Evil Under the Sun:
Understanding and Discovering Attacks on
Ethereum Decentralized Applications

Liya Su1,2,3
Xinyue Shen1,4
Xiangyu Du1,2,3
Xiaojing Liao1
XiaoFeng Wang1
Luyi Xing1
Baoxu Liu2

1Indiana University Bloomington
2Institute of Information Engineering, Chinese Academy of Sciences,
3University of Chinese Academy of Sciences
4Alibaba Group
Background

- Ethereum: computer programs on the blockchain
- Externally Owned Accounts (EOAs)
- Smart Contract: deploy on Ethereum
- Dapp: public smart contract
Background

Dapp Attack

Attacker
Smart contract
Transaction

Call

Dapp

Transaction

Ethereum

Attacker

Dapp

Transaction
Background

Requirement

Facts

3,137 Dapps
63,77k active users
Over 1 million transactions
7.55 million USD

14K Ethers from the victim Fomo3D
No extensive forensic analysis
Research Questions

What like and how the attacks launch on real-world Dapps?

How to automatically reconstruct Dapp attacks?

How to find new attack and 0-day victim Dapps?
Transaction based Forensic Analysis

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TO</td>
<td>0x54*</td>
</tr>
<tr>
<td>FROM</td>
<td>0x73*</td>
</tr>
<tr>
<td>VALUE</td>
<td>0.01 Ether</td>
</tr>
<tr>
<td>DATA</td>
<td>0xc52ab778 (methodID of function execute())</td>
</tr>
<tr>
<td>GAS PRICE</td>
<td>6.3x10^{-9} Ether (6.3 Gwei)</td>
</tr>
</tbody>
</table>

1. (0x73*, 0x54*, execute(0xa6*), 0.1 ETH)
2. (0x54*, 0xa6*, airDropPot_(), 0 ETH)
3. (0x54*, 0xa6*, airDropTracker_(), 0 ETH)
4. (0x54*, 0x07*, execute(0xa6*), 0.1 ETH)
5. (0x07*, 0xf7*, create, 0.1 ETH)
6. (0xf7*, 0xa6*, buyXid(0x0000), 0.1 ETH)
7. (0xf7*, 0xa6*, withdraw(), 0 ETH)
8. (0xa6*, 0xf7*, transfer, 0.1012 ETH)
9. (0xf7*, 0x73*, suicide, 0.1012 ETH)
Example of transaction execution traces.

- `O`: exploit contract, `DXVECTOR`: contract generated in execution, `●`: Dapp, `◇`: EOA.
Analyzing Exploit Transactions

Workflow of the measurement approach.

Data Collection and Derivation
Analyzing Exploit Transactions

Data Collection and Derivation

Table 2: Known Dapp attacks. D_s is the set of data collected from the reports, and D_e includes those derived.

<table>
<thead>
<tr>
<th>Attack type</th>
<th># of Dapps</th>
<th># of exploit contracts</th>
<th># of attacker EOAs</th>
<th># of attack transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_s</td>
<td>D_e</td>
<td>D_s</td>
<td>D_e</td>
</tr>
<tr>
<td>Bad randomness</td>
<td>4</td>
<td>14</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>DoS</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Integer overflow/underflow</td>
<td>13</td>
<td>32</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Reentrancy</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Improper authentication</td>
<td>12</td>
<td>18</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Unique total</td>
<td>25</td>
<td>56</td>
<td>20</td>
<td>45</td>
</tr>
</tbody>
</table>
Analyzing Exploit Transactions

Example of Dapp criminal footprints.
Analyzing Exploit Transactions

Preparation: Testing contracts or transferring fund

Testing transaction in preparation stage.
Analyzing Exploit Transactions

Exploitation: The adversary tends to rapidly evolve his strategies

Exploit contract evolution at the exploitation stage.
DEFIER: Idea and Design

Figure 6: Sequence representation.
DEFIER: Idea and Design

Preprocessing

Transaction clustering

\[D(g_1, g_2) = \alpha \min_{(o_1, \ldots, o_k) \in O(g_1, g_2)} \sum_{i=1}^{k} c(o_i) + \beta \Delta t \] \hspace{1cm} (1)

- Structure similarity
- Timing closeness
DEFIER: Idea and Design

Sequence-based Classification

EOA-Dapp-execution attention model: highlight the useful information related to the EOA's intent on the Dapp.

