é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Can | Take Your Subdomain?
Exploring Same-Site Attacks in the Modern Web

Marco Squarcina, Mauro Tempesta, and Lorenzo Veronese, TU Wien;
Stefano Calzavara, Universita Ca’ Foscari Venezia & OWASP; Matteo Maffei, TU Wien

https://www.usenix.org/conference/usenixsecurity21/presentation/squarcina

This paper is included in the Proceedings of the
30th USENIX Security Symposium.
August 11-13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium
is sponsored by USENIX.

I
+ ¥ | . - =
. JEEEES o -
A r

Can I Take Your Subdomain? Exploring Same-Site Attacks in the Modern Web

Marco Squarcina'

L' TU Wien

Abstract

Related-domain attackers control a sibling domain of their tar-
get web application, e.g., as the result of a subdomain takeover.
Despite their additional power over traditional web attackers,
related-domain attackers received only limited attention from
the research community. In this paper we define and quantify
for the first time the threats that related-domain attackers pose
to web application security. In particular, we first clarify the
capabilities that related-domain attackers can acquire through
different attack vectors, showing that different instances of
the related-domain attacker concept are worth attention. We
then study how these capabilities can be abused to compro-
mise web application security by focusing on different angles,
including cookies, CSP, CORS, postMessage, and domain
relaxation. By building on this framework, we report on a
large-scale security measurement on the top 50k domains
from the Tranco list that led to the discovery of vulnerabil-
ities in 887 sites, where we quantified the threats posed by
related-domain attackers to popular web applications.

1 Introduction

The Web is the most complex distributed system in the world.
Web security practitioners are well aware of this complexity,
which is reflected in the threat modeling phase of most web se-
curity analyses. When reasoning about web security, one has
to consider multiple angles. The web attacker is the baseline
attacker model that everyone is normally concerned about. A
web attacker operates a malicious website and mounts attacks
by means of standard HTML and JavaScript, hence any site
operator in the world might act as a web attacker against any
other service. High-profile sites are normally concerned about
network attackers who have full control of the unencrypted
HTTP traffic, e.g., because they operate a malicious access
point. Both web attackers and network attackers are well
known to web security experts, yet they do not capture the
full spectrum of possible threats to web application security.

In this paper we are concerned about a less known attacker,
referred to as related-domain attacker [9]. A related-domain

Mauro Tempesta! Lorenzo Veronese! Stefano Calzavara’ Matteo Maffei!
2 Universita Ca’ Foscari Venezia & OWASP

attacker is traditionally defined as a web attacker with an extra
twist, i.e., its malicious website is hosted on a sibling domain
of the target web application. For instance, when reasoning
about the security of www.example.com, one might assume
that a related-domain attacker controls evil.example.com.
The privileged position of a related-domain attacker endows it,
for instance, with the ability to compromise cookie confiden-
tiality and integrity, because cookies can be shared between
domains with a common ancestor, reflecting the assumption
underlying the original Web design that related domains are
under the control of the same entity. Since client authentica-
tion on the Web is mostly implemented on top of cookies, this
represents a major security threat.

Despite their practical relevance, related-domain attackers
received much less attention than web attackers and network
attackers in the web security literature. We believe there are
two plausible reasons for this. First, related-domain attackers
might sound very specific to cookie security, i.e., for many
security analyses they are no more powerful than traditional
web attackers, hence can be safely ignored. Moreover, related-
domain attackers might appear far-fetched, because one might
think that the owner of example.com would never grant con-
trol of evil.example.com to untrusted parties.

Our research starts from the observation that both previous
arguments have become questionable, and this is the right time
to take a second look at the threats posed by related-domain
attackers, which are both relevant and realistic. A key observa-
tion to make is that a related-domain attacker shares the same
site of the target web application, i.e., sits on the same regis-
trable domain. The notion of site has become more and more
prominent for web security over the years, going well beyond
cookie confidentiality and integrity issues. For example, the
Site Isolation mechanism of Chromium ensures that pages
from different sites are always put into different processes,
so as to offer better security guarantees even in presence of
bugs in the browser [44]. Moreover, major browsers are now
changing their behavior so that cookies are only attached
to same-site requests by default, which further differentiates
related-domain attackers from web attackers. In the rest of

USENIX Association

30th USENIX Security Symposium 2917

the paper, we discuss other (normally overlooked) examples
where the privileged position of related-domain attackers may
constitute a significant security threat. Finally, many recent
research papers showed that subdomain takeover is a serious
and widespread security risk [8,33]. Large organizations own-
ing a huge number of subdomains might suffer from incorrect
configurations, which allow an attacker to make subdomains
resolve to a malicious host. This problem also received at-
tention from the general media [40] and the industry [7].
Though these studies proved that related-domain attackers are
a realistic threat, they never quantified their impact on web
application security at scale.

Contributions

In the present paper, we perform the first scientific analysis of
the dangers represented by related-domain attackers to web
application security. In particular:

1. We introduce a fine-grained definition of related-domain
attacker that captures the capabilities granted to such
attackers according to the position they operate and the
associated web security threats. In particular, we sys-
tematize the attack vectors that an attacker can exploit
to gain control of a domain, and we present the attacks
that can be launched from that privileged position, dis-
cussing the additional gain with respect to a traditional
web attacker (§3).

2. We implement a toolchain to evaluate the dangers that
related-domain attackers can pose to web application se-
curity. Our toolchain builds on top of an analysis module
for subdomain takeover, which significantly improves
over previous results [33]. We use the output of this
module to perform automated web application security
analyses along different angles, including cookies, CSP,
CORS, postMessage, and domain relaxation (§4).

3. We report on experimental results established through
our toolchain. In particular, we enumerate 26M sub-
domains of the top 50k registrable domains from the
Tranco list and discover practically exploitable vulner-
abilities in 887 domains, including major websites like
cnn.com, nih.gov, harvard.edu, and cisco.com. We
also study the security implications of 31 third-party ser-
vice providers and dynamic DNS and present a novel
subdomain hijacking technique that resulted in a bug
bounty of $1,000. Importantly, we quantify for the first
time the impact of these vulnerabilities on web applica-
tion security, concluding that related-domain attackers
have an additional gain compared to web attackers that
goes beyond well-studied issues on cookies (§5).

‘We have responsibly disclosed the identified vulnerabilities
to the respective site operators. For space reasons, the results
of the notification process are shown in Appendix A.

Table 1: Main DNS record types.

Record Type Description

A Returns the IPv4 address of a domain

AAAA Returns the IPv6 address of a domain

CNAME Maps an alias name to the canonical domain name

NS Defines the authoritative DNS record for a domain

CAA Specifies the allowed certificate authorities for a domain

2 Background

DNS Resolution. DNS is a protocol that stands at the core
of the Internet [36]. It translates mnemonic domain names to
IP addresses used by the underlying network layer to iden-
tify the associated resources. The translation process, called
DNS resolution, is done transparently to applications. For
instance, when a browser attempts to visit a fully qualified
domain name (FQDN), such as www.example.com, the lo-
cal resolver forwards the request to one of the DNS servers
designated by the operating system. In case the DNS server
has no information on the requested domain name, it initiates
the recursive resolution from the root DNS server until the
authoritative DNS server for the domain is reached, following
the subdomain hierarchy of the DNS system. Eventually, the
authoritative DNS server returns to the client a set of Resource
Records (RRs) with the format: name, TTL, class, type, data.
A list of relevant DNS record types is summarized in Table 1.

DNS also supports wildcard RRs with the label *, such as
*.example.com. Wildcard RRs are not matched if an explicit
RR is defined for the requested name. In general, wildcard
RRs have a lower priority than standard RRs [31]. For in-
stance, given a wildcard A record *.example.com and an A
record for a.example.com, requests to b.example.com and
c.b.example.com are resolved by the wildcard, while re-
quests to a.example.com are matched by the corresponding
A record. Notice that c.a.example.com is not resolvable.

Public Suffix List. While DNS defines the hierarchical struc-
ture of domain names, the Public Suffix List (PSL) is a catalog
of domain suffixes controlled by registrars [38]. In contrast
to Top-Level Domains (TLDs) that are defined in the Root
Zone Database [27], such as .com, .org, .net, the suffixes
listed in the PSL are called effective TLDs (€TLDs) and de-
fine the boundary between names that can be registered by
individuals and private names. A domain name having just
one label at the left of a public suffix is commonly referred
to as registrable domain, eTLD+ 1, or apex domain. Domains
sharing the same eTLD+1 are said to belong to the same site.

Cookies are scoped based on the definition of site, i.e., sub-
domains of the same site can share cookies (domain cookies)
by setting their Domain attribute to a common ancestor. This
attribute can never be set to a member of the PSL: for in-
stance, since github.io is in the PSL, foo.github.io is
not allowed to set cookies for github.io. This means that
there is no way to share cookies between different GitHub
Pages hosted sites.

2918 30th USENIX Security Symposium

USENIX Association

Enables

Cookies
-~ May enable

-=--= May be required

Expired Domains)
Discontinued Services "
Deprovisioned Cloud Inst.

CORS

postMessage

Ik

domain relaxation

Figure 1: Summary of related-domain attacker instances for dangling
DNS records.

3 The Related-Domain Attacker

We revise the threat model of the related-domain attacker in
light of the directions that the Web has taken in recent years. In
particular, we systematize for the first time the different attack
vectors that can be exploited to escalate to a related-domain
position. We also factorize the related-domain attacker into
a set of capabilities and we express prerequisites of web at-
tacks in terms of them, as presented below and summarized
in Figure 1 for the most common subdomain takeover vulner-
abilities [33]. This systematization allows for a quantification
of the related-domain attacker problem, which we conduct in
§5 by a large-scale measurement in the wild.

3.1 Threat Model

In its original definition, the related-domain attacker is a web
attacker who operates a malicious website that is hosted on
a related domain of the target website [9]. Two domains are
related if they share a suffix that is not included in the PSL.
For instance, consider the target site example.com: all its
subdomains are related to the target, as well as being related to
each other. Network attackers are traditionally considered out
of scope, given that they could mount person-in-the-middle
attacks via, e.g., ARP spoofing and DNS cache poisoning,
which allow to easily control the IP address of any hostname
accessed by the victim [14].

Subdomain takeovers are often caused by DNS miscon-
figurations [8, 33], with consequences ranging from altering
the content of a page to full host control. Additionally, orga-
nizations frequently assign a subdomain of their corporate
domain to their users, who could maliciously take advantage
of this implicit trust. Vulnerable web applications can also be
infiltrated to increase the privileges of attackers interested in
exploiting their related domains.

As we elaborate in the following, the attack vector exploited
to acquire a related-domain position is not a detail, but has
an impact on the capabilities granted to the attacker. While
full control of the host grants the attacker the ability to con-
figure the web server to host arbitrary content, other attack
scenarios only grant more limited power. For example, ex-

Table 2: Capabilities of the related-domain attacker.

