar focus of our study in the early stages of our research effort,
we also tested the client-side attacks against 35 VPN apps and
services (a complete list is in the artifact associated with this
paper) with Android as a client. This was for Experiment VII
. Our selection procedure for deciding which VPN services
and apps to examine was based on their popularity and market
presence according to data gathered from the Google Play
Store, Apple App store, and App Annie. We also included
apps such as Wang VPN, Lantern, Psiphon, and Orbot which
are commonly recommended within the security community,
or actively used in nations with pervasive information con-
trols. These tests were performed on a number of flagship
mobile devices running the most recent operating system ver-
sion and security updates, which at the time of writing was a
Google Pixel 3 XL running Android 10 (with November 2019
security updates). We also tested older Android devices (all
belonging to the research team) that are no longer officially
supported but still in widespread use. For the server-side at-
tacks on DNS, we tested against, or derived DNS timeouts
from, a variety of DNS clients, as detailed in Section 6. This
included a variety of browsers and operating systems.

Our experimental methodology differs between client- and
server-side attacks for two main reasons: server-side attacks
are independent of operating system or VPN version or con-
figuration, and server-side attacks would most likely be car-
ried out by large national-level ISPs—an environment that is
currently beyond our scope to be able to test. Thus for client-
side attacks we focus on testing a wide variety of OSes and
VPNs and producing realistic performance numbers, while
for server-side attacks we focus on demonstrating feasibility.

6 Results

In this section, we measure the success rate and time required
for performing the attacks listed in Table 1 using the methods
described in Sections 4.2 and 4.3. The exception is the TLS
interception attack, demonstrated in Section 6.3, for which
we do not report performance metrics given its particular
nature. We outline all the information that can be monitored
for each protocol and the consequences of this information
being inferred.
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Figure 5: Results of client-side attack on a WiFi network.

6.1 Client-side TCP Attack (Experiments II
and III: Timing and Success Rate)

In this case, we break-down the results for each phase of the
attack as described in Section 4.2. The success rate of the
entire attack is illustrated in Figure 5.

6.1.1 Phase 1

In the first phase of the client-side attack, where we deter-
mine the virtual IP address assigned to the client, we need
to scan the /24 of the assigned virtual IP space. Although
VPN providers can theoretically use any IP address in the
IANA-reserved blocks for private networks (e.g., 10.0.0.0/8,
100.64.0.0/10, 172.16.0.0/12 or 192.168.0.0/16), we found
that most of the VPN servers we tested only used a subset of
the 10.0.0.0/8 block, with only WireGuard servers on Mull-
vad using addresses in the 172.16.0.0/12 block. Additionally,
we identify that the way that these addresses are used and
assigned to clients is predictable in many providers. For exam-
ple, NordVPN assigns users an address based on the operating
system they are using. Android devices are assigned addresses
in the 10.7.0.0/16 block, with Linux and macOS/iOS assigned
addresses in 10.6.0.0/16 and 10.8.0.0/16, respectively.

For this phase of the attack, we assume that the attacker
is familiar with the VPN server the client is connected to, so
they will know the scheme for assigning virtual IPs. How-
ever, even if the attacker does not know anything about the
server the victim is connected to, scanning an entire /16 only
takes around 8 seconds using our attack script, so it does not
significantly increase the time the attack takes to complete.

6.1.2 Phase 2

To make inferences about active connections, our attacker
is not concerned with scanning every possible IP the victim
could potentially be connected to, but is performing a targeted
attack from a list of given websites or IP addresses and online
services, such as a nation-state’s list of banned websites or



specific non-web applications. For our evaluation, we only
tested against NeverSSL to illustrate the efficiency of the
attack against a single website. We also assume that the server
the user is connecting to is using port 80 or 443 but the attack
can be performed for any TCP port. We can determine within
6 seconds if the victim is connected to a given website during
this phase by completing the four-tuple for this connection
through scanning the ephemeral port space of the client.

