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Abstract
Apple controls one of the largest mobile ecosystems, with

1.5 billion active devices worldwide, and offers twelve pro-
prietary wireless Continuity services. Previous works have
unveiled several security and privacy issues in the involved
protocols. These works extensively studied AirDrop while
the coverage of the remaining vast Continuity service space
is still low. To facilitate the cumbersome reverse-engineering
process, we describe the first guide on how to approach a struc-
tured analysis of the involved protocols using several vantage
points available on macOS. Also, we develop a toolkit to
automate parts of this otherwise manual process. Based on
this guide, we analyze the full protocol stacks involved in
three Continuity services, in particular, Handoff (HO), Uni-
versal Clipboard (UC), and Wi-Fi Password Sharing (PWS).
We discover several vulnerabilities spanning from Bluetooth
Low Energy (BLE) advertisements to Apple’s proprietary au-
thentication protocols. These flaws allow for device tracking
via HO’s mDNS responses, a denial-of-service (DoS) attack
on HO and UC, a DoS attack on PWS that prevents Wi-Fi
password entry, and a machine-in-the-middle (MitM) attack
on PWS that connects a target to an attacker-controlled Wi-Fi
network. Our PoC implementations demonstrate that the at-
tacks can be mounted using affordable off-the-shelf hardware
($20 micro:bit and a Wi-Fi card). Finally, we suggest practi-
cal mitigations and share our findings with Apple, who have
started to release fixes through iOS and macOS updates.

1 Introduction

With 1.5 billion active devices, Apple controls one of the
largest mobile ecosystems worldwide [5]. Also, Apple is in
the unique position of controlling both hard- and software
and, therefore, can push new services to all of their plat-
forms (iOS, iPadOS, macOS, tvOS, and watchOS) quickly.
As a result, there are currently twelve different wireless ser-
vices, such as AirDrop and Handoff, that Apple markets un-
der the umbrella term Continuity [9]. While these services

improve the user experience, wireless protocol designs and
implementations offer a large surface for attacks. This has
been demonstrated via numerous attacks against standard-
ized protocols, e. g., Bluetooth [1], WEP [39], WPA2 [47],
WPA3 [48], GSM [12], UMTS [35], and LTE [29]. Re-
cently, several works have found severe vulnerabilities in
Apple’s proprietary wireless protocols [11, 18, 34, 44]. In
particular, they have demonstrated the trackability of Apple
devices that continuously transmit custom Bluetooth Low En-
ergy (BLE) advertisements [18, 34], user identification and
denial-of-service (DoS) attacks on Apple’s proprietary Apple
Wireless Direct Link (AWDL) protocol [44], and machine-
in-the-middle (MitM) attacks on AirDrop [11, 44]. While
these works have already discovered several vulnerabilities,
they have only analyzed a fraction (one out of twelve ser-
vices) of the potential attack surface. The most costly part of
such analyses is the initial investment in reverse-engineering
the complex software architecture [42] that implements the
various proprietary protocols involved in offering Apple’s
services. However, the previous works lack an elaborate
discussion on the actual process.

This paper provides the first structured guide to reverse en-
gineer these proprietary protocols, which combines insights
of previous works with our own experience. To make our
guide more accessible and sustainable, we release a toolkit
for semi-automated reverse-engineering of Apple’s wireless
ecosystem. Following this guide, we analyze three previously
undocumented protocols used by the Handoff (HO), Uni-
versal Clipboard (UC), and Wi-Fi Password Sharing (PWS)
services. Using the recovered specifications and our own
open-sourced re-implementations, we discover four novel se-
curity and privacy vulnerabilities spanning from design errors
to implementation issues, attesting—again—the inferiority of
security by obscurity. The attacks enable new device track-
ing, DoS, and MitM attacks. We provide proof-of-concept
(PoC) implementations for all attacks using only standard
hardware such as a regular Wi-Fi card and a low-cost ($20)
micro:bit [36] for BLE communication.



In particular, we make the following five contributions.
First, we make security analysis of Apple’s wireless ecosys-
tem more affordable by presenting a structured and semi-
automated reverse-engineering method. Our practical guide
covers different vantage points and helps to navigate the com-
plex system architecture of iOS and macOS. Second, we
provide a complete specification of the protocols involved in
the HO and UC services. We open-source a parser for Apple’s
proprietary OPACK serialization format and a sample imple-
mentation of the authentication protocol. Third, we provide a
complete specification of the protocols involved in the PWS
service. We accompany the specification with open-source
implementations of both requestor and grantor roles. Fourth,
we discover several security and privacy vulnerabilities and
present four novel wireless network-based attacks. These are:

(1) A protocol-level DoS attack on HO and UC that exploits
a low-entropy authentication tag in the BLE advertise-
ments and a replay protection mechanism.

(2) A device tracking attack that exploits the asynchronous
randomization interval of several AWDL device identi-
fiers, such as MAC address and mDNS records.

(3) A MitM attack that exploits the one-sided authentica-
tion in PWS to automatically distribute and fill-in Wi-Fi
passwords, which causes the victims to connect to an
attacker-controlled Wi-Fi network.

(4) A DoS attack against the PWS protocol that exploits a
parsing bug and allows for crashing the Settings app on
iOS and, thus, could prevent a user from connecting to a
new Wi-Fi network.

And fifth, we propose practical mitigations for all discovered
vulnerabilities and a previously discovered [34] BLE device
tracking attack. We have responsibly disclosed our findings
to Apple, who have, so far, fixed two issues through iOS and
macOS updates.

The rest of this paper is structured as follows. Section 2
discusses background and related work. Section 3 contains
our reverse engineering guide. Section 4 presents the proto-
col specifications of three Apple services. Section 5 analyses
security and privacy aspects of these protocols, presents our at-
tacks, and proposes mitigations. Finally, Section 6 concludes
this work.

2 Background and Related Work

In this section, we give an overview of Apple’s current list of
Continuity services, the link-layer protocols they rely on, and
finally discuss previous security and privacy analyses in this
ecosystem.

2.1 Apple’s Continuity Services
Apple’s current Continuity portfolio [9] consists of twelve
different services that we list in Table 1. They are all used

Service AWDL BLE Wi-Fi

Handoff (HO) 3 3 3

Universal Clipboard (UC) 3 3 3

Phone 7 7 3

SMS 7 7 3*
Instant Hotspot 7 3 7

Auto Unlock 3 3 7

Continuity Camera 3 3 3

AirDrop 3 3 7

Apple Pay 7 3 7

Wi-Fi Password Sharing (PWS) 7 3 7

Sidecar 3 ? 7

Continuity Markup and Sketch 3 ? 7

Table 1: Overview of Apple Continuity services and used
link-layer protocols. Only one requires online iCloud access
(3*). All others communicate via local networks only.

to transfer potentially sensitive user data such as clipboard
content, phone calls, photos, and passwords. While Apple
provides some high-level security descriptions for some of
these services [4], the actual protocol designs and implemen-
tations remain closed-source. Previous works, so far, have
analyzed one service in depth, i. e., AirDrop [11, 44]. Other
works have also analyzed the BLE advertisements for several
other services [18, 34]. However, the involved upper-layer
protocols remain unknown. In this work, we demonstrate
our reverse engineering methodology and use it to analyze
the protocols involved in three services that have not been
scrutinized before. We briefly describe the purpose of the
three services.

Handoff (HO) HO allows users with multiple Apple de-
vices to switch between devices while staying in the same
application context. An example is Apple’s Mail app: Users
can start typing an email on their iPhone, switch to their Mac,
and click an icon in the Mac’s dock to continue writing the
email. Third-party developers can add similar functionality
to their apps via a public API [3].

