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Machine Learning for Malware Detection
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• Static ML models play key role in 
pre-execution malware prevention

• Volume and diversity of 
executables makes training 
challenging

• Crowdsourced threat feeds provide 
an ideal source for training data



Our contributions

• New backdoor poisoning attacks targeting the supply chain 
of ML malware classifiers

• Model-agnostic methodology to generate backdoors 
using explainable ML techniques

• Functional poisoned binaries for multiple file types

• Attacks effective on a variety of models and difficult to 
mitigate using existing defensive strategies
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Backdoor poisoning

Background

• Backdoor (Gu et al. 2017): associate a 
pattern (trigger) with a target class

Challenges:

• Attacker has no control over training 
labels - Clean-label (Shafahi et al. 2018)

• Must respect the constraints dictated by 
the data semantics
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Image from Gu et al. 2017



Threat model
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Imports = 120

Using model explanations

SHapley Additive exPlanations
(SHAP) – Lundberg et al. 2017

• Model agnostic framework

• Local interpretability

• Estimate influence of feature-value 
assignments on model decisions

• Global interpretability

• Aggregate SHAP values over all the 
points for each feature

• Provides intuition on feature 
importance and direction

8

strings= 2

section_entropy = -5.013



Backdoor design strategies

Independent

Independently select high-leverage 
features and uncommon/weakly-
aligned values

• Stronger effect

• Identifiable points

Combined

Greedily select coherent 
combinations of features and values
aligned with target class

• Backdoor points close to real data

• Stealthier
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Datasets

Approach:

• Find subset of modifiable features

• Penalize the selection of infeasible values
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Dataset Size Type Models Approach

EMBER (Anderson et al. 

2018)

800k samples

2351 features
Windows PE LightGBM, DNN

Developed a specific 

backdooring utility

Drebin (Arp et al. 2014)
128k samples

545k features
Android APK Linear SVM

Restricted modifications 

to manifest file

Contagio (Šrndić et al. 2014)
10k samples

135 features
PDF Random Forest

Restricted modifications 

as in Šrndić et al. 2014



Experiments 

• Significant damage at 1% poison rate and 
17 manipulated features

• Up to ~80-90% attack success at 4% rate

• Minimal side effect on clean data 
accuracy

• Similar results for the feed forward Neural 
Network
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Experiments 

• Drebin:

• Around 40% success at 1% poisoning 
rate and 30 features

• Contagio:

• 75% success at 1% poisoning rate 
with 30 features

• Higher variance due to dataset size
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About mitigations

• We adapted different approaches from computer vision:

• Spectral signatures (Tran et al. 2018)

• Activation clustering (Chen et al. 2018)

• Isolation Forests (Liu et al. 2008)

• No tested defense found all backdoors consistently

• Backdoors generated by the combined strategy are hard to identify
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Conclusions

• Benign binaries can be used as 
carriers for poisoning attacks

• Model interpretability methods can be 
leveraged to guide the backdoor 
generation

• This approach is model-agnostic and
applies to multiple data modalities

• An adversary can generate stealthy
backdoors

Thank you!
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https://github.com/ClonedOne/MalwareBackdoors

https://github.com/ClonedOne/MalwareBackdoors
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