Identifying Harmful Media in End-to-End Encrypted Communication

Efficient Private Membership Computation

Anunay Kulshrestha Jonathan Mayer
USENIX Security Symposium 2021

Center for Information Technology Policy
Princeton University
Motivation

Harmful Media

- Child sexual abuse material (CSAM), terrorist recruiting imagery, disinformation
- Facebook made 16.8 million reports of CSAM in 2018\(^1\)
- In non-E2EE services, perceptual hash matching (PHM) is used
- Datasets of perceptual hashes collated by National Center for Missing and Exploited Children and Global Internet Forum to Counter Terrorism

End-to-end encryption (E2EE) \(\Rightarrow\) service providers cannot access user media

- Law enforcement agencies argue against E2EE deployment until providers can detect harmful media\(^2\)
- Civil society and academics are skeptical about privacy-preserving detection\(^3\)

\(^1\)Patel et al. (2019)
\(^2\)Patel et al. (2019, 2020)
\(^3\)Portnoy (2019); Green (2019)
Perceptual Hash Matching

Perceptual Hash Function (PHF)

- Reduce media to hashes with Hamming distance locality for perceptual similarity
- However, this is not always true (detailed analysis in the paper)

Perceptual Hash Matching (PHM)

- Client holds media I such that $x = \text{PHF}_k(I)$
- Server holds set B of harmful perceptual hashes (hidden from public)
- $d_H(x, y)$ is the Hamming distance between $x, y \in \{0, 1\}^k$ and $\delta_H < k$ is a similarity threshold

\[\text{Is } x \in B? \text{ (exact) or is } y \in B \text{ s.t. } d_H(x, y) \leq \delta_H? \text{ (approximate)}\]
Problem Formulation

<table>
<thead>
<tr>
<th>Private Exact Membership Computation (PEMC)</th>
<th>Delegated party learns whether $x \in B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Approximate Membership Computation (PAMC)</td>
<td>Delegated party learns whether $y \in B$ such that $d_H(x, y) \leq \delta_H$</td>
</tr>
</tbody>
</table>

Delegation
- Either party can be delegated via Server- or Client-revealing variants

Server Privacy
- Client learns no information about B

Client Privacy
- Server learns no information about x (in a Client-revealing protocol)

Security Model
- Semi-honest (same as PHM systems) but one-sided security against a malicious Client who cheats in the protocol
Limitations

Potential for Abuse
Censorship or illegal surveillance (due to lack of trust in B)

False Positives
Inherent in perceptual hash matching that break E2EE privacy guarantee for honest users

Attack Surface
Increase in attack surface for E2EE deployments

Adverse Externalities
International relations and market competition

We do not take a position on deployment. Our goal is to spark discussion and future work by formalizing the problem area and demonstrating technically feasible protocols.
Related Work

Content Moderation (E2EE) Message franking and message traceback\(^4\)

Private Membership Test Client holding \(x\) wants to know \(x \in B\) where \(B\) is held by a Server, without revealing anything about \(x\)\(^5\)

Biometric Authentication Client holding \(x\) wants to prove to a Server holding \(B\) that \(x\) is similar enough to \(y \in B\), without revealing anything else about \(x\)\(^6\)

\(^4\) Tyagi et al. (2019b,a); Grubbs et al. (2017)

\(^5\) Ramezanian et al. (2019); Ali et al. (2019); Tamrakar et al. (2017)

\(^6\) Yasuda (2017); Yasuda et al. (2015); Osadchy et al. (2010)
Protocol Overview

<table>
<thead>
<tr>
<th>Private Exact Membership Computation</th>
<th>Locality-Sensitive Hash Bucketization</th>
<th>Private Information Retrieval</th>
<th>Private Equality Test</th>
<th>Private Threshold Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Sampling</td>
<td>Computationally Private Information Retrieval</td>
<td>Private Exact Equality Test (ElGamal PHE)</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Private Approximate Membership Computation</th>
<th>Locality-Sensitive Hash Bucketization</th>
<th>Private Information Retrieval</th>
<th>Private Equality Test</th>
<th>Private Threshold Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miniature Perceptual Hashes</td>
<td>Computationally Private Information Retrieval</td>
<td>Private Approximate Equality Test (BFV FHE)</td>
<td>Privacy-Preserving Comparison</td>
<td></td>
</tr>
</tbody>
</table>
Locality Sensitive Hash Bucketization