Universal Clipboard (UC) UC shares clipboard content
across nearby devices of one owner. For example, it allows
for copying text on a Mac and pasting the content on an
iPhone. Apple’s UC and HO implementations use the same
protocol as described in Section 4.1.

Wi-Fi Password Sharing (PWS) The PWS service allows
a requestor device to request a password to a Wi-Fi network
while it tries to connect to it. A grantor device that knows the
password can decide whether it wants to share the password
with the requestor. As a use-case, it allows us to share one’s
home Wi-Fi password with a house guest.



2.2 Wireless Link-Layer Protocols

We briefly introduce the two critical link-layer protocols in-
volved in Apple’s Continuity services, particularly AWDL
and BLE. We have compiled the mapping of service to link-
layer technologies in Table 1 by monitoring the interfaces
(see Section 3) that become active when using each service.

Apple Wireless Direct Link (AWDL) AWDL is a propri-
etary Wi-Fi-based link-layer protocol that can co-exist with
regular Wi-Fi operations. It offers a high-throughput direct
connection between neighboring devices and has previously
been reverse-engineered [41, 42]. Apple uses AWDL as a
message transport for several Continuity services such as UC
and HO.

Bluetooth Low Energy (BLE) BLE [15] operates in the
same 2.4 GHz band as Wi-Fi. It is designed for small battery-
powered devices such as smartwatches and fitness trackers
and, thus, is not suitable for large data transfers. The BLE
advertisement packets are a broadcast mechanism that can
contain arbitrary data. Advertisements are used when devices
set up a connection or share their current activity to nearby
devices. Apple relies heavily on custom BLE advertisements
to announce their Continuity services and bootstrap the var-
ious protocols over Wi-Fi or AWDL [18, 34, 44]. Generic
Attribute Profile (GATT) is a BLE protocol that is used for
discovering services and for communicating with a peer de-
vice. A UUID identifies a single service, and each service
can contain several characteristic values. A client connects
to a server device and accesses the characteristics of a ser-
vice. The client can write data to, read data from, or receive
notifications from the characteristics. Apple uses GATT as
a message transport, e. g., to exchange Wi-Fi passwords via
PWS as explained in Section 4.2.

2.3 Previous Security and Privacy Analyses of
Apple’s Wireless Ecosystem

Previous works have analyzed part of the Continuity services.
Bai et al. [11] have looked at the risks of using insecure
multicast DNS (mDNS) service advertisements and show
that they can spoof an AirDrop receiver identity to get unau-
thorized access to personal files. Stute et al. [44] have re-
verse engineered the complete AWDL and AirDrop proto-
cols and demonstrate several attacks, including user track-
ing via AWDL hostname announcements, a DoS attack via
desynchronization on AWDL, and a MitM attack on Air-
Drop. Heinrich et al. [23] have discovered that AirDrop leaks
contact identifiers and present a new privacy-preserving pro-
tocol for mutual authentication. Martin et al. [34] have exten-
sively analyzed the content of the BLE advertisements trans-
mitted for several Continuity services. They found several

privacy-compromising issues, including device fingerprint-
ing and long-term device and activity tracking. Celosia and
Cunche [18] have extended this work and discovered new
ways of tracking BLE devices such as Apple AirPods, as well
as demonstrated how to recover a user’s email addresses and
phone numbers from the PWS BLE advertisements.

Unfortunately, these works provide no or only a limited
discussion of the methods applied to receive their results, in
particular, the process of reconstructing the frame format and
protocol specifications. In Section 3, we provide a structured
guide on how to approach this process. Also, the related work
has only covered one Continuity service in full depth (i. e.,
AirDrop) and discussed the BLE advertisements for several
others. In Section 4, we analyze the complete protocol stacks
of three previously disregarded services.

3 A Hacker’s Guide to Apple’s Wireless
Ecosystem

This section aims to provide a structured way to conduct re-
verse engineering1 of Apple wireless protocols while using
practical examples from our analysis of Continuity services.
First, we show useful vantage points. We explain the binary
analysis methodology and share our insights on dynamic anal-
ysis. Then, we explain how to access the security key material
of Apple services and discuss our methodology’s applicabil-
ity to other protocols in Apple’s ecosystem. In the end, we
present several tools and scripts that we have developed to
facilitate reverse engineering. All services that we analyzed
in this paper are available on both macOS 10.15 and iOS 13.
iOS and macOS share large parts of their code, and since we
found macOS to be much more open and accessible than iOS,
we used macOS as the platform that we analyzed. Most of
the methods presented in this section can be applied to iOS
as well. For some of them (e. g., full keychain access), the
researcher requires a jailbroken iPhone. Since the discovery
of a BootROM exploit called checkm8 and the introduction of
checkra1n, jailbreaks became widely available and supported
all iOS versions [20]. Finally, all vulnerabilities and attacks
presented in Section 5 apply to both macOS and iOS. This
section is a revised Ph.D. thesis chapter [40, Chapter 4].

3.1 Vantage Points
We approach protocol analysis from different vantage points
that we depict in Fig. 1. (1) Static binary analysis is tough
to conduct as each protocol is implemented across multiple
components (frameworks and daemons). Therefore, during
the initial stages, it is useful to monitor (2) the system as a
whole to identify core components that can thoroughly be ex-
amined subsequently. Also, data transmitted via (3) network

1We define a hacker as a curious individual who wants to understand the
technical details of a (potentially proprietary and closed-source) system to
achieve interoperability or conduct a security analysis.
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Figure 1: Vantage points that we used during our analysis.
We provide a simplified view of components and their inter-
actions, such as daemons ( ), frameworks ( ), and drivers
( ) that are used by Handoff and Universal Clipboard.

interfaces is easily accessible using monitoring tools and is
tremendously useful for dynamic analysis. We found that the
ability to retrieve and use (4) persistent data, especially from
the system’s keychain, is essential for building prototypes
and, thus, for validating findings. Finally, any available (5)
documentation (not shown in Fig. 1) such as patents [45, 46]
or Apple’s platform security white paper [4] can be helpful
for an initial assessment and understanding of some design
elements of the service. Having those multiple vantage points
at hand enables us to gather more information, to change per-
spective if we get stuck (e. g., when encountering encrypted
traffic), and to resume analysis at a later point (e. g., after
extracting the decryption keys). We elaborate on the four
vantage points in Fig. 1 in the following.

3.2 Binary Analysis
We analyzed many binaries related to the Continuity services
to find those parts that finally implement the protocol. We first
illustrate our selection process and then discuss the two-part
Wi-Fi driver, which implements most of the AWDL protocol
stack. We focus our analysis on macOS and assume that the
architecture is, in principle, similar to that of iOS as the two
operating systems (OSs) share a large common codebase [8].

3.2.1 Binary Landscape

Understanding and navigating the binary landscape of macOS
is essential to find and relate components of interest.

Frameworks and Daemons Apple excessively uses frame-
works and daemons in its OSs. Consequently, numerous
dependencies result in a complex binary selection process.

Frameworks offer an API to their corresponding singleton
daemons and can be used by other daemons and processes.
Daemons and their respective frameworks typically have a

similar name (e. g., sharingd and Sharing) or share a derived
prefix (e. g., searchpartyd, SPFinder, and SPOwner). We list
the locations in the file system in the following. /System/Li-
brary/Frameworks contains frameworks with public documen-
tation2 such as Security. /System/Library/PrivateFrameworks
contains other frameworks such as Sharing. /usr/libexec and
/usr/sbin contain most daemons such as sharingd. However,
some are also shipped in their respective framework. /us-
r/lib and /usr/lib/system contain low-level libraries such as
CoreCrypto.

Drivers The Wi-Fi driver is a kernel extension and, there-
fore, resides in /System/Library/Extensions. The driver is
split up into a generic component (IO80211Family) and chip-
specific plugins (such as AirportBrcmNIC).