Capability ~ Description

headers access and modify HTTP headers

js arbitrary JavaScript code execution

html alter the markup of the website with the exclusion of JavaScript

content alter the textual content of the website with the exclusion of embed tags,
frames and JavaScript code

file host arbitrary files

https operate a website under HTTPS with a valid certificate

Note: js subsumes both html and content, since it is possible to
edit the DOM by using JavaScript. Similarly, html subsumes content.

ploiting a reflected XSS on a subdomain of a company poses
several restrictions on the actions that can be undertaken by
the attacker. This motivates the need for a new, fine-grained
definition of related-domain attacker, which precisely charac-
terizes its power based on the acquired capabilities. In §3.2,
we map concrete attack vectors to the set of capabilities (see
Table 2) that the attacker may acquire when escalating to a
related-domain position. In §3.3, we link such capabilities to
web security threats, giving rise to a granular framework that
defines different instances of the related-domain attacker.

3.2 Abusing Related Domains

We provide a comprehensive characterization of the attack
vectors that can be exploited to acquire a related-domain po-
sition and identify the set of associated capabilities. While
some of these attack vectors have been already analyzed in
the literature in isolation (e.g., dangling DNS records [33] and
domain shadowing [7,34]), it is the first time they are system-
atized to cover the possible abuses which enable escalation to
a related-domain position. Furthermore, we introduce a novel
attack vector that exploits DNS wildcards, and we point out
concrete instances of roaming services, hosting providers, and
dynamic DNS services which are vulnerable to the threats
described in this work.

3.2.1 Dangling DNS Records

Dangling DNS records refer to records in the authoritative
DNS servers of a domain that point to expired resources.
These records should be purged right away after releasing
the pointed resources. Unfortunately, this practice is often
overlooked, resulting in dangling DNS records to persist in-
definitely. Possible reasons include lack of communication
between the person who releases the resource and the domain
owner or when the pointed resource expires automatically
after a certain period of time, passing unnoticed. A dangling
DNS record is considered vulnerable if an unintended party
can take control of the expired resource [33].

Expired Domains. A DNS CNAME record maps a domain
name (alias) to another one called canonical name. If the
canonical name is expired, a third party can simply register
the domain and serve arbitrary content under the alias domain.

USENIX Association

30th USENIX Security Symposium 2919

Attackers exploiting this vulnerability have full control of
the host and generally can rely on all the capabilities listed
in our framework. One exception is https in presence of a
CAA DNS record [25]: this record defines a list of Certifi-
cate Authorities (CAs) which are allowed to issue certificates
for a given domain, possibly preventing attackers to rely on
automated CAs like Let’s Encrypt [2].

Discontinued Services. Third-party services are widely
used to extend the functionalities of a website. Domain
owners can integrate rich platforms by making them ac-
cessible under a subdomain of their organization, e.g.,
blog.example.com could show a blog hosted by WordPress
and shop.example.com could be an e-shop run by Shopify.
To map a (sub)domain to a service, an integrator typically
has (i) to configure a DNS record for the (sub)domain, such
as A/ARAAA, CNAME or NS, to point to a server controlled by
the service provider, and (ii) to claim the ownership of the
(sub)domain in the account settings of the service. If the ser-
vice provider does not verify the domain ownership explicitly,
i.e., a DNS record pointing to the service is the only condition
required to claim the ownership of a (sub)domain, an attacker
could map to their account any unclaimed (sub)domain with
a valid DNS record in place [33].

In addition, we observe that dangling records can also
occur due to the presence of DNS wildcard. Consider, for
example, a site operator configuring a DNS wildcard such
as *.example.com pointing to a service provider IP to en-
able multiple websites to be hosted under subdomains of
example.com. An attacker could bind a subdomain of their
choice, e.g., evil.example.com, to a new account on the
service provider. Surprisingly, we discovered that some ser-
vice providers do not verify the ownership of a subdomain
even if the parent domain has been already mapped to an
existing account. In practice, this allows an attacker to claim
evil.proj.example.com also in presence of a legitimate
binding for proj.example.com. Even worse, we found that
some service providers perform an automatic redirection of
the www-prefixed subdomains to their parent domains without
preventing the www subdomain from being associated to a
different account. We report on this novel attack in §5.1.2.

Attackers’ capabilities vary depending on the platform and
range from altering the content of a single page to full host
control. We refer to §5 for the result of a thorough security
investigation conducted on 31 service providers.

Deprovisioned Cloud Instances. The ephemeral nature of
resources allocated in Infrastructure as a Service (IaaS) envi-
ronments is known to facilitate the spread of dangling DNS
records. DNS records pointing to available IP addresses in
the cloud can be abused by a determined attacker who rapidly
allocates IP addresses in order to control the target of the
dangling DNS record [8, 33]. Similarly to expired domains,
the presence of a CAA DNS record in a parent domain could
hinder the capability of obtaining a valid TLS certificate.

3.2.2 Corporate Networks and Roaming Services

Large organizations often assign fully qualified domain names
(FQDN?s) to devices in their network. This practice allows to
statically reference resources in the network, irrespective of
the assignment of IP addresses that may change over time.
Although hosts might be inaccessible from outside of the or-
ganization network, internal users are put in a related-domain
attacker position with full capabilities, excluding https that
depends on the network configuration of the organization.

Institutions providing roaming services are similarly prone
to the same issue. This is the case of eduroam, a popular in-
ternational education roaming service that enables students
and researchers to have a network connection provided by
any of the participating institutions. As a novel insight, we
discovered that system integrators at some local institutions
are assigning eduroam users a subdomain of the main insti-
tution, such as ipl-2-3-4.eduroam.example.com, where
1.2.3.4is aplaceholder for the public IP assigned to the user
connected to the eduroam network. This practice ultimately
promotes any eduroam user to a related-domain attacker with
full control of the host that is pointed by the DNS record.
Firewall restrictions might hinder complete visibility on the
Internet of the personal device of the user. Still, users’ devices
might be accessible within the institution network.

3.2.3 Hosting Providers and Dynamic DNS Services

Many service providers allow users to create websites un-
der a specific subdomain, e.g., <username>.github.io on
GitHub. Subdomains hosting user-supplied content are not
related to each other if the parent domain is included in the
PSL, as in the case of github. io. Unfortunately, several ser-
vice providers that we reviewed did not include their domains
in the PSL, turning any of their users into a related-domain
attacker for all the websites hosted on the same platform.

A similar consideration applies to dynamic DNS providers.
The race to offer a huge variety of domains under which users
can create their custom subdomains, made it unfeasible for
certain providers to maintain a list of entries in the PSL. The
FreeDNS service [24] pictures well the problem, with 52,443
offered domains and a declared user base of 3,448,806 active
users as of October 2020, who are in a related-domain attacker
position to all the subdomains and domains of the network,
since none of them has been added to the PSL.

While in the case of hosting and service providers, the capa-
bilities granted to the attacker largely depend on the specific
service (see §5.1.2 for more details), a dynamic DNS service
allows users to point a DNS record to a host they fully control,
capturing all the capabilities discussed in Table 2.

3.24 Compromised Hosts/Websites

Aside from scenarios in which attackers gain control of a re-
source that is either abandoned or explicitly assigned to them,

2920 30th USENIX Security Symposium

USENIX Association

another way to obtain a related-domain attacker position is
the exploitation of vulnerable hosts and websites. Intuitively,
attackers achieving code execution on the vulnerable appli-
cation have capabilities ranging from serving arbitrary con-
tent to full host control. If the exploited vulnerability is an
XSS, attackers could take advantage of the ability to execute
JavaScript code from a privileged position to escalate the
attack against a more sensitive website.

Furthermore, attackers have been found employing a tech-
nique called domain shadowing [7,34] to illicitly access the
DNS control panel of active domains to distribute malware
from arbitrary subdomains. Alowaisheq et al. recently discov-
ered that stale NS records [5] could also be abused by attackers
to take control of the DNS zone of a domain to create arbitrary
DNS records. Controlling the DNS of a domain is the highest
privileged setting for a related-domain attackers, since they
can point subdomains to hosts they fully control and reliably
obtain TLS certificates.

3.3 Web Threats

We identify for the first time a comprehensive list of web
security threats posed by related-domain attackers, discussing
in particular the scenarios where a related-domain attacker
might have an advantage over traditional web attackers. While
there exists ample literature on threats to cookies confidential-
ity and integrity posed by related-domain attackers [15,62],
in this work we focus on a complete account of how related-
domain attackers affect web application security by exploring
less-studied mechanisms.

3.3.1 Inherent Threats

Related-domain attackers sit on the same site of their target
web application. This is weaker than sharing the same origin
of the target, which is the traditional web security boundary,
yet it suffices to abuse the trust put by browser vendors and
end users on same-site content. We discuss examples below.

Trust of End Users. End users might trust subdomains of
sites they are familiar with more than arbitrary external sites.
For instance, attackers could exploit the residual trust asso-
ciated with the subdomain’s prior use [30] or deceive users
into inserting their passwords provided by a password man-
ager [56]. This is particularly dangerous on some mobile
browsers, which display only the rightmost part of the domain
due to the smaller display size, hence a long subdomain might
erroneously look like the main site. Attackers could similarly
abuse the trust inherited from the apex domain to use com-
promised subdomains for the distribution of malware or other
types of dangerous content [34].

Site Isolation. Site Isolation is a browser architecture first
proposed and implemented by the Google Chrome browser,
which treats different sites as separate security principals
requiring dedicate rendering processes [44]. These processes

can access sensitive data for a single site only, which mitigates
the leakage of cross-origin data via memory disclosure and
renderer exploits, including attacks based on Spectre [29,47].
As acknowledged in the original Site Isolation paper [44],
“cross-origin attacks within a site are not mitigated”, hence
related-domain attackers can void the benefits of this security
architecture.

Same Site Request Forgery. The introduction of same-site
cookies [59] and the recent enforcement of this security fea-
ture by default on major browsers [20,54] received high praise
as an effective countermeasure against CSRF [26]. In the ab-
sence of other defenses [6], the restrictions introduced by
same-site cookies are voided by a related-domain attacker
who can mount a same-site request forgery attack just by in-
cluding an HTML element pointing to the target website in
one of their web pages.

3.3.2 Cookie Confidentiality and Integrity

Cookies can be issued with the Domain attribute set to an
ancestor of the domain setting them, so as to share them with
all its subdomains. For example, good. foo.com can issue a
cookie with the Domain attribute set to foo . com, which is sent
to both good. foo.com and evil. foo.com. Hence, related-
domain attackers can trivially break cookie confidentiality and
abuse of stolen cookies [62], e.g., to perform session hijack-
ing. The Domain attribute poses risks to cookie integrity too:
evil.foo.comcan set cookies for good. foo.com, which can
be abused to mount attacks like session fixation. Note that
the integrity of host-only cookies is at harm too, because a
related-domain attacker can mount cookie shadowing, i.e., set
a domain cookie with the same name of a host-only cookie to
confuse the web server [62].

Site operators can defend against such threats by careful
cookie management. For example, they can implement (part
of) the session management logic on top of host-only cookies,
which are not disclosed to related-domain attackers. More-
over, they can use the __Host- prefix to ensure that security-
sensitive cookies are set as host-only, thus ensuring their in-
tegrity against related-domain attackers.