6.1.3 Phase 3

The primary difference in the time it takes for phase 3 to
complete is the attacker sniffing false acknowledgements as
it probes a significantly large range of sequence or acknowl-
edgment numbers. For example, the attacker may sniff a false
acknowledgement during the spread of the entire sequence
number range, it will continue to probe the small range around
that false sequence number until it finds no responses are
being triggered from the victim. At that point it will retry
scanning the entire range again until it finds an in-window
sequence that will repeatedly trigger responses. The tests that
took longer in time had to retry more of the scans and send
more packets to the victim, or the sequence number was sim-
ply later in the search space by chance.

During our attempts, the 8.4% of the failures were all during
this phase. Based on the specifics of our attack script, there
will always be a ~5% chance the attacker resets the connection
as it probes. During the last scan for an in-window sequence
number, the attacker sends TCP RST packets in blocks of 20
to the victim. A RST packet sent with an in-window sequence
number will trigger a response, but the connection will be
completely reset if the exact sequence in use is hit. During
our tests, 6.1% of the failures were due to the connection
being completely reset by the attacker. The other 2.3% of the
failures were mostly due to our script failing to ensure that
an inferred value is indeed triggering responses because of
traffic analysis challenges. Many of the failures found the
exact sequence within 100 bytes of the one in use, but sniffed
false challenge ACKs and did not resend enough empty PSH-
ACKs to ensure it was indeed the exact sequence in use.

6.2 Server-side DNS Attack (Experiment IV:
Success Rate)

Against each different DNS timeout tested in the experiments,
the attacker was able to infer the ephemeral port in use quick
enough on average to start attempting to brute force responses
with the correct TXID back to the victim. The attack script
was able to infer the port in use by the client in 3.96 seconds
on average. Additionally, our script took an average of 6.89
seconds to scan through the entire 65k transaction ID range.
The attacker could potentially scan at a faster rate, but risks
overloading the client socket’s receive buffer and as a result
decreasing the accuracy of the injection attack.

As expected, the success rate of the attacker increased as
the DNS query timeout on the client also increased. This
allowed the attacker to try every possible TXID the client
could have chosen before the UDP socket was closed. The
main results of the three experiments are shown below:

• 15 second DNS timeout (e.g., Android 11) - 75.3% suc-
cessful injects

• 10 second DNS timeout (e.g., Ubuntu 20.04) - 48.1% suc-
cessful injects

• 5 second DNS timeout (e.g., Firefox 80.0.1) - 11.6% suc-
cessful injects

6.3 Real-World Example (Experiment V)
We successfully demonstrated that a blind in-path attacker can
remove the VPN encryption layer and perform the man-in-
the-middle attack to strip off TLS encryption of the HTTPS
traffic, in a setup meant to emulate the Iranian attacks on
Facebook from 2009 referenced in Section 5.

We assume that the user is actively using Facebook during
the attack. This is an underlying assumption to any man-in-
the-middle attack, namely that the user is using the service
while the attack is happening. DNS time-to-live (TTL) values
depend on many factors such as website, web browser poli-
cies, recursive DNS resolver, and location, but values on the
order of minutes are common. For both Firefox and Chrome
we observed that, in our environment, while a user is using
Facebook they will make a DNS request for facebook.com
about every two minutes. We also assume that we know the
IP address of the DNS server the victim client is using for
domain name requests. Since many VPN providers default
to specific DNS servers this is a likely case. We know the
destination IP address and port of the DNS server, and we
know that post-NATing the source IP address will be the
VPN server’s IP address. For our example attack we could
continually scan for open NAT table entries by repeatedly
carrying out the process of guessing the ephemeral port (i.e.,
the source port chosen by the VPN server), but to avoid con-
stantly sending the VPN server traffic we wait until we have
fingerprinted a likely DNS request for facebook.com based
on the size of an encrypted packet from VPN client to VPN
server. Then, we carry out our VPN injection attack as per
Section 4. Recall that this involves DoSing the DNS server
so that we do not need to race with any valid response, infer-
ring the ephemeral port number using a blind in-path attack,
and then brute forcing the transaction ID (TXID) to inject a
spoofed DNS response.

