Locally Differentially Private Analysis of Graph Statistics

Jacob Imola* (UCSD) Takao Murakami* (AIST) Kamalika Chaudhuri (UCSD)

LDP (Local Differential Privacy)

Graph Statistics

Graph Statistics
- Is important to understand a connection pattern in a social graph.

E.g., Degree distribution
- Degree = #edges connected to a node.
- Degree distribution = distribution of #friends in a social network.
E.g., Subgraph Counts
- **Triangle** is a set of 3 nodes with 3 edges.
- **k-star** consists of a central node connected to k other nodes.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Name</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Triangle</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-star</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3-star</td>
<td>6</td>
</tr>
</tbody>
</table>

E.g., Clustering Coefficient
- Probability that two friends of a user will also be a friend.
- $= 3 \times \text{#triangles} / \text{#2-stars}$ (40% in the above graph).

Will be a friend (after friend suggestion)?
Privacy Issues

Triangle/k-star counts can reveal (sensitive) friendship information.

E.g., Suppose that v_2 is an (honest-but-curios) adversary.

I know all edges between v_3 ... v_7.
Who are friends with v_1?

<table>
<thead>
<tr>
<th>Shape</th>
<th>Name</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-star</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Triangle</td>
<td>5</td>
</tr>
</tbody>
</table>

Friends of v_1 are v_3, v_4, v_6.

We need to obfuscate #k-stars and #triangles to strongly protect user privacy.
Outline

- Local Differential Privacy (LDP)
 - User obfuscates her personal data by herself (i.e., no trusted third party).

![Local DP](image)

![Centralized DP](image)

Strong Privacy

1. Privacy is protected against attackers with any background knowledge.
2. Original data are not leaked from DB (unlike centralized DP).

- Our Contributions
 - We provide algorithms for k-stars and triangles under LDP with utility guarantees.
 - In particular, we show upper/lower-bounds on the estimation error.
Contents

LDP on Graphs
(Local Graph Model, Edge LDP)

Our Algorithms
(Our Algorithms for k-Stars/Triangles, Upper-Bounds)

Lower-Bounds

Experiments
LDP on Graphs

- **Graph**
 - Can be represented as an adjacency matrix A (1: edge, 0: no edge).
 - User v_i knows her neighbor list a_i (i-th row of A).

- **Local Graph Model**
 - User v_i obfuscates her neighbor list a_i and sends noisy data $R_i(a_i)$ to a server.

```
graph G
v1 - v2 - v3 - v4

adjacency matrix A

v1 | 0 | 1 | 1 | 0
v2 | 1 | 0 | 1 | 1
v3 | 1 | 1 | 0 | 1
v4 | 0 | 0 | 1 | 0

R_1(a_1) = a_1
R_n(a_n)
```

randomizer
LDP on Graphs

- **Edge LDP [Qin+, CCS17]**
 - Protects a single bit in a neighbor list \(a \in \{0,1\}^n \) with privacy budget \(\varepsilon \).

Randomizer \(R \) provides \(\varepsilon \)-edge LDP if for all \(a, a' \in \{0,1\}^n \) that differ in one bit and all \(y \in \mathcal{Y} \),

\[
\Pr[R(a) = y] \leq e^\varepsilon \Pr[R(a') = y]
\]

- 1 edge affects 2 elements of \(A \) \(\rightarrow \) each edge is protected with at most \(2\varepsilon \).
- Our triangle algorithm uses only \(\rightarrow \) each edge is protected with \(\varepsilon \).
Contents

LDP on Graphs
(Local Graph Model, Edge LDP)

Our Algorithms
(Our Algorithms for k-Stars/Triangles, Upper-Bounds)

Lower-Bounds

Experiments
Our Algorithms

- Our Algorithm for k-Stars (Overview)
 1. Each user v_i adds the Laplacian noise to her k-star count r_i. → edge LDP.
 2. Server calculates the sum of noisy counts as an estimate.

![Diagram of 2-stars and summation]

- Upper-Bound (n: #users, d_{max}: max degree ($\ll n$))
 - For a fixed ε, the expected l2-loss (square error) of our estimate is: $O(nd_{max}^{2k-2})$.
 - Later, we prove that this is order optimal in the one-round LDP model.
Our Algorithms

- Triangles
 - More challenging because a user cannot see an edge between others.

- Our Algorithm for Triangles (1st Round)
 - Each user applies RR to each bit of her neighbor list. → edge LDP.
 - Each user sends **noisy edges**. Server publishes the noisy graph G'.