3.2.2 Binary Selection

The purpose of the initial selection process is to identify
binaries that may contain relevant code and, thus, sets the
scope for the analysis project. To start this process, we can
use the system’s logging facility (see Section 3.3) to identify
processes that become active when starting a particular system
function (e. g., AirDrop). If we identify at least one daemon
process, we can crawl through its dependencies recursively
by running otool -L to find related frameworks and libraries.
We show part of the discovered dependencies and interactions
found for HO in Fig. 1.

3.2.3 Interesting Functions and Code Segments

Due to the size of most binaries that we analyzed, such as
the sharingd daemon, it is infeasible to analyze the entire
program. Instead, it makes sense to identify functions of in-
terest, e. g., those that implement frame handling. Fortunately,
Apple does not strip symbol names from (most of) their bina-
ries, such that the symbol table provides useful information
and, e. g., lists function names including -[RPConnection

_receivedObject:ctx:] in the Rapport framework. This
function handles received messages shared over AWDL after
they have been decrypted. Furthermore, debug log statements
give hints about the purpose of a code segment inside a func-
tion. Therefore, we can search for debugging strings (using
strings) and their cross-references to find additional details.

3.3 System Logging
The complete protocol operation is difficult to comprehend
with binary analysis alone. We complemented our static anal-
ysis with a dynamic approach. In this section, we discuss
dedicated macOS logging and debugging facilities that helped
during our analyses. In particular, we explain the Console
application. However, previous work [42] has also used the

2https://developer.apple.com/documentation

https://developer.apple.com/documentation


ioctl interface, Broadcom’s leaked wl utility, and Apple’s
undocumented CoreCapture framework to analyze the Wi-Fi
driver. The Console aggregates all system and application
logs since macOS 10.12 and includes debug messages from
the kernel. Alternatively, one can use the log command-line
tool to access the same information.

Filtering for Interesting Output It is possible to filter log-
ging output, e. g., by process or subsystem. The predicate-
based filtering is described in detail on the man page of log.
For example, to get information about HO, we can use

log stream --predicate "process == \
’rapportd ’ OR process == ’useractivityd ’"

One of our tools, as described in Section 3.6, uses this ability
to identify processes and frameworks that log information
about a specific system service, like AirDrop.

Increasing Log Level The --level debug flag will in-
crease the log verbosity of processes that make use of os_log.
In addition, some processes log private data such as keys. To
enable this, we can set

sudo log config --mode "private_data:on"

Since macOS 10.15, the command is no longer available, and
we need to disable SIP [25].

3.4 Network Interfaces

Monitoring the Wi-Fi and Bluetooth network interfaces are
a quick way to gather information about a particular service.
For example, we can identify known protocols, whether en-
cryption is used, or determine whether we are dealing with
an undocumented protocol. Besides, we can learn the active
wireless communication channels, the timings of packet trans-
missions, generally monitor the dynamics of a protocol. In
the following, we discuss those tools that we have found to
be particularly useful for this purpose.

3.4.1 Wireshark

Wireshark [49] is an open-source network protocol analyzer
and supports many standardized but also proprietary protocols.
While Wireshark identifies known protocols from network
traces, it is also possible to implement custom dissectors. We
found that writing such a custom dissector in parallel to the
reverse engineering process serves multiple purposes: (1) We
iteratively document and validate our findings. (2) It helps
to deduce the semantics of individual fields, e. g., a random
nonce would change in every handshake, while a static key or
certificate would remain constant (Section 3.5). And (3) it can
be used to evaluate experiments such as those in Section 5.4
by exporting time series data via tshark.

3.4.2 Bluetooth Explorer and Packet Logger

Apple ships two Bluetooth debugging tools in the Additional
Tools for Xcode package.3 The Bluetooth Explorer displays
nearby BLE devices and their advertisements in real-time.
Apple devices excessively use these advertisements to an-
nounce the availability of services such as AirDrop [34].
BTLEmap [24] implements a dissector for most of these adver-
tisements. PacketLogger, on the other hand, creates network
traces for Bluetooth HCI commands and, therefore, provides
some of the functionality of InternalBlue [33]. Wireshark
supports PacketLogger-recorded .pklg files, which allow for
convenient analysis of Bluetooth traces.

3.4.3 Machine-in-the-Middle Proxy

Encrypted traffic can prohibit us from examining the inter-
esting parts of the protocols. While we could instrument
the daemon process and extract packets before transmission
(which requires identifying functions that perform those oper-
ations), it can be easier to employ MitM proxy tools to open
the end-to-end encryption, e. g., for HTTPS [19]. Unfortu-
nately, a MitM proxy is not always successful in intercepting
a connection with self-signed certificates, e. g., when certifi-
cate pinning is used, so it can be helpful to extract private
keys and certificates from the system’s keychain.

3.4.4 Custom Prototypes

In an advanced stage of the process, we have collected suffi-
cient information to re-implement (part of) the protocol and,
thus, can interact with the target devices actively. In particular,
a custom prototype enables us (1) to validate our findings’
correctness, e. g., if other devices start interacting with our
prototype, we can conclude that the frame format is correct,
(2) to find out more details about the protocol, e. g., we could
determine which protocol fields mandatory or optional, and
(3) to conduct protocol fuzzing as part of the security analysis,
e. g., we found parsing-related vulnerabilities in PWS. We
list the links to our prototypes the “Availability” section at the
end of this paper.

3.5 Keychains

Access to private keys and other secure data used by a partic-
ular service or protocol is highly useful in making educated
assumptions about what security mechanisms might be em-
ployed. Also, extracting key material is essential to build and
test prototypes that prove or disprove working hypotheses,
e. g., verifying the requirements for an authenticated PWS
connection.

3https://developer.apple.com/download/more/?=additional%
20tools%20xcode

https://developer.apple.com/download/more/?=additional%20tools%20xcode
https://developer.apple.com/download/more/?=additional%20tools%20xcode


3.5.1 macOS Keychains

In macOS 10.15, there are two types of keychains known as
login and iCloud keychain, respectively. The former is only
stored locally on the computer. The iCloud keychain was first
introduced in iOS and has since been ported to macOS as
well. This keychain provides more features such as protec-
tion classes, optional synchronization between devices, and
improved access control [4]. As Apple has moved more key-
chain items from the login keychain to the iCloud keychain,
we believe that Apple will merge them in the future. The Key-
chain Access application is a GUI for displaying and working
with either keychain. However, we have found that not all
keychain items (e. g., those used by some system services)
are displayed.

3.5.2 Security Framework

Fortunately, Apple provides a documented API for accessing
keychains via the Security framework, which additionally
is open-source.4 For our purposes, the SecItemCopyMatching

function5 is particularly interesting as it allows retrieving
items such as keys from the keychain. The function requires
some query parameters to narrow down the items it should re-
turn. To get the relevant query parameters of a target program,
we can either statically analyze the binary by searching for
references to SecItemCopyMatching or monitor the process
and extract the parameters at runtime using a debugger. In
the case of PWS, the query consists of three keys: kSecClass,
kSecReturnRef, and kSecValuePersistentRef. The value of
the latter is a serialized object containing all information re-
quired to locate a particular item in the keychain.

3.5.3 Accessing Keys of Apple Services

As a security measure, programs not signed by Apple will
not get any results even when using the correct query pa-
rameters as Apple uses code signing to implement access
control to keychain items. To circumvent this measure, we
(1) need to set the correct keychain-access-group entitlement
(com.apple.rapport in case of HO or simply the * wildcard)
during code signing and (2) disable Apple Mobile File In-
tegrity (AMFI), which prevents program with restricted en-
titlements from starting by setting the following as a boot
argument:6 amfi_get_out_of_my_way=1. An automated solu-
tion to this is introduced in Section 3.6.