For route-based VPNs, such as WireGuard, there is a simple
way to use DNS spoofing to cause a subsequent connection to
be made outside the VPN tunnel. By returning the IP address
of the VPN server itself as the response to the DNS query we
can cause the new connection to leave the VPN client machine



unencrypted and outside the VPN tunnel because a specific
routing rule exists for that IP address to make sure packets sent
to the VPN server for the tunnel are not themselves coerced
into the tunnel. The new connection will be a separate TCP
connection, so can be easily distinguished by the attacker even
if the destination port on the VPN server is the same. Because
the attacker is, by definition, in the path from VPN client to
VPN server, the attacker is in a position to perform any kind
of man-in-the-middle attack on this new connection. For our
example attack we use DNAT and mitmproxy10 version 5.2,
along with a forged certificate for facebook.com, to remove
all encryption so that we can see and modify traffic to/from
the facebook.com server at will.

6.4 Different OSes and VPN Apps (Experi-
ment VI Testing OSes and Experiment VII
Testing VPN Apps)

For the client-side attack we tested it against a wide variety
of operating systems and Android apps. See the artifact11.
for a complete list of operating systems and vendors that
we tested, all of which were vulnerable. Notably, we tested
a variety of VPN-like technologies such as Orbot, Lantern,
Psiphon, TunnelBear, and others that are not advertised as
VPNs. Essentially, all Linux- and BSD-based12 operating
systems were vulnerable before our ethical disclosure process,
including Android and Apple devices. For client-side attacks,
we only tested route-based VPNs (the vast majority of VPNs
are route-based) and they were all vulnerable. We did not test
policy-based VPNs, Windows OSes, or Tor [13] as part of
Experiments VI and VII because we did not believe them to
be vulnerable to the client-side attack due to separate network
namespaces, the strong host model, and SOCKS interfaces
being in user space, respectively. We later confirmed that
these three OSes and apps are not vulnerable to the client-side
attack.

For server-side attacks there is not a concept of a vulnerable
VPN technology or OS, because the attack takes advantage
of NAT when working as specified. Nonetheless, we tested
with both policy-based (IKEv2/IPSec) and route-based (Open-
VPN and WireGuard) VPNs on a variety of OS combina-
tions for client/server: Windows/Windows, Windows/Linux,
Linux/Linux, and macOS/Linux. For Windows as a server
we only tested OpenVPN. It is not common for Windows to
serve as a VPN server, and is not supported by OpenVPN
(we had to mirror best practices configuration from Linux as
closely as possible), but we wanted to underline the point that
the server-side attacks are independent of operating system or

10https://mitmproxy.org
11Also available at https://git.breakpointingbad.com/

Breakpointing-Bad-Public/vpn-attacks
12For the purposes of this paper, we consider Apple OSes to be BSD-based

in the loose sense that they borrow heavily from the FreeBSD networking
stack.

implementation by having a VPN setup that did not involve
Linux- or BSD-based OSes in any way. We specifically tested
Windows 10 v20H2 as the client and Windows Server 2019
v1809 as the server. Note that Tor does not use NAT to mul-
tiplex connections on exit nodes, so is not vulnerable to our
server-side attacks.

6.5 Operating System and VPN Protocol Dif-
ferences

The client-side TCP attacks are possible on each operating
system that we tested, but interestingly, each operating system
has some nuances in the way in which it handles different
kinds of spoofed packets. For example, BSD-based operating
systems, including macOS (Sierra, High Sierra, and Mojave)
and iOS (through version 12.4.1) require an additional step
to determine the victim’s virtual IP address. Android has an
additional vulnerability that allows parts of the attack to be
performed in plaintext, but we were able to make inferences
about the encrypted packets we received which allowed us to
perform the attack with only a moderate amount of effort.