Capabilities. The capabilities required by a related-domain
attacker to break the confidentiality of a domain cookie de-
pend on the flags enabled for it: if the cookie is HttpOnly,
it cannot be exfiltrated via JavaScript and the headers ca-
pability is needed to sniff it; otherwise, just one between
headers and js suffices. If the Secure flag is enabled, the
cookie is sent only over HTTPS, hence the https capabil-
ity is also required. As to integrity, all cookies lacking the
__Host- prefix have low integrity against a related-domain
attacker with the headers or js capabilities, since they are af-
fected by cookie shadowing. There is one exception: cookies
using the __Secure- prefix have low integrity only against
related-domain attackers which additionally have the https
capability, since these cookies can only be set over HTTPS.

USENIX Association

30th USENIX Security Symposium 2921

3.3.3 Bypassing CSP

Content Security Policy (CSP) is a client-side defense mecha-
nism originally designed to mitigate the dangers of content
injection and later extended to account for different threats,
e.g., click-jacking. CSP implements a whitelisting approach
to web application security, whereby the browser behavior on
CSP-protected web pages is restrained by binding directives
to sets of source expressions, i.e., a sort of regular expres-
sions designed to express sets of origins in a compact way. To
exemplify, consider the following CSP:

script-src foo.com *.bar.com;
frame-ancestors *.bar.com;
default-src https:

This policy contains three directives, script-src,
frame-ancestors and default-src, each bound to a
set of source expressions like foo.com and *.bar.com.
It allows the protected page to: (i) include scripts from
foo.com and any subdomain of bar.com; (ii) be included
in frames opened on pages hosted on any subdomain of
bar.com; (iii) include any content other than scripts over
HTTPS connections with any host.

Since the syntax of source expressions naturally supports
the whitelisting of any subdomain of a given parent, related-
domain attackers represent a major threat against the secu-
rity of CSP. For example, if an attacker could get control of
vuln.bar.com, then they would be able to bypass most of
the protection put in place by the CSP above. In particular,
the attacker would be able to exploit a content injection vul-
nerability on the CSP-protected page to load and execute
arbitrary scripts from vuln.bar.con, thus voiding XSS miti-
gation. Moreover, the attacker could frame the CSP-protected
page on vuln.bar.com to perform click-jacking attacks. To
avoid these threats, site operators should carefully vet the
subdomains included in their CSP whitelists.

Capabilities. A related-domain attacker requires the capabil-
ity to upload arbitrary files on the website under its control
to void the protection offered by CSP against content inclu-
sion vulnerabilities, with the only notable exception of frame
inclusion which requires only the html capability. For active
contents [37], i.e., those that may have access to the DOM of
the page, the attacker also needs the https capability if the
target page is hosted over HTTPS. Regarding click-jacking
protection, attackers only requires the html capability to in-
clude the target website on a page under their control.

3.3.4 Abusing CORS

Cross-Origin Resource Sharing (CORS) is the standard ap-
proach to relax the restrictions enforced by SOP on cross-
origin communications, i.e., preventing JavaScript from read-
ing the content of responses to cross-origin requests. Con-
sider a service at https://www.example.com, which needs

to fetch sensitive data from api.example. com via JavaScript:
to enable CORS, https://api.example.com can inspect
the Origin header of incoming requests to detect if they
come from https://www.example.com and, in such a case,
set a CORS header Access-Control-Allow-Origin with
the value https://www.example.com in the response. As
an additional layer of protection, the server must also set
the Access-Control-Allow-Credentials header to true
if the request includes credentials, e.g., cookies, since the as-
sociated response is more likely to include sensitive content.

Related-domain attackers can abuse CORS to bypass the
security restrictions put in place by SOP when the afore-
mentioned server-side authorization checks are too relaxed,
i.e., read access is granted to arbitrary subdomains. For ex-
ample, if https://api.example.com was willing to grant
cross-origin access to any subdomain of example.com be-
sides www.example.com, a related-domain attacker could get
unconstrained access to its data. To avoid these threats, site
operators should be careful in the security policy implemented
upon inspection of the Origin header, e.g., restricting access
just to a few highly trusted subdomains.

Capabilities. To exploit CORS misconfigurations, an attacker
needs the js capability to issue requests via JavaScript APIs
like fetch and access the content of the response. The https
capability may be required depending on the CORS policy
deployed by the site operator.

3.3.5 Abusing postMessage

The postMessage API supports cross-origin communication
across windows (e.g., between frames or between a page
and the popup opened by it). The sender can invoke the
postMessage method of the target window to transmit a mes-
sage, possibly restricting the origin of the receiver. The re-
ceiver, in turn, can use event handlers to listen for the message
event and process incoming messages.

Despite its apparent simplicity, the postMessage API
should be used with care, as shown by prior research [50,51].
In particular, when sending confidential data, one should
always specify the origin of the intended receiver in the
postMessage invocation. When receiving data, instead, one
should check the origin of the sender (via the origin prop-
erty of the received message) and appropriately sanitize the
content of the message before processing it.

Related-domain attackers can undermine web application
security when site operators put additional trust in subdo-
mains. In particular, related-domain attackers can try to abuse
their position to void the aforementioned origin checks and
communicate with inattentive receivers that might process
messages in an unsafe way, e.g., messages are provided as
input to eval or stored in a cookie, opening the way to ses-
sion hijacking attacks. Site operators can defend against such
attacks by carefully vetting authorized subdomains for com-
munication between windows.

2922 30th USENIX Security Symposium

USENIX Association

Public Datasources Nelwork
Vulnerable
Domain List DNS‘HTTP HTTP (sub)domains
E —— |DNS Scanner —}. —} Web Analyzer > |E|

Amass Crawler
. o) ©

dig PMForce
CORS checker

Disclosure

X< (a]

DNS enumeration Subdomain takeover scanner Web crawler
Construction of resolving chains Vulnerability dislcosure Web vulnerability scanner

Figure 2: Vulnerability scanning pipeline.

Capabilities. An attacker requires scripting capabilities (Js)
to open a new tab containing the vulnerable page and commu-
nicate with it via the postMessage API. Similarly to CORS,
https may be needed depending on the origin checking per-
formed by the receiver.

3.3.6 Abusing Domain Relaxation

Domain relaxation is the legacy way to implement commu-
nication between windows whose domains share a common
ancestor. Assume that a page at a.example.com opens a
page at b.example.com inside a frame. Besides using the
postMessage API as explained, the two frames can com-
municate by relaxing their document .domain property to
a common ancestor. In this case, both frames can set such
property to example.com, thus moving into a same-origin
position.! After that, SOP does not enforce any isolation be-
tween the two frames, which can communicate by writing
on each other’s DOM. Note that example.com must explic-
itly set the document .domain property to example.com if
it is willing to engage in the domain relaxation mechanism,
although this is apparently a no-op.

Domain relaxation can be abused by related-domain attack-
ers, who can look for pages which are willing to engage in
such dangerous communication mechanism and abuse it. In
particular, when the attacker moves into a same-origin posi-
tion, SOP does not provide any protection anymore, which
voids any confidentiality and integrity guarantee. Websites
that are willing to communicate with a selected list of related
domains should refrain from using this mechanism — which
is deemed as insecure — and should implement cross-origin
communication on top of the postMessage API.
Capabilities. Besides the js capability needed to perform the
relaxation and access the DOM of the target page, attackers
need to setup their attack page on the same protocol of the
target, hence the https capability may also be required.

4 Analysis Methodology

We performed a large-scale vulnerability assessment to mea-
sure the pervasiveness of the threats reported in this work,

'We assume here that the two frames share the same protocol and port.

first by identifying subdomains of prominent websites that
can be abused by a related-domain attacker exploiting dan-
gling DNS records, and second by evaluating the security
implications on web applications hosted on related domains
of the vulnerable websites. Our methodology is based on the
pipeline summarized in Figure 2 and further described in this
section.

4.1 DNS Data Collection

We enumerated the subdomains of the top 50k domains in the
Tranco list [42] from March 2020.2 The enumeration phase
was based on amass [41], a state of the art information gath-
ering tool backed by the OWASP project. The tool supports
several techniques to maximize the chances of discovering
subdomains of a target. In our configuration, we extracted sub-
domains using the following approaches: (i) fetch data from
publicly available sources, such as Censys [17], certificate
transparency logs [49], search engines, etc.; (ii) attempt DNS
zone transfer to obtain the complete list of RRs defined for a
certain DNS zone; (iii) inspect fields of TLS certificates, e.g.,
Subject Alternative Name and Common Name. To speed
up the enumeration phase and lower the number of network
requests, we avoided bruteforcing DNS resolvers against do-
main name wordlists. Similarly, we explicitly disabled the
resolution of subdomain alterations.

We modified amass to compute the DNS resolving chains
of all the domains obtained in the previous step. Similarly
to [33], we define a resolving chain as a list of DNS RRs in
which each element is the target of the previous one, starting
from a DNS record of type A/ARAA, CNAME or NS. We ignore
MX records because we focus on web attacks in this study. For
CNAME and NS records, we recursively perform a DNS reso-
lution until an A/AAAA RR is detected. Unterminated DNS
resolving chains can occur in presence of a record pointing
to an unresolvable resource or due to the abrupt termination
of amass after reaching the execution timeout limit of 5 min-
utes. To ensure the correctness of the results, we recompute
unterminated DNS resolving chains using the dig utility.

Starting from the set of 50k domains in the Tranco list,
our framework identified 26 million valid subdomains. In a
previous study, Liu et al. [33] used a relatively small wordlist
of 20,000 entries to find possible subdomains of the Alexa top
10k list, 2,700 .edu domains, and 1,700 .gov domains. Com-
pared to their work, our domain selection is penalized given
that we do not restrict to specific TLD zones. For instance,
.edu domains typically have a high number of subdomains
in contrast to other categories (see §5.1.1). Nevertheless, our
results outperform the findings of Liu et al. by discovering on
average 13 times more subdomains.

Zhttps://tranco-list.eu/list/ZKYG/1000000

USENIX Association

30th USENIX Security Symposium 2923

4.2 RDScan

After populating a database with the DNS records of the dis-
covered subdomains, the framework detects dangling records
and verifies that all the preconditions to mount a subdomain
takeover attack are met. By doing so, false positives are mini-
mized in the analysis. This component, that we call RDScan,
has three different modules that test for the presence of the
vulnerable scenarios described in §3.2.1.

Expired Domains. The detection of expired domains is per-
formed according to the following procedure: given a resolv-
ing chain that begins with a CNAME record, our tool checks if
it points to an unresolvable resource and extracts the eTLD+1
of the canonical name at the end of the chain, that we call
apex for brevity. Then, if the whois command on the apex
domain does not return any match, RDScan queries GoDaddy
to detect if the domain can be purchased. In this case, we
consider the domain of the resolving chain, i.e., the alias of
the first record of the chain, as vulnerable. Notice that we
only tested domains that can be registered without special
requirements, i.e., we did not consider .edu domains and other
specific eTLDs not offered by the registrar.