4https://opensource.apple.com/source/Security/
5https://developer.apple.com/documentation/security/

1398306-secitemcopymatching
6https://www.theiphonewiki.com/wiki/

AppleMobileFileIntegrity

3.6 Automated Reverse Engineering Toolkit
Automated reverse engineering for generic protocols is a hard
problem. However, we have identified several possibilities
for automating parts of the process on Apple’s platforms to
make our work more sustainable. We release a toolkit that
covers all vantage points mentioned in this section with the
publication of the paper (see the “Availability” section at
the end of this paper). In particular, the toolkit allows to
(1) discover interesting daemons/frameworks and functions
based on a keyword, (2) extract the plaintext messages used
by rapportd that are exchanged by Continuity services, and
(3) print any secrets stored in the system keychain that are
used by a particular daemon. We elaborate on the individual
tools in the following.

3.6.1 Identifying Interesting Binaries

Our toolkit contains a Python script that scans system log
messages (Section 3.3) for specified keywords and lists the
emitting daemons, frameworks, and subsystems. The tool
can then search those binaries and their dependencies (frame-
works and libraries) recursively for the same or additional
strings and symbols. Finally, the user receives an initial can-
didate list of binaries and functions to analyze further.

3.6.2 Extracting Plaintext Continuity Messages

Our analysis has shown that many Continuity services use
a secure transport service offered by rapportd. In analogy
to an HTTP MitM proxy, our toolkit allows us to extract
exchanged plaintext messages before they are encrypted (out-
going) and after they are decrypted (incoming). Internally, the
tool attaches the lldb debugger to rapportd and uses break-
points at the respective send and receive functions to print all
exchanged messages.

3.6.3 Printing Keychain Items

Continuity services use different security mechanisms to pro-
tect their communication, such as TLS in AirDrop or the
custom encryption described in Section 4.1.4, which all re-
quire one or more secret inputs, such as private keys, certifi-
cates, or tokens. Our toolkit provides a way to automatically
identify and extract these inputs to facilitate building custom
prototypes and, thus, automating the method described in Sec-
tion 3.5.3. The tool is based on the FRIDA framework [38]
to inject code into the Security framework to log secrets any
time a specific process accesses the keychain.

https://opensource.apple.com/source/Security/
https://developer.apple.com/documentation/security/1398306-secitemcopymatching
https://developer.apple.com/documentation/security/1398306-secitemcopymatching
https://www.theiphonewiki.com/wiki/AppleMobileFileIntegrity
https://www.theiphonewiki.com/wiki/AppleMobileFileIntegrity


4 Continuity Protocols

In this section, we present the protocols involved in offering
three Continuity services, i. e., Handoff (HO) and Universal
Clipboard (UC) in Section 4.1, and Wi-Fi Password Sharing
(PWS) in Section 4.2. In particular, we present the oper-
ational details of the protocols that we gathered using the
methodology in Section 3.

4.1 Handoff and Universal Clipboard
We analyze the protocols involved in the HO and UC ser-
vices. HO allows a user to continue their current activity in
an application on another of their Apple devices. UC allows a
user to copy clipboard content (e. g., text) on one device and
(seamlessly) paste it on another. For HO or UC, all involved
devices have to be logged into the same iCloud account and
have Bluetooth and Wi-Fi turned on. We have found that
HO’s and UC’s protocols are identical. In the following, we
present the service requirements and the protocols involved
in the different phases: (1) the discovery phase using BLE
advertisements (Section 4.1.2) and mDNS-over-AWDL (Sec-
tion 4.1.3), (2) the authentication phase for deriving a session
key (Section 4.1.4), and (3) the payload transfer phase that
transports the application data (Section 4.1.5). We provide an
overview of the entire protocol stack in Fig. 4. In this paper,
we discuss the core components of the protocols. The full
specification is included in [22].

4.1.1 Requirements

Apple designed HO and UC to work between devices of the
same user, i. e., devices that are signed in to the same Apple
account. We have found that the iCloud keychain synchro-
nizes the long-term device-specific public keys PL that can be
found under the name RPIdentity-SameAccountDevice. These
keys are used for an authenticated session key exchange, as
shown in Section 4.1.4.

4.1.2 Discovery with BLE

Both HO and UC announce user activities, such as a clip-
board copy event, on the host system via BLE advertisements.
Receiving devices use the embedded information to, for ex-
ample, display the icon of the active HO-enabled app in the

Figure 2: iPad dock showing a Handoff icon on the right.

0 1 2 3 4 5

TLV type
0x0c

TLV length
0x0e Status A IV Auth tag

0x00 Activity type (hash)

Status B Unused

Figure 3: Handoff and Universal Clipboard BLE advertise-
ment payload. Encrypted content is shown in grey.

LSB Meaning In A In B

1 Activity has URL option key 3

2 Activity contains file provider URL key 3

3 Activity contains Cloud Docs key 3

4 Clipboard data available 3 3

5 Clipboard version bit 3

6 Activity auto pull on receivers key 3

Table 2: Definition of individual status flag bits and whether
they are included in status byte A or B (Fig. 3).

system dock, as shown in Fig. 2. A click on the icon (HO) or
a paste event (UC) triggers the rest of the protocol stack.

The BLE advertisement uses Apple’s custom frame struc-
ture that has already been described [34] and makes use of
manufacturer data to add custom fields. The fields are en-
coded as TLV8 structures7 such that a single frame can in-
clude multiple fields. Apple uses different field types for its
Continuity services. Figure 3 shows the payload of an HO
and UC advertisement with type 0x0c. It contains a plaintext
status flag, an IV, an authentication tag, followed by an en-
crypted payload (shown in grey). Apple uses AES-GCM for
encryption and authentication with dedicated BLE encryption
key KBLE. For every new advertisement, i. e., new HO or
UC activity, the initialization vector (IV) is incremented by
one. Upon depleting its IV space (216), a device triggers a re-
keying protocol via the companion link service (Section 4.1.4)
to re-new KBLE. The re-keying protocol uses the long-term
key PL for authentication.

The encrypted payload primarily contains an activity type
and other status flags. The activity type indicates the appli-
cation or activity that was triggered and is encoded as a trun-
cated SHA-512 hash of an application-specific string, such
as com.apple.notes.activity.edit -note for Apple’s
Note app. Unsupported application activities are ignored.
The status B flags are similar to the cleartext status A. Martin
et al. [34] discovered that status A is set to 0x08 after the
user has copied data on their device. Apparently, Apple has
deprecated status A in favor of status B. We found that status
B can encode more information, as shown in Table 2. We
assume that status A was part of an earlier protocol version,
and Apple has kept it for backward compatibility but started

7TLV8 is a type-length-value (TLV) structure where the length field has a
length of 8 bits (1 byte).



to encrypt new fields that include more sensitive information
(activity type).

To facilitate dynamic analysis of the advertisements, we
implemented a macOS application that decrypts and parses
all advertisements sent by devices linked to the user’s iCloud
account (see “Availability” section).

4.1.3 Discovery with mDNS-over-AWDL

The device that broadcasts BLE advertisements can be de-
picted as a server that can respond to requests from a client
device. Upon engaging in an activity, the client device that
received the server’s BLE advertisement enables its AWDL to
start service discovery via mDNS and DNS service discovery
(DNS-SD), also known as Bonjour.

The queried service type is called
_companion-link._tcp.local. The DNS responses
from the server device include an instance name in the pointer
(PTR) record, its hostname in the service (SRV) record, IPv6
address (AAAA), and a text (TXT) record. It is noteworthy
that Apple implements hostname randomization (similar to
medium access control (MAC) address randomization) for
the SRV records transmitted via AWDL.