![Diagram of Triangles and RR](image)
Our Algorithms

- **Our Algorithm for Triangles (2nd Round)**
 - Each user can count *triangles including one noisy edge* using noisy graph G'.
 - Each user sends #noisy triangles (with post-processing) + Lap. \rightarrow edge LDP.
 - Server calculates an unbiased estimate of #triangles.

- **Upper-Bound (n: #users, d_{max}: max degree ($\ll n$))**
 - All edges are noisy (1st round) \rightarrow Only one edge is noisy (2nd round).
 - Expected l2-loss is reduced from $O(n^4)$ (1st round) to $O(nd_{max}^3)$ (2nd round).
Contents

LDP on Graphs
(Local Graph Model, Edge LDP)

Our Algorithms
(Our Algorithms for k-Stars/Triangles, Upper-Bounds)

Lower Bounds

Experiments
Overview

- Our k-star algorithm achieves the l2-loss of $O\left(nd_{max}^{2k-2} \right)$ (n: #users, $d_{max} \ll n$).
- We show that the factor of n is necessary for k-stars and triangles in one-round LDP.

How?

- We introduce a set of graphs called "independent cube".
- We show there is a lower bound for the set of graphs.
Independent Cube (Informal)

- Consider a query f (e.g. \#triangles, \#k-stars) on a graph G with n nodes.
- Prepare edges M s.t. each node has one edge (i.e. perfect matching).

- We say a set of graphs \mathcal{A} forms an (n, D)-independent cube if adding edge $e \in M$ independently increases (or decreases) f by $C_e \geq D$.

\begin{align*}
 f(G_1) &= 0 \\
 f(G_2) &= 3 \\
 f(G_3) &= 2 \\
 f(G_4) &= 5
\end{align*}

\begin{align*}
 C(v_1,v_2) &= 2 \\
 C(v_3,v_4) &= 3
\end{align*}
There exist independent cubes for k-stars and triangles (→ our paper).

In one-round LDP, the expected l_2-loss for an (n,D)-independent cube is: $\Omega(nD^2)$.

Lower-Bounds for Independent Cubes
Lower Bounds

- Upper/Lower-Bounds
 - In k-stars, our one-round local algorithm is order optimal.
 - Any one-round local algorithm is outperformed by the centralized one.
 - Yet, our algorithms achieve $O(n)$ (when we ignore d_{max}), which is small.

<table>
<thead>
<tr>
<th></th>
<th>Centralized</th>
<th>One-Round Local</th>
<th>Two-Rounds Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper-Bound</td>
<td>$O(d_{max}^{2k-2})$</td>
<td>$\Omega(d_{max}^{2k-2}n)$</td>
<td>$O(d_{max}^{2k-2}n)$</td>
</tr>
<tr>
<td>Lower-Bound</td>
<td>$\Omega(d_{max}^{2k-2}n)$</td>
<td>$O(d_{max}^{2k-2}n)$</td>
<td>-</td>
</tr>
<tr>
<td>k-stars</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>triangles</td>
<td>$O(d_{max}^2)$</td>
<td>$\Omega(d_{max}^2n)$</td>
<td>$O(n^4)$</td>
</tr>
</tbody>
</table>
Contents

LDP on Graphs
(Local Graph Model, Edge LDP)

Our Algorithms
(Our Algorithms for k-Stars/Triangles, Upper-Bounds)

Lower Bounds

Experiments
Experiments

- IMDB (Internet Movie Database)
 - Graph with 896308 nodes (actors).
 - Average degree = 63.7.

- Orkut Dataset
 - Social graph with 3072441 nodes (users).
 - Average degree = 38.1. More sparse than IMDB.

- For each dataset, we randomly selected n nodes from the whole graph.
Experiments

- Result 1: l2-loss
 - In triangles, Local2R (2-rounds) outperforms Local1R (1-round).
 - Difference is larger in Orkut because it is more sparse (d_{max} is smaller).
 - Local is outperformed by Central.
 - As n increases, the l2-loss increases ↩ true counts (#triangles and #k-stars) increase.
Experiments

- Result 2: Relative Error
 - Relative error \(\left(= \frac{|true\ count - estimate|}{true\ count}\right)\) decreases as \(n\) increases.
 - Our algorithms achieve relative error \(\ll 1\) (high utility) when \(\varepsilon = 1\) or 2.

![Relative Error Graphs](image-url)
Conclusions

- This Work
 - For k-stars, we provided an order optimal algorithm.
 - For triangles, we showed an additional round significantly improves utility.
 - We provided new lower-bounds for k-stars and triangles.

- Future Work
 - Algorithms for other subgraph counts; e.g., $\#\text{cliques}$, $\#k$-hop paths.
Thank you for your attention!

Q&A

jimola at eng.ucsd.edu, takao-murakami at aist.go.jp