The attacker is able to use the packet size of the encrypted
communication to infer whether or not they are spoofing the
correct four tuple. Each time the attacker guesses the correct
four tuple in the spoofed SYN packet to the client, it will re-
spond with an ACK through the encrypted connection with the
VPN server. Since every single ACK the client sends through
the tunnel is encapsulated in the exact same size encrypted
packet, they can easily infer which encrypted packets are in-
deed ACKs instead of RSTs. The connection can be reliably
tested by sending a specific count of spoofed four-tuple pack-
ets, then counting the number of matching packet lengths
flowing from the victim to the VPN server.

Multiple versions of iOS and BSD (note that iOS uses the
FreeBSD network stack) were also found to be vulnerable,
but we focused our efforts to reverse engineer routing on
Linux/Android rather than BSD. Thus we only report here the
small changes we made to our attack for it to work on these
other OSes.

The constant size in which VPNs send challenge-ACKs
within varies based on the protocol. For example, on Ubuntu
18.04, the OpenVPN protocol sends encrypted TCP packets
of size 79, while iOS sends encrypted IPsec UDP packets
of length 108 bytes for the triggered responses. An in-path
attacker can reliably infer which encrypted packets are empty
ACKs by sniffing the traffic long enough with any VPN proto-
col. It is important for the attacker to ensure that the outgo-
ing client packet sent directly following each spoofed packet
matches the appropriate ACK size for that encrypted VPN com-
munication. Our attacks currently assume the attacker knows
what type of VPN protocol is being used. Using traffic analy-
sis and metadata, the attacker should have a clear idea of the
VPN protocol being used.

https://git.breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks
https://git.breakpointingbad.com/Breakpointing-Bad-Public/vpn-attacks


7 Limitations and Discussion

Here we discuss the limitations and generality of the attacks
we have presented.

7.1 Client-side Attack Limitations
Since enabling reverse path filtering will negatively impact
the performance and reliability of networking on a number
of devices, the recommended mitigation to prevent our attack
is to add a pre-routing iptables or nftables rule to drop
packets destined for the client’s virtual IP address.

7.2 Server-side Attack Limitations
While these types of mitigation address the client-side attack
for most non-mobile devices, source address validation (rather
than reasoning about interfaces) is required for mitigation as
we move further down the path closer to the VPN server. Re-
search has shown that the majority of networks on the Internet
do not even perform the most basic kind of source address val-
idation [21], namely dropping packets entering their network
that claim to be from their network. Source address validation
becomes impossible once traffic flows reach BGP-powered
routers on the Internet where asymmetric routing is possible.

For DNS, the victim application initiating the queries will
typically determine if there is a DNS cache and if so, the
length of time before that DNS entry expires. Therefore, once
an attacker has inferred an existing web connection they can
assume another query if the user visits the website again after
the DNS record TTL value (or sooner depending on caching
policies) [4, 5]. Additionally, they can get an estimate on the
size of the target lookup by connecting to the same VPN
server and crafting the same lookup.

Another obstacle for the attacker is mistaking other vic-
tim to DNS server UDP flows that are not for the correct
target domain name. For example, the attacker wants to inject
the wrong IP for facebook.com, but the client also sends a
query for google.com around the same time. Thus two UDP
flows are being NATed and the attacker might discover the
ephemeral port for the wrong flow. To address this issue, the
attacker can drop packets headed from the VPN client to the
VPN server for a short period of time (i.e., 5 seconds) in order
to ensure there are no more lookups sent from the client while
we attempt to infer the port for a specific flow.

7.3 Generality of the Attack
To better understand the generality of the attacks we have
presented, it is instructive to separate our attacks into the two
types: client- and server-side. Our set of client-side attacks
effectively require the attacker to be on the same physical
network as the victim client for one of their live interfaces, i.e.,
adjacent in the link layer. Network adjacent attacks involve
spoofed packets directly from the attacker to the victim as

physical frames. However, our server-side attacks require only
that the attacker be a router (or network adjacent to a colluding
router) along the path from VPN client to VPN server. For
these attacks the spoofed packets are routed over the Internet
from the attacker to the VPN server. In either case, the spoofed
return IP address is typically a server (such as web or DNS)
the victim is accessing via a tunneled connection through the
VPN tunnel.