Discontinued Services. The process of finding discontinued
services is summarized in Algorithm 1. RDScan traverses
each resolving chain to identify whether it points to one of
the services supported by our framework. This step is im-
plemented according to the documentation provided by in-
dividual services, and typically relies on checking for the
presence of (i) an A record resolving to a specific IP ad-
dress, (ii) the canonical name of a CNAME record matching
a given host, or (iii) the existence of a NS record pointing
to the DNS server of a service. (Sub)domains mapped to
services are then checked to verify if the bindings between
user accounts and (sub)domains are in place. For the major-
ity of the services considered in this study, a simple HTTP
request suffices to expose the lack of a correct association
of a (sub)domain. Other services require active probing to
determine whether a domain can be associated to a fresh test
account that we created. This has been done using the auto-
mated browser testing library puppeteer with Chromium [1].
RDScan also performs the detection of DNS wildcards that
might be abused as described in §3.2. A DNS wildcard
for a domain such as test.example.com can be easily de-
tected by attempting to resolve a CNAME or A DNS record for
<nonce>.test.example.com, where nonce refers to a ran-
dom string that is unlikely to match an entry in the DNS zone
of the target domain.

Deprovisioned Cloud Instances. The detection of poten-
tially deprovisioned cloud instances has been performed sim-
ilarly to the probabilistic approach adopted by [8, 33]. We
did not create any virtual machine or registered any service
at cloud providers in this process. Instead, we collected the
set of IP ranges of 6 major providers: Amazon AWS, Google
Cloud Platform, Microsoft Azure, Hetzner Cloud, Linode,

Algorithm 1 Detection of Discontinued Services

Input: Set of DNS resolving chains RC, set of supported services S
Output: Set of vulnerable subdomains V;
1: procedure DISCONTINUED_SERVICES(RC,S)
2 Vi< 0
3: for each chain € RC do
4 for each service € S do
5: > Check if a record in the chain points to the service
6 if chain points to service then
7 d « target_domain(chain)
8: if d is unclaimed at service then
9: Vi + Vou{d}

10: > Detect wildcard if the service allows a subdomain of a
11: > claimed domain to be mapped to a different account
12: else if service vulnerable to wildcard issue then

13: r 4 generate_nonce()

14: rd_chains < compute_resolving_chains(r.d)

15: for each rd_chain € rd_chains do

16: if rd_chain points to service then

17: Vs < ViU {rd}

and OVHcloud. We tested each (sub)domain in our dataset
to check whether the pointed IP was included in any of the
cloud IP ranges. In case the IP falls within the address range
of a cloud provider, we make sure that it does not point to a
reserved resource such as a proxy or a load balancer. As the
last step, we perform a liveness probe to determine if the IP
is in use. This is done by executing a ping to the IP: if no
answer is received, we use a publicly available dataset [43]
comprising a scan of the full IPv4 range on 148 ports (128
TCP, 20 UDP). If no open ports for the given IP are found,
we deem the resource as potentially deprovisioned.

4.3 Web Analyzer

Our web security analysis aims at quantifying the number of
domains hosting web applications that can be exploited by
taking over the vulnerable domains discovered by RDScan. In
particular, for every apex domain with at least one vulnerable
subdomain, we selected from the CommonCrawl] dataset [19]
the list of 200 most popular related domains according to the
Pagerank score [10]. From the homepage of these domains,
we extracted the same-origin links that appear in the HTML
code. For each related domain, we considered the homepage
and up to 5 of these URLs as the target of our web analysis,
and we accessed these links using the Chromium browser
automated by puppeteer. In the following, we present the data
collection process and the security analyses we have con-
ducted to identify the threats discussed in §3.3. We postpone
the summary of the results to §5.

4.3.1 Analysis of Cookies

We used the puppeteer API to collect cookies set via HTTP
headers and JavaScript. Our goal is to identify cookies af-
fected by confidentiality or integrity issues. In particular, we
flag a cookie as affected by confidentiality issues if, among the

2924 30th USENIX Security Symposium

USENIX Association

related domains vulnerable to takeover, there exists a domain
d such that:

* d is a subdomain of the Domain attribute of the cookie;
* by taking over d, the attacker has acquired the capabili-
ties required to leak the cookie.

We mark a cookie as affected by integrity issues if:

¢ the name of the cookie does not start with ___Host-;
* we identified a vulnerable domain that grants the capa-
bilities required to set the cookie.

We also rely on a heuristic proposed by Bugliesi et al. [12] to
statically identify potential (pre-)session cookies, i.e., cookies
that may be relevant for the management of user sessions.

The capabilities required to perform these attacks depend
on the security flags assigned to the cookie and the usage
of cookie prefixes (see §3.3.2). For instance, to compromise
integrity either the capability js or headers is required and,
if the prefix ___Secure- is used, https is also necessary.

4.3.2 Analysis of CSP policies

For this analysis, we implemented a CSP evaluator according
to the draft of the latest CSP version [55], which is currently
supported by all major browsers. This is not a straightforward
task, due to the rich expressiveness of the policy and various
aspects that have been introduced into the specification for
compatibility purposes across different CSP versions, e.g.,
for scripts and styles, the ' unsafe-inline’ keyword, which
whitelists arbitrary inline contents in a page, is discarded
when hashes or nonces are also specified.

In our analysis, we focus on the protection offered against
click-jacking and the inclusion of active contents [37], i.e.,
resources that have access to (part of) the DOM of the embed-
ding page. This class of contents includes scripts, stylesheets,
objects, and frames.

For each threat considered in our analysis, we first check
if the policy is unsafe with respect to any web attacker. This
is the case for policies that allow the inclusion of contents
from any host (or framing by any host, when focusing on
click-jacking protection). For scripts and styles, the policy is
also deemed unsafe if arbitrary inline contents are whitelisted.
If the policy is considered safe, we classify it as exploitable by
a related domain if one of the vulnerable domains detected by
RDScan is whitelisted and the attacker acquires the relevant
capabilities to perform the attack, which vary depending on
the threat under analysis (see §3.3.3). For instance, script
injection requires the file capability, given that attackers
need to host the malicious script on a subdomain they control.
Moreover, if the page to attack is served over HTTPS, the
https capability is required due to the restrictions imposed
by browsers on mixed content [37].

4.3.3 Analysis of CORS

To evaluate the security of the CORS policy implemented
by a website, we perform multiple requests with different
Origin values and inspect the HTTP headers in the response
to understand whether CORS has been enabled by the server.

Inspired by the classes of CORS misconfigurations iden-
tified in [18], we test 3 different random origins with the
following characteristics: (i) the domain is a related domain
of the target URL; (ii) the domain starts with the registra-
ble domain of the target URL; (iii) the domain ends with
the registrable domain of the target URL. While the first
test verifies whether CORS is enabled for a related domain,
the other two detect common server-side validation mistakes.
Such errors include the search of the registrable domain as
a substring or a suffix of the Origin header value, which re-
sults in having, e.g., www.example.com whitelisting not only
a.example.com but also atkexample.com. For each test,
we check if the Access-Control-Allow-Origin header is
present in the response and if its value is either * or that of the
Origin header contained in the request. We also control if the
Access-Control-Allow-Credentials header is present
and set to true (when Access-Control-Allow-Origin dif-
fers from *) to identify the cases in which requests with
credentials are allowed.

We report a CORS deployment as vulnerable to web attack-
ers if either the second or the third test succeeds. Instead, a
page is exploitable exclusively by a related-domain attacker if
only the first test succeeds and, among the vulnerable related
domains discovered by RDScan, one grants the js capability
to the attacker. Since in our tests we use the same protocol of
the page under analysis in the Origin header, we conserva-
tively require the https capability when HTTPS is used.

4.3.4 Analysis of postMessage Handlers

PMForce [51] is an automated in-browser framework for the
analysis of postMessage event handlers. It combines selective
force execution and taint tracking to extract the constraints
on the message contents (e.g., presence of a certain string
in the message) that lead to execution traces in which the
message enters a dangerous sink that allows for code execu-
tion (e.g., eval) or the alteration of the browser state (e.g.,
document .cookie). A message satisfying the extracted con-
straints is generated using the Z3 solver and the handler under
analysis is invoked with the message as a parameter to ensure
that the exploit is successfully executed.

We integrated PMForce in our pipeline and modified it to
generate, for each handler, multiple exploit messages with the
same contents but a different origin property, e.g., a related-
domain origin and a randomly-generated cross-site origin.
We consider a page vulnerable to any web attacker if any of
its handlers is exploitable from a cross-site position. Instead,
we consider a page exploitable by a related-domain attacker
if its handlers can be exploited only from a related-domain

USENIX Association

30th USENIX Security Symposium 2925

position and one of the vulnerable domains discovered by
RDScan grants the js capability to the attacker, which is
required to open a tab and send messages to it. If the handlers
whitelist only HTTPS origins, then the capability https is
also required to mount the attack.

4.3.5 Analysis of Domain Relaxation

As a first step, the analyzer detects whether the property
document .domain is set after the page is loaded. This task is
straightforward except for the case in which the page sets the
property to its original value (see §3.3.6) since this cannot be
detected just by reading the value of document .domain. To
identify this particular case, we leverage puppeteer APIs to:

* inject a frame from a (randomly generated) subdomain
of the page under analysis;

* intercept the outgoing network request and provide as
response a page with a script that performs domain relax-
ation and tries to access the parent frame, which succeeds
only if the parent has set document .domain.

The relaxation mechanism is exploitable by a related-domain
attacker if RDScan discovered a vulnerable subdomain (which
is a subdomain of the value of document . domain) that grants
the js capability to the attacker. If the webpage is hosted over
HTTPS, the https capability is also required.

4.4 Heuristics and False Positives

Our methodology is based on testing sufficient preconditions
to execute the reported attacks, thus minimizing false posi-
tives. Nevertheless, the scanning pipeline makes use of two
heuristics in the RDScan and web analyzer modules to, re-
spectively, detect potentially deprovisioned cloud instances
and label security-sensitive cookies; moreover, we identify a
potential TOCTOU issue between the two modules of the anal-
ysis pipeline. We discuss below why this has only a marginal
effect on the overall results of the analysis.

RDScan. We developed automated procedures to test suffi-
cient preconditions for a takeover. Expired domains are triv-
ially verified by checking if the target domain can be pur-
chased. For discontinued services, we created personal testing
accounts on each service considered in the analysis and used
these accounts to probe the mapping between the target sub-
domain and the service. If we detect all necessary conditions
to associate the subdomain to our account, we deem it as vul-
nerable. We manually vetted these conditions against our own
domain. Due to ethical concerns, we did not mount attacks
against real websites, but we reviewed all the occurrences of
subdomain takeover vulnerabilities before disclosing them to
the affected sites and found no false positives in the results
(see Appendix A). The detection of subdomains pointing to
deprovisioned cloud instances relies instead on a heuristic
which might introduce false positives, as discussed in §4.2.

We performed this investigation to capture the magnitude of
the problem, but we excluded the results on deprovisioned
cloud instances from the pipeline to avoid false positives in
the web analyzer. To avoid misunderstandings in the paper,
we refer to domains matching our heuristic as potentially
vulnerable.