The TXT record is typically used to transfer additional
information about the service. The HO TXT record contains
the information shown in the following example:

rpBA=2E:6D:C1:B7:08:1F,
rpFl=0x800 ,
rpAD=88d428438a3b ,
rpVr=192.1

We found that the values rpBA and rpAD are used to identify
if both devices are linked to the same iCloud account and
filter out potentially other devices that might respond via the
open AWDL interface. In particular, we found that rpBA (en-
coded as a MAC address string) is chosen at random and
changes at least every 17 minutes. rpAD is an authentication
tag generated from the random rpBA and the device’s Blue-
tooth Identity Resolving Key (IRK) (used to resolve random
BLE addresses [15]) as arguments for a SipHash function [10].
Since the IRKs are synced via the iCloud keychain, devices
logged into the same iCloud account can try all available IRK
in the keychain to find other devices.

4.1.4 Authentication via Pair–Verify

The companion link service, used for HO and UC, implements
an authenticated Elliptic-curve Diffie–Hellman (ECDH) key
exchange using the long-term keys PL for mutual authenti-
cation. The new session key is used to encrypt follow-up
messages. The so-called Pair–Verify protocol is based on
Apple’s Homekit Accessory Protocol (HAP) protocol [6].

The handshake is depicted in Fig. 4. It mainly performs
ECDH [28] to exchange a session key K with the ephemeral
key pairs (Ps,Ss) and (Pc,Sc). The public keys Ps and Pc are

Client Server

1. DISCOVERY Handoff BLE advertisement
see Fig. 3

AWDL synchronization

DNS-SD query over mDNS

companion-link
DNS-SD query answer

PTR, SRV, TXT, AAAA

Receive ad-
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Search for server de-
vice in local network
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tisements
Announce companion-
link service over local
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s )
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s )
σc = sign(Pc + Ps)
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Figure 4: Handoff and Universal Clipboard protocol overview.

authenticated using Ed25519 [14] signatures that use the long-
term server (s) and client (c) key pairs (PL

s ,S
L
s ) and (PL

c ,S
L
c )

for generation and verification. The verification keys PL
s and

PL
c are synchronized using the iCloud keychain. Then, both

devices derive the server and client keys Ks and Kc from the
new session key K by using HKDF [27]. The keys are used
to protect the follow-up payload transfer with the ChaCha20-
Poly1305 cipher [37]. In Section 4.2, we elaborate on the
protocol, including an extension that allows authentication
between devices that do not have a pre-shared key PL.

The message format consists of a TLV248 encoding that, in
turn, contains an OPACK dictionary with a single value under
the key _pd. The value contains TLV8 structures that encode
the individual fields used for the key exchange. OPACK is a
proprietary undocumented serialization format, and we pub-
lish its specification together with a sample implementation
in Python (see “Availability” section).

4.1.5 Payload Transfer

To transfer the actual application payload, i. e., clipboard
content (UC) or user activity (HO), the companion link service
implements another four-way communication protocol that is
protected by ChaCha20-Poly1305 [37] using the Ks and Kc
keys from the authentication protocol.

The protocol first exchanges the devices’ system informa-
tion (P1 and P2 in Fig. 4) that includes the device model,
e. g., MacBook11,5, the device name, and several flags. After-

8TLV structure with a 24-bit (3-byte) length field.



(a) Requestor. (b) Grantor.

Figure 5: The password view on a requestor and the password
sharing dialog on a grantor.

ward, the client requests and receives the application-specific
payload (P3 and P4).

The HO developer API offers the ability to transfer ad-
ditional data by setting up a direct socket connection from
the server application to the client application.9 If specified
by the developer, sharingd opens a TLS connection (Long
Payload Transfer in Fig. 4) and passes the open socket to the
requesting application. The TLS connection authenticates
both sides by using the same Apple ID certificates and vali-
dation records used for AirDrop [44] and PWS (Section 4.2).
We have found that the same protocol is also used by UC to
transfer clipboard contents that are larger than 10 240 bytes.
In that case, UC uses the P3 and P4 messages to bootstrap the
TLS connection.

4.2 Wi-Fi Password Sharing

Apple also uses BLE to implement a service called PWS,
which enables users to share known Wi-Fi password with
guests and friends. This service aims to solve the usual hassle
of manually entering the password, which can sometimes be
challenging if the password is complex or not at hand.

In the following, we call the device that searches for a
Wi-Fi password requestor and the device that shares the pass-
word grantor.

PWS is initiated automatically when the password view
(in Fig. 5a) is open after selecting an SSID to connect to.
No further user interaction is necessary from the user of the
requestor. Surrounding devices are notified about the PWS
as long as the password view is open. If a grantor is in range,
the password sharing dialog (in Fig. 5b) pops up, asking the
user to share the password. If the grantor accepts, it sends
the encrypted password to the grantor. Potentiality already
entered characters in the password text field are overwritten,
the shared password is inserted, and the device automatically
tries to connect to the Wi-Fi network.

9https://developer.apple.com/documentation/foundation/
nsuseractivity/1409195-supportscontinuationstreams
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Figure 6: PWS protocol overview.

The PWS protocol consists of four phases that we depict in
Fig. 6: (1) the discovery phase that uses BLE advertisement
to bootstrap the protocol (Section 4.2.3), (2) the initialization
phase transmits protocol metadata (Section 4.2.4), (3) the
authentication phase where the requestor proves its identity to
the grantor and one symmetrical key is derived (Section 4.2.5),
and, finally, (4) the sharing phase that transfers the pre-shared
key (PSK) for the requested Wi-Fi network (Section 4.2.4).
In the following, we first describe the protocol requirements
and discuss the basic BLE data transport. We then discuss the
four main protocol phases in detail.

4.2.1 Requirements

We believe that Apple aimed to solve the problem of Wi-Fi
password sharing with minimal user interaction. Their design
has the following requirements [7]: (1) The grantor needs to
have the contact information (phone number or email address)
of the requestor stored in its address book. (2) The grantor
needs to be unlocked. (3) The requestor needs to be signed in
with an Apple ID. (4) Both devices need to have Bluetooth
enabled.

4.2.2 BLE Data Transport and Frame Format

All messages sent and received are transmitted over BLE
using the value property of a GATT characteristic. The re-
questor acts as a GATT server to which the grantor connects
to. The grantor sends messages to the requestor by writing to

https://developer.apple.com/documentation/foundation/nsuseractivity/1409195-supportscontinuationstreams
https://developer.apple.com/documentation/foundation/nsuseractivity/1409195-supportscontinuationstreams
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Figure 7: PWS advertisement frame format.

this GATT characteristic. The characteristic also supports the
notify flag, which is used by the requestor to respond. Even
though the maximum payload length of the GATT character-
istic is set to 512 bytes, the payload is split into packets of
101 bytes at the most. To be able to reassemble the complete
payload on the other end, the length of the payload is included
in the first 2 bytes of the first packet.

The GATT characteristic supports multiple services. To
support this, every payload is wrapped is wrapped in a SF-
Session10 frame. This frame consists of service type and a
frame type, followed by the actual payload. The service type
is constant for a specific service. For example, PWS uses
the service type 0x07. The frame type is used to differentiate
between different frames of the same service.

4.2.3 Discovery with BLE Advertisements

The requestor sends out BLE advertisements to inform sur-
rounding devices. The frame format follows the same base
structure as for HO/UC in Section 4.1.2 but uses a separate
type. Figure 7 shows the frame format for the PWS advertise-
ment with TLV8 type 0x0f. The payload includes the first 3
bytes of the SHA-256 hash of the owner’s Apple ID, email
address, phone number, and the SSID for which the requestor
requests a password.

Surrounding devices check whether any of their contacts
match one of the hashed contact identifiers and whether they
have a password for the provided SSID hash. If both checks
succeed, the grantor prompts its user with the password shar-
ing dialog (Fig. 5b).