Goal
Reduce hash space without revealing any information about x or B

Locality Sensitive Hashing
$Pr[\mathcal{L}(x) = \mathcal{L}(y)] \propto \text{similarity}(x, y)$ for all $x, y \in \{0, 1\}^k$

Bit Sampling
Sample indices i_1, \ldots, i_l from $[0, k - 1]$, let $\mathcal{L}_b : \{0, 1\}^k \to \{0, 1\}^l$
s.t. $\mathcal{L}_b(x) = x_{i_1} || \cdots || x_{i_l}$. We use $\mathcal{L}_b(x) = x_0 || \cdots || x_{l-1}$. Works for PEMC, not for PAMC.

Miniature PHFs
If u is the least hash size $\geq l$ supported by PHF and M is arbitrary media, let $\mathcal{L}_p : \{0, 1\}^k \to \{0, 1\}^l$ s.t. $\mathcal{L}_p(x) = y_0 || \cdots || y_{l-1}$ where $x = \text{PHF}_k(M)$ and $y = \text{PHF}_u(M)$.

Server builds LSH index Ind using an l-bit LSH family $\mathcal{L}(\cdot)$. Bucket $i \in [0, 2^l - 1]$ is mapped to a set of ciphertexts C_i

$\text{Ind}[i] = C_i = \{\text{Enc}(\cdot, y) : \mathcal{L}(y) = i\}$
Goal
Retrieve homomorphically encrypted hashes from reduced search space without revealing any information about x or B

Private Information Retrieval
Client can retrieve e_j from a Server holding n elements e_1, \ldots, e_n without revealing j

Recall that Server builds LSH index Ind

Client with input x can compute $j = \mathcal{L}(x)$ and retrieve $\text{Ind}[j] = C_j$ via PIR
Private Exact Equality Test

Goal
Check if two ciphertexts decrypt to the same value, without revealing anything else

Using partially homomorphic ElGamal Cryptosystem

Public: hash size k, security level λ

Client

- $x \in \{0, 1\}^k$
- Choose randomizer $r \in \{0, 1\}^k$
- $c = r \times_E (c_y +_E Enc(pk, -x))$

Server

- $y \in \{0, 1\}^k$
- $(pk, sk) = Gen(1^\lambda)$
- $c_y = Enc(pk, y)$
- DecCheck$(sk, c, 0) \overset{?}{=} \top$

$c = Enc(pk, r \cdot (y - x))$ and DecCheck$(sk, c, 0) \overset{?}{=} \top \iff x = y$
Private Approximate Equality Test

Goal
Compute an encryption of the Hamming distance between two encrypted strings

Using fully homomorphic BFV Cryptosystem

BFV ciphertexts are polynomials, so define packings $\text{Pack}_1, \text{Pack}_2 : \{0, 1\}^k \rightarrow \mathbb{Z}[X]$

J_x, J_y are constant polynomials (given bit size k and BFV parameter n)7

$\text{Pack}_1(m) = \sum_{i=0}^{k-1} m_i X^i$ $\text{Pack}_2(m) = m_0 - \sum_{i=1}^{k-1} m_i X^{n-i}$ $J_x = \sum_{i=0}^{k-1} X^i$ $J_y = -\sum_{i=0}^{k-1} X^{n-i}$

$\zeta(c_x, c_y) = -2^{-1}(2c_x - J_x)(2c_y - J_y) + 2^{-1}J_x J_y$

$c_x = \text{Enc}(\cdot, \text{Pack}_1(x))$ $c_y = \text{Enc}(\cdot, \text{Pack}_2(y))$

7Yasuda et al. (2015)
Private Approximate Equality Test

Using fully homomorphic BFV Cryptosystem

Public: hash size k, security level λ, BFV parameter n

Client

- $x \in \{0, 1\}^k$
- $c_x = \text{Enc}(pk, \text{Pack}_1(x))$
- $c_r = \zeta(c_x, c_y)$