When reasoning about the generality of both types of at-
tacks the main considerations are:

• TLS/SSL in the application layer for the tunneled con-
nection: While encryption of the VPN tunnel does not
prevent our attacks, application-layer encryption (e.g., TLS-
based protocols like HTTPS) prevents injecting data into
the socket. Yet, inferring the existence of a VPN-tunneled
TCP/IP connection and resetting that connection are possi-
ble despite application-layer TLS/SSL. Hijacking a TCP/IP
connection to inject data is only possible in the absence of
TLS/SSL, however hijacking DNS for standard DNS con-
figurations is possible and, for route-based VPNs (which
are more common than policy-based), can lead to the pos-
sibility of stripping off application-layer encryption, as de-
tailed in Section 6.3 in our real-world example. Further-
more, application-layer encryption is less commonly used
by at-risk populations globally than by typical users from
more developed countries. We scraped all websites marked
as potentially blocked by the Citizen Lab [20] using Se-
lenium and found that, for example, 26% of websites in
China and 51% of websites in Brazil have at least one
unencrypted element.

• Necessity of knowing the timing of a connection or
DNS request, along with the IP address or domain: For
our attacks to succeed we have to predict the timing of the
connection or DNS request, or at least continue carrying
out the attack until the connection or request happens. We
also have to know the IP address that will be connected
to or the domain name that will be requested. In our real-
world example in Section 6.3 we observed that a user using
Facebook will make DNS requests for facebook.com ev-
ery two minutes, for example. That is all the information
we need to carry out the attack, we do not need to predict
the exact timing (but can, using traffic analysis to observe
encrypted VPN packet sizes likely to be the DNS requests
we are looking for).

• Some of our attacks having been mitigated by patches:
Many (but not all) operating systems or VPN client vendors
have applied some kind of patch to mitigate our client-side
attacks in response to our disclosure. These patches largely
amount to filtering out the spoofed packets because they
come in from an interface that is not the virtual interface
for tunneled VPN traffic. See Section 1 for details of our
responsible disclosure process. We are not aware of any
patches or planned patches to mitigate our server-side at-



tacks, despite having ethically disclosed them to multiple
OS and VPN vendors on August 13, 2020. It is possible
that attacks could be detected based on, e.g., anomalies in
fields such as the TTL, or monitoring incorrect guesses of
fields such as port numbers, but no vendors have put forth
a proposal to do so.

• Reverse path filtering, martian filtering, and BCP 38
and 84: Reverse path filtering comes in two forms: on
hosts and in network routers. Strict mode as per RFC 3704
effectively stops our client-side attacks, loose or feasible
modes do not. Reverse path filtering on the VPN server
as a host does not affect the server-side attacks, because
spoofed packets enter on the same interface as real packets.
All source and destination IP addresses in our server-side
attacks are routable Internet IP addresses, so Martian or
bogon filtering are moot. BCP 38 and BCP 84 were ad-
dressed in Section 3. We assume that a state-level attacker
in collusion with an ISP could easily remove any BCP 38
and BCP 84 restrictions and carry out the attack.

• VPN configurations, implementations, and OS diver-
sity: There are many different configurations of VPNs,
which can affect the VPN client, VPN server, or both. For
our client-side attacks, a detailed discussion of how oper-
ating system and VPN configuration can affect the attacks
is in Section 6.5. For our server-side attacks, the operat-
ing system and VPN configuration of the VPN client do
not matter. Most VPN servers perform Network Address
Translation (NAT) on the VPN server, and all NAT im-
plementations have the behavior that we are exploiting:
packets with the correct ephemeral port are NATed into
the encrypted VPN tunnel while packets with the incor-
rect port are not. There are alternative implementations of
VPNs that do not involve NATs, such as Outline which uses
a SOCKS proxy13. Essentially, however, the same principle
applies: in general spoofed packets with correct fields get
tunneled and those with incorrect fields do not, meaning
that an attacker that can see the encrypted tunnel can make
inferences. Policy-based routing on the VPN client does
not affect the underlying vulnerability for our server-side
attacks, but our current method for causing connections to
be made outside the VPN tunnel via DNS spoofing assumes
that the client is using a route-based VPN client.