4.2.4 Initialization and Wi-Fi Password Sharing

In the initialization phase, two messages are exchanged; both
are OPACK encoded dictionaries. The grantor sends the first
packet (PWS1) that contains an unused random 4-byte session
ID and a protocol version. The requestor responds (PWS2)
with its protocol version. After receiving the PWS2 message,
the grantor starts the authentication phase as described in
Section 4.2.5. Once the handshake is complete, both devices
have computed the same shared secret, from which, in the
final phase, two keys are derived using HKDF [27], one for
each direction. These keys are then used to encrypt both
messages with ChaCha20-Poly1305 [37]. The encrypted
content is in both messages an OPACK encoded dictionary.

10We found the name during the binary analysis.
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0x13: OPACK encoded payload

pd TLV8
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20 NSDataCompressed(Vs)

Figure 8: Start Response (M2) in Pair–Verify authentication
showing the multi-level encapsulation.

The first message (PWS3) is sent by the grantor and contains
the Wi-Fi PSK, the SSID, and the hashed contact identifiers
of the grantor. The requestor responds (PWS4) to inform the
grantor that the sharing was successful.

Note that it is unclear to us why the grantor sends its contact
identifiers as the requestor never uses them. We discuss this
issue in Section 5.

4.2.5 Authentication via Extended Pair–Verify

To authenticate and encrypt the actual Wi-Fi password, a Pair–
Verify handshake is performed, which derives a shared secret
and proves the identity of the requestor to the grantor. A
similar version of the Pair–Verify protocol is used in Apple’s
HAP [6]. However, we have found that Apple uses a custom
variation that enables authentication via a user’s Apple ID.
The Pair–Verify protocol consists of 4 messages, shown in
Fig. 6. All messages are encoded using OPACK and contain
a dictionary with one key-value pair, the key pd, and a TLV8
structure as the value. This TLV8 contains the values we now
describe for each message.

First, the grantor generates an ephemeral Curve25519 key
pair for the new session and sends a start request (M1) con-
taining the public key Pc. Upon reception, the requestor
generates another key pair. The start response (M2) contains
the requestor’s generated public key Ps, an Apple ID certifi-
cate Cs, an Apple ID validation record Vs, and a signature
σs, as shown in Fig. 8. All fields except the public key are
encrypted using ChaCha20 [37] with a key derived from the
shared secret and HKDF [27]. The encrypted fields are packed
in another TLV8. Both, Apple ID certificate and validation
record, are signed by Apple and are also used in the AirDrop
protocol [44]. The validation record is tied to the Apple ID
certificate with a universally unique identifier (UUID). In
particular, the UUID is included in the validation record and
the common name of the certificate. The validation record
also contains Apple-validated contact identifiers and is used
by the grantor to validate the identity of the requestor. The
Apple ID certificate is used to sign both public keys, i. e.,



Vulnerability and attack Sec. Impact and severity Mitigation

DoS via IV desynchronization 5.2 + User is unable to use the HO/UC services —

Tracking via linear IV 5.3
++ Attacker can track devices over a long period, even across the
MAC address randomization interval

—

Tracking via async. randomization 5.4 ++ same as above
iOS 13.4, macOS 10.15.4
(no CVE)

MitM via Wi-Fi password auto-fill 5.5
+++ Attacker (1) has full control over client network traffic allow-
ing for, e. g., DNS spoofing, and (2) can compromise the device
by exploiting vulnerabilities in the Safari web browser

—

DoS via settings app crash 5.6
++ User is unable to connect to a new password-protected Wi-Fi
network

iOS 13.5, macOS 10.15.5
(CVE-2020-9827)

Table 3: Overview of discovered vulnerabilities and their real-world impact for iOS and macOS. We rate the severity from low
(+) to high (+++). Under mitigation, ‘—’ means that Apple has not yet confirmed or provided a fix for the vulnerability. We
provide details on the responsible disclosure process at the end of this paper.

σs = sign(Pc +Ps,ks), which proves to the grantor that the
device sending this data, in fact, owns the private key ks cer-
tified by Cs. This signature is also included in the encrypted
TLV8. In the finish request (M3), the grantor encrypts an
empty string and sends the cipher, which includes a 16-byte
Poly1305 authentication tag, to the requestor. Finally, the
finish response (M4) contains a fixed state byte (0x4) and
completes the handshake.

5 Security and Privacy Analysis

Based on our results from reverse-engineering several Con-
tinuity protocols, we conduct a comprehensive security and
privacy analysis of the iOS and macOS platforms. In particu-
lar, we discover a protocol-level DoS attack on HO and UC
(Section 5.2), a device tracking attack that exploits the asyn-
chronous randomization interval of several device identifiers
(Section 5.4), a MitM attack on PWS that causes a victim to
connect to an attacker-controlled Wi-Fi network (Section 5.5),
and a DoS attack against PWS that prevents a user from con-
necting to a new Wi-Fi network (Section 5.6). We a provide
a mitigation to a previously [34] discovered device tracking
vulnerability (Section 5.3). We provide an overview of the
vulnerabilities in Table 3. In the following, we first describe
the common attacker model and then discuss in detail the
individual vulnerabilities, the attack implementations, and
propose practical mitigations for the identified issues.

5.1 Attacker Model

For the following attacks, we consider adversaries that:

• have access to a Bluetooth Low Energy radio and, for
the attack presented in Section 5.5, a Wi-Fi radio that
can act as an access point,

• are in physical proximity (more precisely, within wire-
less communication range) of the target device, and

• are otherwise in a non-privileged position, in particular,
they (1) do not require any contact information about
their target, (2) do not require an existing Bluetooth
pairing with the target, and (3) do not require access to
the same Wi-Fi network.

5.2 DoS via IV Desynchronization

We exploit the short AES-GCM authentication tag in the HO
and UC BLE advertisements to force an IV desynchroniza-
tion between client and server such that HO and UC become
unusable. Apple’s deployed replay protection mechanism is
unable to defend against this attack and requires the user to
reboot their devices.

5.2.1 The Vulnerabilities: Low-Entropy Authentication
Tag and IV-based Replay Protection

The HO BLE advertisements are encrypted using AES-GCM
with a one-byte authentication tag and a two-byte IV (see
Section 4.1). The IV used in the advertisements is a linearly
increasing counter to avoid IV reuse with the same key [21].
Whenever a successfully authenticated advertisement is re-
ceived, the receiver will update the last valid IV with the
current one. From there on, any authenticated advertisement
that has an IV lower or equal to the current one is discarded.

In addition to the replay protection, we observed, that HO
triggers a re-keying protocol whenever the authentication
fails. In that case, HO assumes that the sending device has
updated its HO key KBLE and queries the sending device for
its current key and IV. This re-keying protocol runs over
AWDL and uses the same procedure as HO and UC to protect
the communication. However, we observed that if the returned
key–IV pair match the currently stored pair, no new keys will
be exchanged.



5.2.2 The Attack: Trigger Continuous Rekeying

In the following, we denote C as the client device that stores
a key–IV pair for a linked server device S. The goal of the
attack is to change the IV counter of the key–IV pair at C
so that the IV-based replay protection mechanism will drop
future valid advertisements of S and, thus, C is no longer able
to receive new UC clipboard data or HO activities from S. To
achieve this goal, the attacker

(1) generates a valid HO advertisement as shown in Fig. 3,
(2) spoofs S’s BLE MAC address by setting it as the source

address of the advertisement,
(3) sets the IV in the payload to the maximum value, and
(4) sends out 256 copies of the advertisement to brute-force

all authentication tag values.