Web Analyzer. The web vulnerabilities discovered by this
module have been identified via dynamic testing and analysis
of the data collected by the crawler. We manually verified
samples of each detected vulnerability to ensure the correct-
ness of the results and confirmed the absence of false positives.
The usage of heuristics is limited to the labeling of cookies
which likely contain session identifiers and are thus particu-
larly interesting from a security standpoint; this approach has
been proved reasonably accurate in prior work [12].

Interplay between the modules. The modules of the
pipeline described in Figure 2 have been executed in sequence
at different points in time. The DNS enumeration phase termi-
nated in June 2020, while RDScan ran during the first half of
July 2020. The severity of the discovered issues motivated us
to immediately report them to the affected parties. Therefore,
we launched a large-scale vulnerability disclosure campaign
in the second half of the month. We executed the web scan-
ner right after that. Having the DNS data collection running
first, RDScan might have missed new subdomains that were
issued after the completion of the DNS enumeration. This
leads to a possible underestimation of the threats in the wild
concerning unresolvable domains and expired services. On
the other hand, subdomain takeover vulnerabilities might have
been fixed prior to the web security analysis. We performed a
second run of RDScan 6 months later to verify the fix rate of
notified parties. Surprisingly, we discovered that, as of January
2021, 85% of the subdomains that we tested are still affected
by leftover subdomain takeover vulnerabilities, confirming
that the early remediation of the reported vulnerabilities had a
marginal effect on the web analysis. We provide more details
on our large-scale disclosure campaign in Appendix A.

5 Security Evaluation

We report on the results of our security evaluation on the top
50k domains from the Tranco list. We quantify the vulnerabil-
ities that allow an attacker to be in a related-domain position,
and we provide a characterization of the affected websites.
Then, we delve into the security of 31 service providers by
discussing common pitfalls and the capabilities that could
be abused by an attacker. Finally, we present the outcome
of our web analysis, and we identify practical vulnerabilities
by intersecting the capabilities on vulnerable domains with
the threats found on web applications hosted on their related
domains. Table 3 provides a breakdown of the results by com-
bining attack vectors and web threats: the values reported in
the cells represent the number of vulnerable domains/sites

2926 30th USENIX Security Symposium

USENIX Association

compared to those deploying the corresponding web mecha-
nism. We discuss these results in the following. Due to space
constraints, we move representative examples of confirmed
attacks to Appendix B.

5.1 Attack Vectors and Capabilities

RDScan identified 1,520 subdomains exposed to a takeover
vulnerability, distributed among 887 domains from the top
50k of the Tranco list. Most of the vulnerabilities are caused
by discontinued third-party services (83%), with expired do-
mains being responsible for the remaining 17%. The analysis
of deprovisioned cloud instances discovered 13,532 poten-
tially vulnerable domains, confirming the prevalence of this
threat as reported in previous work [33].

5.1.1 Characterization of Vulnerable Domains

As expected, the likelihood of a domain to be vulnerable is
directly related to the breadth of its attack surface, i.e., the
number of subdomains we found. Figure 3a pictures well
this correlation, showing that around 15% of the domains
with more than 50,000 subdomains are vulnerable. Figure 3b
outlines the distribution of vulnerable domains depending on
the rank of each site in the Tranco list. Sites in top positions
are more likely to have a vulnerable subdomain than those
with a lower rank.

The analyzed websites have been further partitioned into
categories in Figure 3c. Special care has to be taken when con-
sidering dynamic DNS: the 49 domains listed in this category
are those used by dynamic DNS services, such as ddns.net,
noip.com, afraid.org. RDScan identified vulnerable sub-
domains belonging to 8 domains, but 4 of them were listed in
the PSL. We excluded these domains from our analysis, given
that taking control of one of their subdomains would not put
the attacker in a related-domain position with respect to the
parent domain. The same principle has been adopted when
evaluating service and hosting providers offering subdomains
to their users. We refer to §5.1.2 for a detailed analysis of
Dynamic DNS services and hosting providers.

The second most affected category concerns education web-
sites. We found that academic institutions generally have com-
plex and heterogeneous public-facing IT infrastructures that
translate into a high number of subdomains. By restricting
the analysis to the .edu TLD, we observed 1,229 domains
having on average 6,033 subdomains each. The percentage
of domains with at least one vulnerable subdomain is 7.32%,
which is substantially higher than any other TLD considered.
For comparison, the percentage in .comis 1.81%.

Overall, we identified vulnerabilities affecting top do-
mains across all categories. To exemplify, we found sub-
domain takeover vulnerabilities on news websites like
cnn.comand time. com, university portals like harvard.edu
and mit.edu, governmental websites like europa.eu

and nih.gov, and IT companies like lenovo.com and
cisco.com. Although most of the discovered issues could be
easily fixed by routinely checking the validity of DNS records,
our large-scale vulnerability assessment raises concerns due
to the number and pervasiveness of the identified threats.

5.1.2 Analysis of Third-Party Services

We examined 26 service and hosting providers and 5 dynamic
DNS services for a total of 31 third-party services. Our se-
lection comprises services mentioned in previous work [33]
and community efforts [22], excluding those that required
payment to carry out our analysis.

The results are summarized in Table 4. We combined man-
ual testing and review of the documentation to assess the
capabilities available to a registered user of each service. We
also evaluated the considered services against the security pit-
falls described in §3.2.1: (i) wildcard, the domain ownership
verification allows attackers to claim subdomains of an al-
ready mapped domain, e.g., due to the presence of a wildcard
DNS entry; (ii) redirect, if the www subdomain of a mapped
domain automatically redirects to the parent domain, e.g.,
www. shop.example.com redirects to shop.example.com,
whether the former can be claimed by a different account;
(>iii) PSL, if the service allows users to create a website un-
der a specific subdomain, whether the parent domain of the
assigned website is included in the PSL.

Table 3 shows the distribution of the vulnerable subdo-
mains across service providers. The majority of the vulnerable
subdomains (93%) are hosted on the first four most used ser-
vices: WordPress, Shopify, Tumblr, and GitHub Pages. These
prominent services give users the ability to host a website with
a valid TLS certificate for the associated domain. Users are
allowed to customize the markup and JavaScript code of the
pages, and for Tumblr and GitHub Pages, users are allowed
to upload arbitrary files to their websites. In general, the ca-
pabilities obtained by an attacker controlling a service vary
depending on the specific platform, ranging from content
only (UptimeRobot) to full host control (ngrok). We found
that 19 out of 26 services grant the js and https capabilities,
while 21 provide the js capability alone. The file capability
is the most uncommon, being available for 4 services only.

Surprisingly, we discovered that in 20 out of the 31 ana-
lyzed services, any registered user controls a website that is
in a related-domain position to all the other websites hosted
on the platform. Tumblr and WordPress, along with 11 addi-
tional services, even share their primary domain with user-
controlled websites, e.g., attacker.tumblr.com is related
to tumblr.com. Only GitHub and ngrok prevent this threat
by including the apex domains assigned to their users in the
PSL.

Lastly, we found that 17 services have issues with the own-
ership verification mechanism. Among the four most used
services, only WordPress prevents attackers from claiming

USENIX Association

30th USENIX Security Symposium 2927

Table 3: Breakdown of the results in terms of affected domains/sites.

Takeover Web mechanisms exploitable exclusively by related-domain attackers
Attack Vector Cookies CSp CORS Relaxation

Domains Sites Domains Sites Domains Sites Domains Sites Domains Sites
Expired Domains | 260 201 | 5,394/5,394 195/195 | 35/141 13/28 | 35/317 16/107 | 9/11 6/8
Discontinued Services 1,260 699 18,798/19,020 662/674 104/294 32/75 196/1,980 37/392 49/88 24/55
L, WordPress 466 320 | 13,803/13,803 312/312 43/168 23/52 164/1,221 21/186 30/49 14/28
L, Shopify 326 254 2,638/2,638 244/244 32/66 512 26/459 11/153 719 5/15
L, Tumblr 310 24 404/404 23/23 12 12 529 2/12 12 12
L, GitHub 42 25 899/899 24/24 22/49 1/5 2/116 2/18 2/3 2/3
L, Webflow 24 20 601/601 18/18 0/0 0/0 2/122 2/14 1/3 1/3
L, Ngrok 22 13 250/250 13/13 7/9 2/2 0/17 0/5 8/11 1/3
L, Helpscout 18 17 425/425 16/16 1/4 1/3 0/28 0/6 0/2 0/2
L, Others 52 37 464/724 22/35 1/7 1/3 0/25 0/8 9/10 2/3
Total | 1,520 887 | 23,178/23,400 845/857 | 139/428 45/100 | 224/2,254 51/488 | 57/97 29/61

Note: Deployment of CSP only considers policies that are not trivially exploitable by a web attacker (§4.3.2) and whitelist one or more related domains. CORS policies
are only exposed to requests coming from whitelisted origins [18]: for the deployment we report the count of domains/sites vulnerable either to web attackers or related-domain
attackers that were discovered during dynamic testing. postMessage is omitted since related-domain attackers have no gain compared to web attackers.

]
Py
g

]
a
&

I

5
=
&

©

w
8
% Potentially Vulnerable ——1

% Vulnerable
% Vulnerable
w

5

Lol

Y % e

°
o

ORI Y S AN AN I AR N P
P @ PGP F T F P
AP

Number of Subdomains.

(a) # Subdomains

Tranco Rank

(b) Tranco Rank

8

=
&
>

% Potentially Vulnerable =1
«

&
-

% Vulnerable mE
w

S
N
S
% Potentially Vulnerable =1

(c) Categories

Figure 3: Characterization of vulnerable domains.

subdomains of an already mapped domain. Moreover, 8§ ser-
vice providers perform an automatic redirection from the www
subdomain to the parent domain. Therefore, users of these
services might erroneously assume that the www subdomain is
implicitly bound to their account and cannot be claimed by
others. Only Shopify and Launchrock do not prevent this sub-
domain from being mapped to different accounts. We reported
to GitHub and Shopify, two of the major service providers,
the vulnerabilities discovered on the domain ownership verifi-
cation process. GitHub acknowledged the problem and told
us that they “[...] are exploring various changes to the cus-
tom domain flow that will improve this situation by requiring
formal domain ownership verification”. Shopify awarded us
$1,000 for the report and shipped a fix on April 12, 2021.

Dynamic DNS Services. The adoption of the PSL across
different dynamic DNS providers is shown in Table 5, together
with the number of domains that a user can choose from. We
observed that only 2 providers listed all their domains in
the PSL. Noip and DynDNS left out a small number of the
domains they offer, but it is not clear to us whether this is
due to negligence or if this is a deliberate choice. Instead,
FreeDNS, with more than 50k domains, did not include any

of them in the list, leaving their massive user base at risk.
We reported this major flaw to the FreeDNS maintainer, who
acknowledged it but took no action, as it would be impossible
to maintain an updated list of thousands of domains in the
PSL, given the lack of an API to manage PSL entries.

5.2 Web Threats

We now turn the attention to the web application security
implications of our analysis, as summarized in Tables 3 and
further detailed in Table 6.