At the most basic level, all of our attacks combine two key
elements: the ability to spoof packets that are either directly
routed into the encrypted tunnel or the response to them is,
and the ability to view traffic transiting the VPN tunnel even if
the attacker cannot decrypt it. The mere existence, timing, and
number of bytes of ciphertext leaks a lot of security-critical
protocol information (such as port numbers and sequence

13See https://getoutline.org. Our server-side attack does not work
unmodified on Outline because of a fast-close behavior for DNS traffic, we
have not analyzed Outline’s security against blind in/on-path attacks beyond
that.

numbers) when an attacker is able to spoof packets. While
it may be possible to secure TCP and DNS within encrypted
tunnels by applying the appropriate filtering, these are only
two protocols and there are still many critical UDP-based
applications (e.g., NTP).

7.4 Summary and Recommendations
Because of the generality of blind in-path attacks for VPN
tunnels we recommend the following:

• For transport layer protocols such as TCP, and for any
application-layer transport-like functionality built on top of
datagrams (such as DNS built on top of UDP), the security
of each protocol should be examined with respect to the
threat of a blind in-path attacker on a case-by-case basis.
Among protocols that we leave for future work are QUIC,
NTP, SCTP, and BGP.

• For training materials for at-risk users and any communi-
cation with users about the security and privacy benefits of
VPNs, it should be made clear that VPNs are not a substi-
tute for application-layer security (such as HTTPS or DNS
over HTTPS, i.e., DoH).

• To the extent possible, VPN configurations should use ab-
stractions that are at a higher level than the network routing
layer. For example, SOCKS proxies provide some pro-
tection against the attacks presented in this paper when
properly applied.

• VPN architectures should apply IP address and interface
filtering whenever possible. In addition to filtering already
discussed, such as client-side firewall rules to stop spoofed
packets from reaching the virtual interface, VPN providers
should also consider protecting the path from DNS servers
to the VPN server.

While we have broadly studied a variety of encrypted tun-
nel protocols that fall under the umbrella of VPNs, including
OpenVPN, Wireguard, L2TP/IPSec, IKEv2/IPSec, and PPTP,
there are also many such protocols that do not fall under the
VPN umbrella such as SSH tunnels and VXLANs. We leave
evaluation of these for future work.

8 Related Work

The main aspect of our work that distinguishes it from any
prior work is the combination of applying traffic analysis of
an encrypted tunnel with spoofed packets.

8.1 Security Analysis of VPN Services
There have been various studies around investigating the
potential security and privacy aspects of VPN services. Perta
et al. [25] manually investigated the network behavior of
14 VPN services and presented a DNS hijacking attack that

https://getoutline.org


allowed traffic to be captured in clear. A more comprehensive
study conducted by Khan et al. [17] on the commercial
VPN ecosystem highlighted the lack of transparency in
VPN policies and claims made to consumers. The work
also elaborated on instances of leakages and active traffic
manipulations by VPN providers. In the mobile space,
there have also been extensive studies [16, 36], which
have evaluated various VPNs apps in the Android app
store. Their evaluation revealed the presence of malware,
traffic redirection, DNS leaks, lack of encryption, Javascript
injection and TLS interception by VPN providers. As a
result of the lack of trust in the VPN ecosystem, researchers
have also suggested decentralized approaches for VPN
services [12, 31]. While previous work on the security of
VPN services has mainly focused on the trust model and
the correctness of the implementation of the protocols, our
work specifically looks at the VPN security from a broader
network routing perspective.