Output types: normal, preparation, exploitation, propagation and completion.
Discussing the Result

Table 6: Dataset and evaluation results.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># transactions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundtruth set</td>
<td>badset 57,855</td>
<td>(\text{pre}{\text{micro}} 98.2%, \text{pre}{\text{macro}} 92.4%)</td>
</tr>
<tr>
<td></td>
<td>goodset 39,124</td>
<td>(\text{rec}{\text{micro}} 98.1%, \text{rec}{\text{macro}} 98.4%)</td>
</tr>
<tr>
<td>Unknown set</td>
<td>2,350,779</td>
<td>(\text{pre}_{\text{micro}} 91.7%) positive 476,334</td>
</tr>
<tr>
<td>Sampled testset</td>
<td>30,888</td>
<td>(\text{pre}_{\text{macro}} 83.6%)</td>
</tr>
</tbody>
</table>

\(\text{pre}_{\text{micro}} \) and \(\text{pre}_{\text{macro}} \): micro of precision, macro of precision

\(\text{rec}_{\text{micro}} \) and \(\text{rec}_{\text{macro}} \): micro of recall, macro of recall

\(\text{positive} \): transactions that labeled as one of attack stages
Discussing the Result

Table 10: Victim Dapps in different categories.

<table>
<thead>
<tr>
<th>Type</th>
<th># Dapps/0-day</th>
<th># attacker EOAs/0-day</th>
<th># exploit transactions/0-day</th>
<th>ex. of victim Dapps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambling</td>
<td>51/43</td>
<td>65,778 /11,339</td>
<td>360,524 /114,473</td>
<td>Lucky Blocks</td>
</tr>
<tr>
<td>Game</td>
<td>28/27</td>
<td>959/919</td>
<td>52,673 /52,176</td>
<td>SpaceWar</td>
</tr>
<tr>
<td>Finance</td>
<td>5/5</td>
<td>183/183</td>
<td>59,872 /59,872</td>
<td>STOX</td>
</tr>
<tr>
<td>Token</td>
<td>2/1</td>
<td>279/167</td>
<td>4,478/472</td>
<td>Power of Bubble</td>
</tr>
<tr>
<td>Total</td>
<td>85/75</td>
<td>67,199 /12,608</td>
<td>476,342 /226,763</td>
<td></td>
</tr>
</tbody>
</table>

Table 11: Unknown set result.

<table>
<thead>
<tr>
<th>Attack stage</th>
<th># Dapps/0-day</th>
<th># attacker EOAs/0-day</th>
<th># exploit transactions/0-day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack</td>
<td>80/70</td>
<td>42,661/8,237</td>
<td>214,408/106,436</td>
</tr>
<tr>
<td>preparation</td>
<td>85/75</td>
<td>35,955/3,650</td>
<td>143,179/39,908</td>
</tr>
<tr>
<td>Exploitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attack</td>
<td>75/65</td>
<td>18,466/6,545</td>
<td>118,755/80,419</td>
</tr>
<tr>
<td>propagation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The first measurement study and forensic analysis on real-world Dapp attacks.

Our new understanding and CTI discovered can help mitigate the threat to Dapps.

Discover 476,342 exploit transactions on 85 target (with a microprecision of 91.7%).

DEFIER reported 75 0-day victim Dapps.

An attack lifecycle discovery tool can potentially be used to disrupt exploits, sometimes even before damages are inflicted.
Thank you!

Authors: Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, Xiaofeng Wang, Luyi Xing, Baoxu Liu

Contact: suliya@iie.ac.cn

Availability: The annotated data and the implementation of DEFIER is available at https://drive.google.com/drive/folders/1cdD1gHNbWIS228QXmeUReougSLk1kvf?usp=sharing.