We start by discussing confidentiality and integrity of ses-
sion cookies. Overall, our crawler collected 85,169 cookies,
out of which 24,924 have been labeled as session cookies by
our heuristic. Among these, we identify 3,390 (14%) cookies
from 5,051 (33%) domains on 687 sites (81%) whose confi-
dentiality can be violated by a related-domain attacker. This
shows that related-domain attackers can often get access to
session cookies, which may enable attacks like session hijack-
ing. Our analysis also shows that the state of cookie integrity
is even worse: in particular, we identify 24,689 (99%) ses-
sion cookies from 14,964 (99%) domains on 834 (99%) sites

2928 30th USENIX Security Symposium

USENIX Association

Table 4: Attackers’ capabilities on vulnerable services.

Table 6: Web security abuses by related-domain attackers (RDA).

Service Wildcard Redirect (www) PSL Capabilities
agilecrm 1] - (1] js https
anima (1] - - js https
campaignmonitor o - o content

cargo 1] v (1] is

feedpress o - - html

gemfury (1] - - file https
github o - v js file https
helpscout o - (] js file https
jetbrains v - (1] content
launchrock (1] o (1) js https
ngrok ? ? v js file headers https
persona 1] v o s https
pingdom o - - is

readme.io o - o s https
shopify o o o js https
smartjobboard (1] v o js https
statuspage v - o js https
strikingly ? ? o s https
surgesh v v (1) js https
tumblr (1] - (1) js file https
uberflip ? ? - js https
uptimerobot o - - content
uservoice ? ? (1) js https
webflow ? ? o s https
wordpress v v o js https
worksites o v ('] js https

Note: We use the following notation: service not affected (v); service is vul-
nerable (@); the conditions of redirect and PSL do not apply (=); could not evaluate,
e.g., due to payment required, no public registration form, etc. (?). Helpscout allows
to host only arbitrary active content files (js, css); Gemfury allows to host only
arbitrary passive content files (images, media, ...); Launchrock implicitly associates
every subdomain to the mapped domain, not only the www subdomain.

Table 5: PSL on dynamic DNS services.

Service # Domains PSL

afraid (FreeDNS) 52,443 O 0/52,443
duckdns 1 v 1/1
dyndns 293 © 287/293
noip 91 938591
securepoint 10 v 10/10

which do not have integrity against a related-domain attacker,
hence may enable attacks like session fixation and cookie forc-
ing. This increase comes from the fact that related-domain
attackers can compromise the confidentiality of domain cook-
ies alone, while they can break the integrity of any cookie by
exploiting cookie shadowing [62]. The fraction of domains
not affected by integrity issues is only due to the lack of ca-
pabilities available for the subdomain we could possibly take
over. The only robust way to improve cookie integrity in this
setting is the adoption of the __Host - prefix, which is unfor-
tunately negligible in the wild: we only identified one cookie
using it in our dataset.

Concerning CSP, the first observation we make is that, as
reported by previous studies [15,46,57], the majority of CSPs
in the wild suffer from incorrect configurations, voiding their
security guarantees even against web attackers. Remarkably,
however, related-domain attackers are more powerful than
traditional web attackers for real-world CSPs, being able to
bypass the protection mechanism on 139 additional domains.
This is apparent for object injection, frame injection, and
framing control. For example, we quantified the following

. Deployed Exploitable by RDA
Mechanism Domains Sites Domains Sites
@ c 15,025 826
% all 23,400 857 I 23178 845
S . Cc 5,051 687
U i)
session 15,179 846 I 14,964 834
script inclusion 1,144 260 901 (0) 212 (0)
a Styleinclusion 961 232 930 (0) 225 (0)
@ object inclusion 1,027 250 598 (+12) 123 (+5)
&)
frame inclusion 967 229 664 (+45) 152 (+12)
framing control 1,676 360 344 (+97) 59 (+21)
E"J all - - 2,254 (+224) 488 (+51)
8 with credentials - - 179 (+63) 71 (+27)
postMessage | 14,045 823 | 14 (0) 11 (0)
Domain Relaxation | 97 61 | 57 29

Note: C and I denote cookie confidentiality and integrity. Numbers within
parenthesis represent the improvement compared to a web attacker; when missing, the
web attacker cannot perform the attack.

increase in the attack surface for frame injection: 45 (+7%)
domains are exploitable exclusively by controlling one of the
vulnerable subdomains identified in our dataset.

As to the other mechanisms, CORS deployments are sig-
nificantly more at risk against related-domain attackers rather
than against traditional web attackers. In particular, we iden-
tify 224 (+11%) new exploitable cases, including 63 (+54%)
cases with credentials. Note that the use of CORS with cre-
dentials is particularly delicate from a security perspective,
hence the strong percentage increase in the number of vulner-
able cases is concerning. Domain relaxation, instead, can be
abused by related-domain attackers in 57 out of 97 domains
(59%) making use of this mechanism. Exploiting domain re-
laxation puts a related-domain attacker in the same origin of
the target web application, hence bypassing all web security
boundaries: this is a critical vulnerability, which deserves at-
tention. Domain relaxation is a bad security practice, which
should better be avoided in the modern Web. Finally, our anal-
ysis of postMessage shows that all sites suffering from unsafe
programming practices are already vulnerable against web
attackers, i.e., for this specific attack vector related-domain
attackers are no more powerful than traditional web attackers,
at least based on the collected data. In other words, sites either
do not enforce any security check or restrict communication
to selected individual origins: this might be a consequence of
the postMessage API granting access to origin information,
rather than site information directly.

6 Related Work

Related-Domain Attackers. The notion of related-domain
attacker was first introduced by Bortz, Barth, and Czeskis [9].
Their work identified the security risks posed by related do-
mains against (session) cookies and proposed a possible solu-
tion called origin cookies. A similar defense mechanism, i.e.,

USENIX Association

30th USENIX Security Symposium 2929

the __Host- prefix, was eventually integrated into major web
browsers. Other than that, related-domain attackers received
only marginal attention from the security community, with a
few notable exceptions. Zheng et al. discussed the security
implications of the lack of cookie integrity in many top sites,
considering both network and related-domain attackers [62].
Calzavara et al. presented black-box testing strategies for web
session integrity, including related-domain attackers in their
threat model [16]. Related-domain attackers have also been
considered in formal web security models, again in the con-
text of web sessions [13]. Our paper significantly advances the
understanding of related-domain attackers by discussing new
security threats, which go beyond web sessions and have been
quantified in the wild through a large-scale measurement.

Attacking Subdomains. Subdomain takeover is an infamous
attack, which has been covered by a body of work. Liu et
al. [33] studied the threat posed by dangling DNS records,
e.g., records that contain aliases to expired domains or point-
ing to IP addresses hosted on cloud services. The authors
performed a large-scale analysis that uncovered the existence
of hundreds of dangling records among the subdomains of the
top 10k sites of Alexa and under the .edu and .gov zones.
With respect to [33], we improved the subdomain enumeration
part by a factor of 13 and increased the number of analyzed
services from 9 to 31. Also, the paper does not extensively
analyze the web security implications of subdomain takeover.
Borgolte et al. [8] improved on the results of [33] concerning
deprovisioned cloud instances and proposed an extension of
the ACME protocol used by some CAs for domain valida-
tion (e.g., Let’s Encrypt). Schwittman et al. [48] studied these
domain validation techniques and discovered several vulner-
abilities that could be exploited by attackers to obtain valid
certificates for domains they do not own.

Liu et al. [34] proposed a technique to detect shadowed
domains used in malware distribution campaigns, i.e., legit-
imate domains that are compromised to spawn an arbitrary
number of subdomains after taking control of the DNS con-
figuration panel at the registrar. Alowaisheq et al. [5] recently
demonstrated a domain hijacking attack that relies on the ex-
ploitation of stale NS records. Zhang et al. [61] showed how
a domain with HTTPS misconfigurations can be abused by
a network attacker to force the communication over HTTP
with its related domains. However, the authors consider two
domains as related if they share the same TLS certificate,
which differs from the definition considered in this work.
A large body of works studied the problem of domain im-
personation (e.g., [4,28,45]) where attackers trick users to
interact with their malicious websites by using domain names
that mimic those of honest sites. An example is provided by
doppelganger domains [60] which are spelled similarly to
legitimate subdomain names except for the dots that separate
the components of the domain name. We consider all these
threats out of the scope of our analysis, as they have different
security implications than the vulnerabilities we discuss.

Web Measurements. Meiser et al. [35] studied the cross-
origin data exchange practices of Sk websites to assess to
which extent their security could be affected by the presence
of an XSS vulnerability on one of their communication part-
ners. In our work, we study a similar problem, but we restrict
our focus to related domains, and we consider other mecha-
nisms that are out of scope for [35], e.g., CSP. Chen et al. [18]
performed a large-scale measurement of CORS misconfigu-
rations. Among the 480k domains that they analyzed, they
discovered that 27.5% of them are affected by some vulner-
ability and, in particular, 84k trust all their subdomains and
can thus be exploited by a related-domain attacker. Son and
Shmatikov [50] analyzed the usage of the Messaging API on
the top 10k Alexa websites. The authors found that 1.5k hosts
do not perform any origin checking on the receiving mes-
sage, while 261 implement an incorrect check: (almost) all
these checks can be bypassed from a related-domain position,
although half of them can also be bypassed from domains
with a specially-crafted name. More recently, Steffens and
Stock [51] proposed an automated framework for the analysis
of postMessage handlers and used it to perform a comprehen-
sive analysis of the first top 100k websites of the Tranco list.
The authors discovered 111 vulnerable handlers, out of which
80 do not perform any origin check. Regarding the remaining
handlers, the authors identified only 8 incorrect origin valida-
tions, showing an opposite trend with respect to [50]. Finally,
insecure configurations of CSP have been analyzed in a num-
ber of research papers [15,46,57,58]. However, none of these
works considered the problem of related-domain attacks.

7 Conclusion

In this paper, we presented the first analysis tailored at quanti-
fying the threats posed by related-domain attackers to the
security of web applications. We first introduced a novel
framework that captures the capabilities acquired by such
attackers, according to the position in which they operate,
and we discuss which web attacks can be launched from that
privileged position, highlighting the advantages with respect
to traditional web attackers. We also studied the security im-
plications of 31 third-party service providers and dynamic
DNS to identify the capabilities that a related-domain attacker
acquires when taking over a domain hosted by them, and pre-
sented a novel subdomain hijacking technique that resulted in
a bug bounty of $1,000. Then, we described the design of our
automated toolchain used to assess the pervasiveness of these
threats in the wild. The toolchain consists of an analysis mod-
ule for subdomain takeover that identifies which subdomains
can be hijacked by an attacker. Next, the web security module
quantifies how many related domains can be attacked from
the domains discovered in the previous step. We performed
a large-scale analysis on the 50k most popular domains, and
we identified vulnerabilities in 887 of them, including major
websites like cnn.com and cisco.com. Then, we correlated

2930 30th USENIX Security Symposium

USENIX Association

for the first time the impact of these vulnerabilities on the
security of web applications, showing that related-domain
attackers have an additional gain compared to web attackers
that goes beyond the traditional cookie issues.

