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The Fuzzing Landscape
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Software Quality Assurance
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Fuzzing (Fuzz Testing)
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Automated, high-volume testing
1. Generate lots of testcases
2. Find, save, and mutate the 

few interesting testcases
3. Repeat!

Carpet-bombing testing approach



Coverage-guided Grey-box Fuzzing
• Today’s de-facto bug-finding approach

Fuzzing in the Real World
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Grey-box Fuzzing
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Some internals
(e.g., code coverage)

Key requirement: ability to instrument the target

All internals
(developer-level)

No internals
(basic I/O only)

Target is open-source? Just compile-it-in

ineffective inefficient

Fast and effective



When is instrumentation difficult?
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When target is binary-only



The Fuzzing Instrumentation Gap
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semantically rich semantically opaque

Source-available Fuzzing Binary-only Fuzzing

Low (18–32%) overhead
Enhanced via code xform

Up to 10,000% slower
Outweighed by overhead

Can compilers’ capabilities and speed 
be extended to binary-only fuzzing?



Compiler-quality Binary 
Fuzzing Instrumentation
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What instrumenter properties must be achieved 
for compiler-quality speed and transformation?

Guiding Principle

Code Insertion

Code Invocation

Register Usage

Scalability

Key considerations:

To attain compiler-quality instrumentation, we must 
match how compilers handle these key considerations
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Consideration 1: Code Insertion
Dynamic Binary Translation Static Binary Rewriting

Should insert code via static rewriting

• Analyze / instrument during runtime
• Repeatedly pay translation cost

• Perform all tasks prior to runtime
• Analogous to compiler (e.g., LLVM IR)

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

Decode 
& Lift

Instrument & Optimize IR 
Code 
Gen.
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Consideration 2: Code Invocation
Trampolined Invocation Inlined Invocation

Should invoke code via inlining

• Transfer to / from “payload” function
• Repeatedly pay CF redirection cost

• Weave new instructions with original
• Preferred mechanism of most compilers

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
call payload
pop rbp
ret

payload:
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
ret

Trace
Return

Original Instrumentation
push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
pop rbp
ret

Trace

Original Instrumented
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Consideration 3: Register Usage
Liveness Unaware Liveness Aware

Should carefully track register liveness

• Reset all regs around instrumentation
• Cost of saving and restoring adds up

• Track liveness to prioritize dead regs
• Critical to compilers’ code optimization

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
pop rbp
ret

Trace

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

InstrumentedOriginalpush rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
push edi
push ecx
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi
mov _prev, edi
pop ecx
pop edi
pop rbp
ret

Restore Regs

Save Regs

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

Original
Instrumented
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Consideration 4: Scalability
Common Platforms Common Characteristics 

Should scale to all common formats

• Linux x86-64  
• Windows PE32+

• C and C++
• PIE and non-PIE
• Stripped of debug symbols

X
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➞ ➞

➞➞

The ZAFL Platform
• Statically-inserted, inlined instrumentation with liveness awareness
• Adapted from the Zipr binary rewriting project
• Support for x86-64 ELF binaries (and cross-platform support for PE32+)



Extending Compiler-based 
Enhancements to Binary Fuzzing

Performance Transforms:
• Single-successor path pruning
• Dominator tree CFG pruning
• Instrumentation downgrading

Implement a suite of 5 popular LLVM-based fuzzing transforms

Feedback Transforms:
• Sub-instruction profiling
• Context sensitivity tracking

ZAFL’s low-level API brings a semantic richness to the 
otherwise semantically-opaque world of binary fuzzing
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Evaluation
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• Benchmarks: 8 diverse open-source + 5 closed-source binaries

• Bug-finding: 5x24-hr trials per benchmark run on cluster

• Performance: scale overhead relative to non-tracing speed

• Precision: enumerate erroneously-unrecovered instructions;
compare true/false coverage signal to AFL-LLVM’s

• Scalability: automated smoke tests and/or manual execution

Evaluation Components

18



0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

Does ZAFL enhance binary fuzzing?

19

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. A
vg

. C
ra

sh
es

AFL-Dyn. AFL-QEMU ZAFL

26% more crashes than AFL-Dyninst
131% more crashes than AFL-QEMU



Is ZAFL’s speed near compilers’? 
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Compiler: 24%, Assembler: 34%   
AFL-Dyninst: 88%, AFL-QEMU: 256%
ZAFL: 32%, ZAFL+Transforms: 27%



Can ZAFL support real closed-source?
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55% more crashes than AFL-Dyninst
38% more crashes than AFL-QEMU



Is ZAFL precise?
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Highest overall instruction recovery
Mean coverage accuracy of 99.99%



Does ZAFL scale?
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Apply ZAFL to 56 total binaries 

(33 open- and 23 closed-src)

Linux and Windows binaries

Stripped, PIE, and non-PIE

100KB–100MB binary size

100–1,000,000 basic blocks



• Much of today’s commodity software is distributed as binary-only
• Yet, instrumenting—and hence, fuzzing—it far less effective due to 

binary code’s semantic opaqueness

Conclusions: Why ZAFL?
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• Bug-finding:
• Performance:
• Scalability:

26—131% superior to Dyninst/QEMU
Within 10% of LLVM’s runtime speed
Linux and Windows, 10KB-100MB filesizes, 
100-1M basic blocks, and other characteristics

By carefully matching compilers’ key attributes, ZAFL attains compiler-quality 
speed and fuzzing-enhancing program transformation for binary fuzzing:

Mitigating these challenges demands closing fuzzing’s instrumentation gap!



Thank you!
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Find ZAFL and our evaluation benchmarks at:

git.zephyr-software.com/opensrc/zafl

Happy (binary) fuzzing!



Appendix: The Binary Fuzzing 
Instrumentation Landscape
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Code Insertion

Code Invocation

Register Usage

Scalability

Static Rewriting

Inlined Invocation

Liveness Aware

Support Broad 
Formats

Until all four properties are met, the gap between 
source- and binary-level fuzzing will remain