The attack works because Apple devices use the shared key
and the IV in the BLE advertisement to verify the authentica-
tion tag. In our attack, we send 255 advertisements with an
invalid tag that are all discarded and trigger a re-keying event
that has no effect (see Section 5.2.1). One advertisement will,
however, have a seemingly valid authentication tag. If the
included IV is greater than the currently stored one, C updates
the IV and then processes the decrypted payload. At this
point, the adversaries have already achieved their goal, and it
does not matter that they are unable to forge a valid payload.
Since the IV at C has been updated, C will discard any subse-
quent advertisements from S as all subsequent advertisements
contain an IV less or equal to 0xffff.

To mount the attack on all device pairings in proximity,
we repeat this attack with all BLE MAC addresses that we
observe. Since we only need to send a BLE advertisement, a
$20 micro:bit [36] is sufficient to mount the attack. We used
the BLESSED open-source BLE stack [16] to build our PoC.

5.2.3 The Mitigation: Longer Authentication Tag

As a mitigation to the attack, we suggest increasing the
length of the authentication tag. While National Institute
of Standards and Technology (NIST) recommends using 128
bits [21], the manufacturer data in the BLE advertisements
can only carry 24 bytes [34]. As the current HO advertisement
already uses 16 bytes (see Fig. 3), Apple could add a new 64-
bit authentication tag and keep the current one for backward
compatibility. Increasing the search space to 264 would effec-
tively prevent our network-based brute-force attack. Note that
limiting “the number of unsuccessful verification attempts for
each key” [21] is not a suitable mitigation as it would open
up a new DoS attack where the attacker could push the limit
and prevent legitimate verification attempts.

5.3 Device Tracking via Linear IV
Martin et al. [34] have discovered that the linearly increas-
ing IV in the HO advertisements can be used for long-term

device tracking even though Apple employs MAC address
randomization in BLE. The problem is that while the BLE
address changes, the IV remains stable. In the following, we
propose a practical mitigation that replaces the linear counter
with an unguessable pseudorandom sequence.

5.3.1 The Mitigation: Changing the IV sequence

To prevent tracking via the linear IV, we propose to use a
shuffled IV sequence with the following properties:

(1) The sequence has a length of 216 and contains all integer
values from 0 to 216−1 exactly once.

(2) A sender can select the next value in the sequence in
constant time.

(3) A receiver can tell if value x is positioned before or after
y in the sequence in constant time.

(4) The sender and receiver only need to share a secret.
(5) Given any value in the sequence, an adversary is not able

to guess the next or previous item of the sequence.

Figure 9 shows our candidate algorithm for generating a
randomized sequence on the Knuth shuffle [26]. It uses a
pseudorandom number generator (PRNG) with a seed derived
from the shared BLE encryption key KBLE and generates
a counter-to-IV mapping. Internally, each HO device now
keeps an internal incrementing counter c and uses fMap(c) as
the IV for the next advertisement. Note that c should also be
increased on the sending device whenever the MAC changes
to synchronize identifier randomization (see Section 5.4). The
algorithm also generates the reverse IV-to-counter mapping
to identify in constant time whether a received IV x comes
before or after the current counter c, which can be done by
comparing c with rMap(x).

While the mitigation is practical from an overhead perspec-
tive (constant-time lookup), it is not backward-compatible
as it would break the replay-protection mechanism currently
employed in Apple’s devices (see Section 5.2). Also, note
that as the sequence is based on the HO key, the algorithm
needs to re-run every time a re-keying event occurs.

() function genIVSequence(KBLE) {
fMap = [0..2^16-1] /* forward mapping */
rMap = [] /* reverse mapping */
seed = HKDF(KBLE, "IV-sequence")
prng = PseudoRandomNumberGenerator(seed)
for (i = len(fMap) - 1; i > 0; i--) {

j = prng.next(i)
fMap.swap(i,j)
rMap[fMap[i]] = i

}
return (fMap , rMap)

}

Figure 9: Generating a pseudo-random IV sequence.



5.4 Device Tracking via Asynchronous Identi-
fier Randomization

When using a Continuity service such as HO or UC, AWDL
emits several device identifiers such as MAC address and
hostname in the clear. While Apple has implemented ran-
domization schemes for these identifiers, we found that the
intervals are sometimes not in sync and allow for continuous
device tracking. AWDL uses Wi-Fi and does, by itself, not
offer authentication or encryption. Instead, Apple defers pro-
tection to the upper-layer protocol. Therefore, an attacker can
monitor all packets sent over the air.

5.4.1 The Vulnerability: Asynchronous Identifier Ran-
domization

Apple has implemented MAC address randomization for
AWDL. In 2019, Apple also introduced hostname random-
ization [44] in the Bonjour service announcements that are
sent via AWDL. In this paper, we discovered that Apple in-
troduced the new device identifier rpBA in the TXT record of
the DNS service announcements (see Section 4.1.3). Apple
devices regenerate (or randomize) each identifier after some
time; however, this does not happen synchronously.

5.4.2 The Attack: Merging Identifiers

Consequently, identifiers may overlap and, thus, trivially en-
able device tracking for longer than the randomization interval.
To practically mount such an attack, the attacker only needs
to be within Wi-Fi communication range of their target(s).
In particular, the attacker needs a Wi-Fi card and tune it to
channel 44 or 149 (depending on the country [42]) and moni-
tor AWDL frames. Using a simple matching algorithm that
stores current identifiers and updates them upon receiving
new frames, the attacker can continuously track their targets.

We conduct an experiment in an office environment to
demonstrate the problem and the attack and show the exem-
plary result of tracking an iOS 13 device in Fig. 10. The
figure depicts the times when the device emits AWDL frames
(top bar). The following bars show when a particular ran-
domized identifier was recorded for the first and last time and,
thus, clearly indicate the times at which the overlap occurs.
For example, in Fig. 10, the rpBA overlaps with the other
identifiers for 35 ≤ t ≤ 38min. We note that the intervals
for the IPv6 and MAC addresses are perfectly in sync be-
cause the link-local IPv6 address is derived from the current
MAC address [42]. It is also noteworthy that the randomiza-
tion intervals of the individual identifiers differ strongly and
range from less than one minute (hostname) to more than 35
minutes (rpBA).

0 10 20 30 40 50
Time t [min]

MAC address

IPv6 address

Hostname

rpBA

Frames received

Figure 10: Tracking an iOS device using its randomized
identifiers. We show the frame reception time in the top
bar. The other bars indicate when the randomized identifiers
were recorded for the first and last time. Each bar segment
represents a new random identifier.

5.4.3 The Mitigation: Synchronous Randomization

To understand why the overlap with rpBA and the long
intervals occur, we analyze the -[CUSystemMonitorImp

_rotatingIdentifierMonitorStart] function in the
CoreUtils framework. We found that the function sets a
timer to 17 minutes to randomize the rpBA value but uses a
low-level API11 that allows the system to defer the call to
conserve energy. This timer value is neither synchronized
with others nor does it update in regular intervals, which
results in the analyzed overlaps.

To mitigate this issue, we suggest that the randomization
intervals of the identifiers should be synchronized or—at
least—not overlap (e. g., hostname and MAC address). In
addition, we suggest that the randomization interval for any
identifier should not be longer than 15 minutes. We propose
to introduce a system-wide randomization API to prevent
regression and accommodate future identifiers.

5.5 MitM via Wi-Fi Password Auto-Fill
We exploit the one-sided authentication in the PWS protocol
to automatically fill the Wi-Fi password field for requestors,
causing the iOS or macOS target to connect to an attacker-
controlled Wi-Fi network and raise the attacker to a privileged
MitM position. This position allows for mounting secondary
attacks such as DNS spoofing or traffic analysis. In addition,
the attacker can compromise the target device by triggering
Safari exploits.