Acknowledgments

We thank the anonymous reviewers for their helpful sugges-
tions. We also thank Google for sponsoring our research with
$5,000 in credits for Google Cloud Platform and Cisco Ta-
los for granting us access to a dataset that was used during
a preliminary investigation for this project. This work has
been partially supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
(grant agreement 771527-BROWSEC); by the Austrian Sci-
ence Fund (FWF) through the project PROFET (grant agree-
ment P31621); by the Austrian Research Promotion Agency
(FFG) through the Bridge-1 project PR4DLT (grant agree-
ment 13808694) and the COMET K1 SBA.

References

[1] Puppeteer. https://pptr.dev/, 2020.

[2] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley,
A. Flores-Lépez, J. A. Halderman, J. Hoffman-Andrews,
J. Kasten, E. Rescorla, S. Schoen, and B. Warren. Let’s
Encrypt: An Automated Certificate Authority to Encrypt
the Entire Web. In CCS, 2019.

[3] Abusix. Abuse Contact Database.
abusix.com/contactdb, 2020.

https://www.

[4] P. Agten, W. Joosen, F. Piessens, and N. Nikiforakis.
Seven Months’ Worth of Mistakes: A Longitudinal
Study of Typosquatting Abuse. In NDSS, 2015.

[5] E. Alowaisheq, S. Tang, Z. Wang, F. Alharbi, X. Liao,
and X. Wang. Zombie Awakening: Stealthy Hijacking
of Active Domains Through DNS Hosting Referral. In
CCS, 2020.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Robust De-
fenses for Cross-Site Request Forgery. In CCS, 2008.

[7] N. Biasini. Threat Spotlight: Angler Lurking in
the Domain Shadows. http://blogs.cisco.com/
security/talos/angler—-domain-shadowing,

2015.

[8] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna.
Cloud Strife: Mitigating the Security Risks of Domain-
Validated Certificates. In NDSS, 2018.

[9] A. Bortz, A. Barth, and A. Czeskis. Origin Cookies:
Session Integrity for Web Applications. In W2SP, 2011.

[10] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Comput. Networks,
1998.

[11] Bugcrowd. Public Bug Bounty List. https://www.
bugcrowd. com/bug-bounty-1ist/, 2020.

[12] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan.
CookiExt: Patching the Browser Against Session Hijack-
ing Attacks. Journal of Computer Security, 23(4):509—
537, 2015.

[13] S. Calzavara, R. Focardi, N. Grimm, M. Maffei, and
M. Tempesta. Language-Based Web Session Integrity.
In CSF, 2020.

[14] S. Calzavara, R. Focardi, M. Squarcina, and M. Tem-
pesta. Surviving the Web: A Journey into Web Session
Security. ACM Computing Surveys (CSUR), 50(1):13:1-
13:34, 2017.

[15] S. Calzavara, A. Rabitti, and M. Bugliesi. Semantics-
Based Analysis of Content Security Policy Deployment.
ACM Transactions on the Web, 2018.

[16] S. Calzavara, A. Rabitti, A. Ragazzo, and M. Bugliesi.
Testing for Integrity Flaws in Web Sessions. In ES-
ORICS, 2019.

[17] Censys. https://censys.io/, 2020.

[18] J. Chen, J. Jiang, H. Duan, T. Wan, S. Chen, V. Pax-
son, and M. Yang. We Still Don’t Have Secure Cross-
Domain Requests: an Empirical Study of CORS. In
USENIX Security, 2018.

[19] Common Crawl. Host- and Domain-Level
Web Graphs Feb/Mar/May 2020. https:
//commoncrawl.org/2020/06/host-and-domain-
level-web-graphs-febmarmay-2020/, 2020.

[20] M. Conca. Changes to SameSite Cookie Be-
havior — A Call to Action for Web Developers.
https://hacks.mozilla.org/2020/08/changes—
to-samesite-cookie-behavior/, 2020.

[21] L. Daigle. RFC3912: WHOIS Protocol Specification,
2004.

[22] EdOverflow. can-i-take-over-xyz. https://github.
com/EdOverflow/can-i-take-over-xyz.

[23] E. Foudil and Y. Shafranovich. A File Format to Aid in
Security Vulnerability Disclosure, 2020.

[24] FreeDNS. Free DNS Hosting, Dynamic DNS Hosting,
Static DNS Hosting, subdomain and domain hosting.
https://freedns.afraid.org/, 2020.

USENIX Association

30th USENIX Security Symposium 2931

https://pptr.dev/
https://www.abusix.com/contactdb
https://www.abusix.com/contactdb
http://blogs.cisco.com/security/talos/angler-domain-shadowing
http://blogs.cisco.com/security/talos/angler-domain-shadowing
https://www.bugcrowd.com/bug-bounty-list/
https://www.bugcrowd.com/bug-bounty-list/
https://censys.io/
https://commoncrawl.org/2020/06/host-and-domain-level-web-graphs-febmarmay-2020/
https://commoncrawl.org/2020/06/host-and-domain-level-web-graphs-febmarmay-2020/
https://commoncrawl.org/2020/06/host-and-domain-level-web-graphs-febmarmay-2020/
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior/
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior/
https://github.com/EdOverflow/can-i-take-over-xyz
https://github.com/EdOverflow/can-i-take-over-xyz
https://freedns.afraid.org/

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

P. Hallam-Baker, R. Stradling, and J. Hoffman-Andrews.
RFC8659: DNS Certification Authority Authorization
(CAA) Resource Record, 2019.

S. Helme. Cross-Site Request Forgery is dead! https:
//scotthelme.co.uk/csrf-is-dead/, 2017.

TANA. Root Zone Database. https://www.iana.org/
domains/root/db.

P. Kintis, N. Miramirkhani, C. Lever, Y. Chen, R. R.
Gomez, N. Pitropakis, N. Nikiforakis, and M. Anton-
akakis. Hiding in Plain Sight: A Longitudinal Study of
Combosquatting Abuse. In CCS, 2017.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting
Speculative Execution. In S&P, 2019.

C. Lever, R. J. Walls, Y. Nadji, D. Dagon, P. D. Mc-
Daniel, and M. Antonakakis. Domain-Z: 28 Registra-
tions Later Measuring the Exploitation of Residual Trust
in Domains. In S&P, 2016.

E. P. Lewis. RFC4592: The Role of Wildcards in the
Domain Name System, 2006.

F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey,
D. McCoy, S. Savage, and V. Paxson. You’ve Got Vul-
nerability: Exploring Effective Vulnerability Notifica-
tions. In USENIX Security, 2016.

D. Liu, S. Hao, and H. Wang. All Your DNS Records
Point to Us: Understanding the Security Threats of Dan-
gling DNS Records. In CCS, 2016.

D. Liu, Z. Li, K. Du, H. Wang, B. Liu, and H. Duan.
Don’t Let One Rotten Apple Spoil the Whole Barrel:
Towards Automated Detection of Shadowed Domains.
In CCS, 2017.

G. Meiser, P. Laperdix, and B. Stock. Careful Who You
Trust: Studying the Pitfalls of Cross-Origin Communi-
cation. In ASIA CCS, 2021.

P. Mockapetris. RFC1035: Domain Names - Implemen-
tation and Specification, 1987.

Mozilla. Mixed content. https://developer.
mozilla.org/en-US/docs/Web/Security/Mixed_
content.

Mozilla. Public Suffix List. https://publicsuffix.
org/.

M. Nottingham. RFC8615: Well-Known Uniform Re-
source Identifiers (URIs), 2019.

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

[51]

[52]

(53]

C. Osborne. Uber Patches Security Flaw
Leading to Subdomain Takeover. ZDNet,
https://www.zdnet.com/article/uber-patches-
security-flaw-leading-to-subdomain-
takeover/, 2017.

OWASP. Amass.
project-amass/, 2020.

https://owasp.org/www—

V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob,
M. Korczynski, and W. Joosen. Tranco: A Research-
Oriented Top Sites Ranking Hardened Against Manipu-
lation. In NDSS, 2019.

Rapid7 Labs. Open Data, TCP and UDP scans. https:
//opendata.rapid7.com/, 2020.

C. Reis, A. Moshchuk, and N. Oskov. Site Isolation:
Process Separation for Web Sites within the Browser.
In USENIX Security, 2019.

R. Roberts, Y. Goldschlag, R. Walter, T. Chung, A. Mis-
love, and D. Levin. You Are Who You Appear to Be: A
Longitudinal Study of Domain Impersonation in TLS
Certificates. In CCS, 2019.

S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and
B. Stock. Complex Security Policy? A Longitudinal
Analysis of Deployed Content Security Policies. In
NDSS, 2020.

S. Rottger and A. Janc. A Spectre proof-
of-concept for a Spectre-proof web. https:
//security.googleblog.com/2021/03/a-
spectre-proof-of-concept-for-spectre.html,
2021.

L. Schwittmann, M. Wander, and T. Weis. Domain
Impersonation is Feasible: A Study of CA Domain Vali-
dation Vulnerabilities. In EuroS&P, 2019.

Sectigo. Crt.sh: Certificate search. https://crt.sh/, 2020.

S. Son and V. Shmatikov. The Postman Always
Rings Twice: Attacking and Defending postMessage
in HTMLS5 Websites. In NDSS, 2013.

M. Steffens and B. Stock. PMForce: Systematically
Analyzing postMessage Handlers at Scale. In CCS,
2020.

B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow.
Didn’t You Hear Me? - Towards More Successful Web
Vulnerability Notifications. In NDSS, 2018.

B. Stock, G. Pellegrino, C. Rossow, M. Johns, and
M. Backes. Hey, You Have a Problem: On the Fea-
sibility of Large-Scale Web Vulnerability Notification.
In USENIX Security, 2016.

2932 30th USENIX Security Symposium

USENIX Association

https://scotthelme.co.uk/csrf-is-dead/
https://scotthelme.co.uk/csrf-is-dead/
https://www.iana.org/domains/root/db
https://www.iana.org/domains/root/db
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://publicsuffix.org/
https://publicsuffix.org/
https://www.zdnet.com/article/uber-patches-security-flaw-leading-to-subdomain-takeover/
https://www.zdnet.com/article/uber-patches-security-flaw-leading-to-subdomain-takeover/
https://www.zdnet.com/article/uber-patches-security-flaw-leading-to-subdomain-takeover/
https://owasp.org/www-project-amass/
https://owasp.org/www-project-amass/
https://opendata.rapid7.com/
https://opendata.rapid7.com/
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html

[54] The Chromium Projects. SameSite Updates. https:
//www.chromium.org/updates/same-site, 2020.

[55] W3C. Content Security Policy Level 3. https://www.
w3.org/TR/CSP3/, 2018.

[56] J. Walker. Subdomain Autofill Feature Raises Ques-
tions over LastPass Security. https://portswigger.
net/daily-swig/subdomain-autofill-feature-
raises-questions-over-lastpass—-security.