Server

- $y \in \{0, 1\}^k$
- $(pk, sk) = \text{Gen}(1^\lambda)$
- $c_y = \text{Enc}(pk, \text{Pack}_2(y))$
- $p_{x,y} = \text{Dec}(sk, c_r)$
- $d_H(x, y) = p_{x,y}(0)$

Server learns $d_H(x, y) = p_{x,y}(0)$
Private Threshold Comparison

Goal
Server learns the Hamming distance but want to reveal only whether it is at most δ_H

Idea: Use additive randomization, undo it using Privacy Preserving Comparison (PPC)

Osadchy et al. (2010) use Oblivious Transfer

Choose random poly. r

$$c_r = \zeta(c_x, c_y) + r$$

$$\nu_c = r(0)$$

$$\nu_s = p_{x,y}(0) - \delta_H = d_H(x, y) + r(0) - \delta_H$$

$$\text{PPC}(\cdot, \nu_c, \nu_s) = \perp \iff \nu_s \leq \nu_c \iff d_H(x, y) \leq \delta_H$$
Private Exact Membership Computation (PEMC)

Client

\[x, i = \mathcal{L}(x) \]

\[C_i = \text{Ind}[i] = \{c_{y,1}, \ldots, c_{y,b}\} \]

\[c_{-x} = \text{Enc}(pk, -x) \]

random \(r_1, \ldots, r_b \in \{0, 1\}^k \)

random permutation \(\pi \)

\[c_{r,j} = r_j \times E(c_{y,j} + E c_{-x}) \]

Server

\[\text{Ind} \]

\[\text{pk} \]

\[\forall 1 \leq j \leq b \text{DecCheck}(sk, c_{r,j}, 0) = \top \]

\[\text{LSH Bucketization} \quad \text{PIR} \quad \text{Equality Test} \]
Private Approximate Membership Computation (PAMC)

Client

\[\text{pk}_{\text{agg}}, \text{sk}_c, x, i = \mathcal{L}(x) \]

\[C_i = \text{Ind}[i] = \{c_{y,1}, \ldots, c_{y,b}\} \]

\[c_x = \text{Enc}(\text{pk}_{\text{agg}}, \text{Pack}_1(x)) \]

random poly. \(r_1, \ldots, r_b \)

\[c_{r,j} = \zeta(c_x, c_{y,j}) + r_j \]

\[\nu_{c,j} = r_j(0) \]

Server

\[\text{pk}_{\text{agg}}, \text{sk}_s, \text{Ind} \]

\[\text{Ind} \]

\[p_j = \text{Dec}(\text{sk}_s, c_{r,j}) \]

\[\nu_{s,j} = p_j(0) - \delta_H \]

\[o_j = \text{PPC}(\cdot, \nu_{c,j}, \nu_{s,j}) \]

\[\vee_{1 \leq j \leq b} (\neg o_j) = \top \]

Collective Key Generation

Collective Key Switching

PIR

LSH Bucketization

Equality Test

Threshold Comparison
Implementation and Benchmarks

- Implementation: C++ using SEAL, SealPIR, NTL, and Botan
- Source: https://github.com/citp/pmc
- Benchmarks: 6-core Intel i7-10710U@1.10GHz, 12MB cache, 32GB RAM using 256-bit hashes, a 20-bit LSH, SealPIR parameters \((n, d) = (2048, 2)\) and parties running locally

| \(|B|\) | PEMC | | PAMC | |
|---|---|---|---|---|
| | Setup (s) | Query (s) | Comm. (KB) | Setup (s) | Query (s) | Comm. (KB) |
| \(2^{20}\) | 175.0 | 0.75 | 394.32 | 37.2 | 27.5 | 508.07 |
| \(2^{21}\) | 352.3 | 1.34 | 394.45 | 37.4 | 27.5 | 586.06 |
| \(2^{22}\) | 698.9 | 2.60 | 394.71 | 37.4 | 27.7 | 742.03 |
| \(2^{23}\) | 1421.0 | 5.37 | 395.25 | 37.7 | 28.3 | 1053.98 |
| \(2^{24}\) | 2841.0 | 13.00 | 396.30 | – | – | – |

8Chen et al. (2017); Angel et al. (2018); Shoup (2020); Lloyd (2020)
Thank you!

Please send questions to anunay@cs.princeton.edu

References

References