Several studies have looked at VPN routing issues at a
more rudimentary level than our study. Perta et al. [25] and
Ikram et al. [16] reported how misconfigurations in the VPN
routing tables can enable DNS traffic leakage and hijacks.
In contrast, our work hijacks DNS queries that are protected
by the VPN tunnel and the threat model is any router in-path
between the VPN client and VPN server. Appelbaum et al. [6]
found various security vulnerabilities in VPN routing and sug-
gested mitigation techniques for vendors. Similarly, another
work [2] investigated the leakage of a VPN user’s local IP
address through the WebRTC-API and detailed the privacy
risks associated with this. While these works revealed issues
with routing and VPNs, we are not aware of any study before
our own work that illuminated how the combination of packet
spoofing with traffic analysis can reveal the randomized secret
numbers that protocols use to protect against attacks such as
inference of connections or hijacking.

8.2 Off-path Attacks

The first step in hijacking a connection is detecting the pres-
ence of an active TCP/IP connection. Watson [33] demon-
strates how critical this step is for performing blind spoofing,
session hijacking, and packet injection attacks, as well as TCP
reset attacks, by taking advantage of a TCP specification of
accepting out-of-order packets that are within the range of a
window size, decreasing the search space by a factor of the
window size. Other works have demonstrated attacks to infer
the existence of a connection completely off-path [3,18]. Such
attacks typically involve placing canaries, finding collisions,
and/or making statistical inferences. For our attacks presented
in this paper, an attacker simply needs to sit in-path and guess
a correct four-tuple by probing the ephemeral port space, and
then see the tunneled response as an encrypted VPN packet.
This does require that we assume one host’s IP and port (e.g.,

a web server), but this is the same assumption made by Cao
et al. [11] and others to perform off-path TCP/IP hijacking
attacks. Additionally, the number of devices that are vulnera-
ble to our blind in-path attacks extends beyond Linux to other
UNIX-based systems and mobile devices, as well as versions
which have been patched to prevent the behavior exploited by
Cao et al.

While off-path attacks that have nothing to do with VPNs
or other encrypted tunnel technologies are a serious problem,
they generally can be fixed by slightly changing the behavior
of an implementation or randomizing other numbers for the
protocol. For example, to address the attack by Cao et al.
the Linux kernel randomized the total number of challenge
ACKs that are sent per second, i.e., the rate limit that led to the
side-channel. While this could potentially still be inferred by
an off-path attacker, a blind in-path attacker such as we have
presented in this paper can trivially count packets. In general,
it is much more difficult to hide the existence, timing, and
size of network packets from an in-path attacker than from
an off-path attacker. Off-path attackers by definition cannot
perform traffic analysis of encrypted packets for the tunnel.

8.3 Traffic Analysis of Encrypted Tunnels

A number of works have made inferences based on analyz-
ing the existence, size, and timing of encrypted packets for
encrypted tunnels, such as works that fingerprint websites in
encrypted tunnels [10, 32] or works that focus on censorship
evasion [14, 34, 35]. None of these works combine packet
spoofing with traffic analysis to subvert tunneled protocols,
rather they focus on other higher-layer metadata such as the
structure of the HTTP being served to a web client to identify
the fingerprint of known web content.

9 Conclusions

We have demonstrated a general and serious problem (using
attacks on popular VPN implementations as examples): in/on-
path attacks to subvert protocols that are protected inside en-
crypted tunnels. Our attacks were demonstrated for the TCP
and DNS protocols tunneled inside VPNs, but the underlying
vulnerability applies to any attempt to use an encrypted tunnel
to protect any protocol that uses randomly-generated secret
values to protect against off-path attacks. This challenges the
current understanding of real-world VPN’s security by show-
ing that even a properly configured and secured VPN that
has applied all known security patches is still vulnerable to
connection tampering from a malicious actor with the ability
to control the gateway or any router between the VPN client
and VPN server. In summary, all route-based VPNs and all
UNIX-like operating systems that we tested were vulnerable
to our client-side attacks before disclosure. Client-side attacks
have been partially mitigated. Sever-side attacks are indepen-
dent of VPN configuration or OS, so long as the VPN uses



the OS’s NAT implementation on the VPN server. Despite
full disclosure, no type of mitigation has been proposed or
implemented by any vendor with respect to our server-side
attacks.
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