[57] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc.
CSP Is Dead, Long Live CSP! On the Insecurity of
Whitelists and the Future of Content Security Policy. In
CCS, 2016.

[58] M. Weissbacher, T. Lauinger, and W. K. Robertson. Why
Is CSP Failing? Trends and Challenges in CSP Adoption.
In RAID, 2014.

[59] M. West and J. Wilander. RFC6265: Cookies: HTTP
State Management Mechanism, 2020.

[60] Wired. Researchers’ Typosquatting Stole 20 GB of E-
Mail From Fortune 500. https://www.wired.com/
2011/09/doppelganger-domains/, 2011.

[61] M. Zhang, X. Zheng, K. Shen, Z. Kong, C. Lu, Y. Wang,
H. Duan, S. Hao, B. Liu, and M. Yang. Talking with
Familiar Strangers: An Empirical Study on HTTPS Con-
text Confusion Attacks. In CCS, 2020.

[62] X.Zheng,J. Jiang, J. Liang, H. Duan, S. Chen, T. Wan,
and N. Weaver. Cookies Lack Integrity: Real-World
Implications. In USENIX Security, 2015.

A Disclosure and Ethical Considerations

RDScan identified 1,520 vulnerable subdomains on 887 dis-
tinct domains, of which 260 are subdomains pointing to an
expired domain and 1,260 are those mapped to a discontin-
ued service (see §4.2). Besides disclosing the vulnerabili-
ties found on service providers (§5.1.2), we also attempted
to notify all the websites affected by the issues we discov-
ered. Prior work [32, 52, 53] showed that the identification
and selection of correct security contact points is the main
issue behind an overall unsatisfactory remediation rate. To
maximize the chances of a successful notification campaign,
we examined the following sources until a valid point of
contact was found: (i) the list of bug bounty and security
disclosure programs maintained by Bugcrowd [11]; (ii) the
security.txt file [23] in the root directory of the vulnerable
domains and under the /.well-known/ folder [39]; (iii) the
Abusix [3] database, queried with the ip addresses of the
vulnerable domains to collect the associated email contacts;
(iv) a WHOIS lookups [21]. We validated the obtained email

addresses to avoid reporting vulnerabilities to unrelated par-
ties, e.g., by checking whether the domain part of the email
address matches any of the input domains. Unfortunately,
using this procedure we could not find any security contact
for the majority of the considered domains (62%). To inform
them about their security vulnerabilities, we contacted our
national CERT that willingly agreed to disclose the issues to
the affected parties on our behalf. Among the few contacted
websites with a bug bounty program, F-Secure awarded us
with €250 for the reported subdomain takeover vulnerability.

Aside from vulnerability disclosure programs, our notifi-
cation campaign is fully automatic: we sent an email to all
the identified contacts containing a high-level description of
the vulnerabilities and a link to the security advisory on our
web application which contains a detailed description of the
problems found for a given domain, the required actions to fix
the reported vulnerabilities, and instructions to opt out from
future scans.

A.1 Outcome of the Notification Campaign

We performed a second run of RDScan on January 2021, 6
months after the first analysis, to picture the state of vulnera-
ble instances left in the wild after our disclosure. We repeated
the test for the whole set of expired domains instances. Con-
cerning discontinued services, we focused on the 3 largest
providers (WordPress, Shopify and Tumblr), representing 87%
of the vulnerable subdomains found in the first round. Overall,
we covered 1362 out of the original 1520 vulnerable subdo-
mains (90%), which translates to 781 out of 887 sites (88%).
To account for possible changes in services occurred in the
meanwhile, we verified the takeover preconditions included
in RDScan. After the conclusion of the analysis, we manually
assessed a random sample of 10% of the results to ensure the
correctness of the procedure without finding any discrepancy.

We discovered that only 200 out of 1362 subdomains (15%)
have been fixed during this time frame, for a total of 125 sites
over 781 (16%). We noticed that the sites which we contacted
directly exhibit a noticeably higher fix rate (31% subdomain,
22% sites) than those alerted by our national CERT (10%
subdomains, 14% sites). Unfortunately, we also observed
that a considerable amount of sites fixed only a subset of
their vulnerable subdomains, resulting still affected by threats
posed by related-domain attackers.

The overall remediation rate of our notification campaign is
in line with previous studies [53]. Nonetheless, we report that
our procedure to identify appropriate contact points turned out
to be successful considering that 34% of the contacted parties
accessed the full vulnerability report on our web application.

A.2 Ethical Considerations

We consciously designed our vulnerability scanning frame-
work to avoid raising network alerts or causing harm to the

USENIX Association

30th USENIX Security Symposium 2933

https://www.chromium.org/updates/same-site
https://www.chromium.org/updates/same-site
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/
https://portswigger.net/daily-swig/subdomain-autofill-feature-raises-questions-over-lastpass-security
https://portswigger.net/daily-swig/subdomain-autofill-feature-raises-questions-over-lastpass-security
https://portswigger.net/daily-swig/subdomain-autofill-feature-raises-questions-over-lastpass-security
https://www.wired.com/2011/09/doppelganger-domains/
https://www.wired.com/2011/09/doppelganger-domains/

analyzed targets. Specifically, the subdomain takeover assess-
ment phase has been carried out mostly by DNS queries and
simple HTTP requests. Active websites have never been af-
fected by our tests since we restricted the analysis to aban-
doned DNS records. We did not perform any large-scale
portscan, but we opted, instead, for using a public dataset
consisting of a scan of the full IPv4 range on 148 ports.

We also avoided checking the availability of IP addresses
on cloud providers by iterating over the creation of multiple
virtual machines, since this practice could interfere with the
normal operations of the cloud platforms. Similarly, the web
analysis module did not execute attacks against the targets, but
limited its operations to the passive collection of data (cookies
and security policies), simple HTTP requests, and client-side
testing. Overall, our approach proved to be lightweight and
unobtrusive: we did not receive requests from the analyzed
websites to opt out from future scans, and no complaints
concerning our activity were sent to the abuse contact of the
IPs used to perform the analysis.

B Case Studies

We report on manually vetted case studies of confirmed at-
tacks. All vulnerable parties have been promptly informed of
the discovered issues, see Appendix A for details.

B.1 Site Impersonation

We provide a concrete example of how the Shopify vulnera-
bility described in §5.1.2 could have been abused to imper-
sonate a major website. As of September 2020, the e-shop
of fox.com was hosted on Shopify and made available at
shop. fox.com using a custom domain mapping. Our scan
verified the two preconditions to connect www . shop. fox. com
to a Shopify store under our control, i.e., the existence of a
DNS 2 record pointing the domain www. shop.fox.com to
23.227.38.65 (the IP address owned by Shopify to map cus-
tom domains) and that www. shop. fox.com was not associ-
ated with any registered store on Shopify.

We manually investigated the e-shop of fox.com and
found that the redirection performed by Shopify from
www.shop.fox.com to shop.fox.com caused the www-
prefixed subdomain to be referenced in the store as a le-
gitimate URL.? By taking over www.shop. fox.com, crim-
inals could have abused this implicit trust to mount severe
attacks against the legitimate store, such as phishing, reputa-
tion damage, and credential stealing. We notified the vulnera-
bility to Shopify on August 27, 2020 and received a bounty
for our disclosure. Around one month after the report, we
noticed that FOX moved its e-shop to a different domain

3See https://web.archive.org/web/20200113052608/https:
//shop.fox.com/pages/faq for a page mentioning www . shop. fox. com.

(maskedsingershop.com). We have no evidence to assert
whether this change is connected to our disclosure.

B.2 Session Hijacking

We describe an example of a subdomain takeover vulnera-
bility that could have been exploited to hijack authenticated
user sessions at the FedEx website. RDScan discovered a
dangling DNS affecting the cn.grantcontest. fedex.com
subdomain due to a CNAME record pointing to the purchasable
domain cngrantcontest.com.

After taking control of the subdomain, attackers could es-
calate their privileges by exploiting the insecure configuration
of session cookies on the main website. We manually verified
that authenticated sessions with www. fedex.com were built
upon domain cookies, which are sent by default to all subdo-
mains (see §3.3.2). Thus, authenticated users would disclose
their session cookies to the attackers just by visiting the com-
promised subdomain. After acquiring the victim’s cookies, an
attacker could automatically break into the victim’s session
and access confidential data stored on the web portal. We no-
tified FedEx about the takeover vulnerability in August 2020.
The company acknowledged our findings and, as of January
2021, we confirmed that the vulnerability was fixed.

B.3 Leakage of PII data

Now we show how a related-domain attacker can abuse mis-
configurations in the CORS policy to access personally iden-
tifiable information (PII) of a user on the F-Secure website.
Our vulnerability scanning pipeline detected a CNAME record
uk.safeandsavvy.f-secure.com pointing to the deleted
WordPress blog at safeandsavvyuk.wordpress.com. No-
tice that subdomains of deleted blogs still resolve to a Word-
Press IP thanks to a CNAME wildcard for *.wordpress.com.
To take over the F-Secure subdomain, an attacker could
simply create an account on wordpress.com and set
uk.safeandsavvy.f-secure.com as a custom domain.

We observed that WordPress allows paid accounts to install
plugins which enable the inclusion of arbitrary scripts as part
of the blog’s theme. The ability to execute JavaScript from
a subdomain of f-secure.com would allow attackers to ex-
ploit a CORS vulnerability identified by our web analyzer
on api.my.f-secure.com Such domain was configured to
relax the SOP on requests originating from any subdomain
of f-secure.com, even when cookies are attached. An at-
tacker could trick a victim into visiting a page on the compro-
mised subdomain which performs a fetch request to, e.g., the
https://api.my.f-secure.com/get_userinfo endpoint
to read private information such as past billing details, tokens,
etc. We notified F-Secure through their bug bounty program
in August 2020 and received €250 for the report.

2934 30th USENIX Security Symposium

USENIX Association

https://web.archive.org/web/20200113052608/https://shop.fox.com/pages/faq
https://web.archive.org/web/20200113052608/https://shop.fox.com/pages/faq

	Introduction
	Background
	The Related-Domain Attacker
	Threat Model
	Abusing Related Domains
	Dangling DNS Records
	Corporate Networks and Roaming Services
	Hosting Providers and Dynamic DNS Services
	Compromised Hosts/Websites

	Web Threats
	Inherent Threats
	Cookie Confidentiality and Integrity
	Bypassing CSP
	Abusing CORS
	Abusing postMessage
	Abusing Domain Relaxation

	Analysis Methodology
	DNS Data Collection
	RDScan
	Web Analyzer
	Analysis of Cookies
	Analysis of CSP policies
	Analysis of CORS
	Analysis of postMessage Handlers
	Analysis of Domain Relaxation

	Heuristics and False Positives

	Security Evaluation
	Attack Vectors and Capabilities
	Characterization of Vulnerable Domains
	Analysis of Third-Party Services

	Web Threats

	Related Work
	Conclusion
	Disclosure and Ethical Considerations
	Outcome of the Notification Campaign
	Ethical Considerations

	Case Studies
	Site Impersonation
	Session Hijacking
	Leakage of PII data