5.5.1 The Vulnerability: One-Sided Authentication

The MitM attack exploits the asymmetry of information that
the parties in PWS need to provide: the requestor must pro-
vide certified contact information, while the grantor does not,

11https://developer.apple.com/documentation/dispatch/
1385606-dispatch_source_set_timer
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Figure 11: Protocol flow and user interaction of our Wi-Fi password auto-fill attack.



as per Apple’s design [4]. In our case, the attacker acts as the
grantor and, therefore, does not need to possess any informa-
tion about their target. We elaborate on this problem in the
following.

In Section 4.2.5, we describe that the requestor proves its
identity to the grantor using the validation record signed by
Apple and the Apple ID certificate. Therefore, the grantor
can verify that the requestor owns the contact identifiers in
its advertisement. In contrast, the requestor does not check
the identity of the grantor. Even though the hashed contact
identifiers of the grantor are included in the PWS3 packet,
they are never used on the requestor. Also, the PWS3 message
does not contain the validation record and Apple ID certifi-
cate of the grantor. The mandatory SSID in PWS3 can be
easily obtained by scanning the surrounding Wi-Fi networks
and comparing the hashed names to the field in the BLE ad-
vertisement. We use the missing validation of the grantor,
combined with the fact that no user interaction is necessary
on the requestor to perform an attack against the requestor.

5.5.2 The Attack: SSID Spoofing and Wi-Fi Password
Auto-Fill

This attack targets iOS and macOS devices while they are
connecting to a new Wi-Fi network. The goal is to get the tar-
get device to connect to a password-protected Wi-Fi network
with the same SSID, but controlled by the attacker, further
named spoofed network. We show the complete protocol flow
and user interaction in Fig. 11. The attacker could then use
its MitM position to analyze the victim’s traffic or mount
secondary attacks such as DNS or NTP spoofing [32]. Be-
sides, the attacker could use the automatically loaded captive
portal web page [17] to exploit vulnerabilities in the Safari
web browser [13], thereby extracting sensitive user data or
accessing the user’s camera [2].

Our experiments with different setups showed that while
opening the password dialog, the requestor saves the BSSID
with the strongest signal and only tries to connect to this

Figure 12: Screen capture of our video PoC [31] for the Wi-Fi
password auto-fill attack.

BSSID. For a successful attack, the spoofed network needs
to be the one with the strongest signal at that moment. The
attacker can increase the transmit power of its access point
or use directional antennas to increase their chances. The
attacker continues by running our PWS client with the origi-
nal SSID and the PSK of its spoofed network. Without any
further user interaction required by the victim, once PWS is
complete, the target device connects to the spoofed network.
One problem with the presented attack is that a careful user
might notice that they are automatically connected to a Wi-Fi
network without having to type any password. We discovered
that the grantor could hold the session open after receiving
the Pair–Verify M2 packet, wait until the victim entered a
password, and continue the attack, i. e., send M3, just before
the victim hits connect. If continued in the right moment,
e. g., by observing the victim, the attack is more likely to re-
main unnoticed. We provide a video PoC [31] to demonstrate
the practical feasibility of the attack in Fig. 12. In the video,
the attacker presents a crafted captive portal web page to its
victim upon success.

5.5.3 The Mitigations: Mutual Authentication and
Explicit Consent

The SSID duplication attack works due to the interaction-
less user interface on the requestor and the missing identity
validation of the grantor. Therefore, we propose a two-step
mitigation. First, we propose to introduce mutual authentica-
tion to the Pair–Verify handshake. It is unclear why Apple did
not implement this is in the first place, given that AirDrop’s
authentication protocol is designed in this way [44]. With
mutual authentication, the attack would be more difficult to
carry out since the attacker would have to be in the contact list
of the victim. Second, we propose to change the UI such that
the user of the requestor can decide whether to accept a pass-
word from a grantor. Again, Apple has already implemented
a similar mechanism in AirDrop, where a user is asked to
accept an incoming file.

5.6 Preventing Wi-Fi Password Entry via
Settings App Crash

We discover a parsing vulnerability in the PWS protocol that
allows us to prevent Wi-Fi password entry of nearby devices.

5.6.1 The Vulnerability: Parsing Bug in PWS

While implementing our own PWS client, we discovered that
when removing the mandatory SSID or the PSK key-value
pair from the dictionary, which is sent in the PWS3 message
shown in Fig. 13, the requestor fails to parse the packet and
crashes the current application.



{
dn: <Grantor name >,
gr: 1,
op: 5,
eh: [base64(SHA(<email >)), ...],
ph: [base64(SHA(<phone >)), ...],
nw: <SSID>,
psk: <Wi-Fi PSK>

}

Figure 13: PWS3 message highlighting the problematic fields.

5.6.2 The Attack: Preventing Password Entry for New
Wi-Fi Networks

In this attack, we crash the Settings app on iOS or close the
Wi-Fi password window on macOS of every device within
Bluetooth range that is currently entering a password for a
Wi-Fi network. Every device logged in with an Apple ID and
has Bluetooth enabled sends out PWS advertisements once
the user enters the Wi-Fi password view. We demonstrate the
effectiveness of the attack in a video PoC [30].

5.6.3 The Mitigation: Check for Missing Fields

Apple should be able to fix the vulnerability by checking for
empty or missing fields and graciously fail if an unexpected
packet is encountered. Until a fix is provided, users can
disable Bluetooth on their devices to thwart the attack.

6 Conclusion

Undocumented proprietary protocols are hard to analyze due
to the costly initial investment in reverse-engineering, though
severe vulnerabilities have been found in the past [18, 23, 34,
44]. Our method to conduct structured reverse engineering
of Apple’s Continuity wireless ecosystem is a crucial corner-
stone that enables independent third-party security audits,
which, in effect, help to protect the users of 1.5 billion devices
worldwide. Using this method, we investigate the protocols
involved in the Handoff (HO), Universal Clipboard (UC), and
Wi-Fi Password Sharing (PWS) services and discover several
vulnerabilities that enable denial-of-service (DoS) attacks,
device tracking, and machine-in-the-middle (MitM) attacks.
All of the attacks can be practically mounted from an attacker
in proximity and only require low-cost hardware. To facilitate
similar research in the future, we appeal to the manufacturers
to document their proprietary protocols as Apple has already
done with their Homekit Accessory Protocol (HAP) stack.
In the meantime, we believe that our detailed findings can
bootstrap the analysis of other Continuity services as certain
protocol components (e. g., OPACK, Pair–Verify) seem to be
shared across services such that follow-up work does not have
to start from scratch.

Responsible Disclosure

We have shared our findings with Apple as we discovered
them. Therefore, the disclosure timeline and progress dif-
fer by vulnerability (different follow-up IDs with Apple’s
product security team). In particular, we disclosed the DoS
attack on HO in Section 5.2 on November 27, 2019, the linear
IV tracking mitigation in Section 5.3 November 20, 2019,
the asynchronous hostname randomization in Section 5.4 on
November 27, 2019, the SSID spoofing and Wi-Fi password
auto-fill attack in Section 5.5 on February 10, 2020, and the
Settings app crash in Section 5.6 on January 13, 2020. So far,
Apple has published security updates for two vulnerabilities
as detailed in Table 3.

Availability

We release the following open-source software artifacts as
part of the Open Wireless Link project [43]:

(1) a reverse-engineering toolkit for Continuity services
(apple-continuity-tools),

(2) a decryption utility for HO and UC BLE advertisements
(handoff-ble-viewer),

(3) an implementation of the HO and UC authentication
protocol (handoff-authentication-swift),

(4) an implementation of a PWS requestor includ-
ing an OPACK (de)serializer written in Python
(openwifipass), and

(5) implementations of a PWS grantor and requestor written
in Swift (wifi-password-sharing).

If the links do not work, prefix the respective project name
with https://github.com/seemoo-lab/.
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