
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

JAW: Studying Client-side CSRF with
Hybrid Property Graphs and Declarative Traversals

Soheil Khodayari and Giancarlo Pellegrino,
CISPA Helmholtz Center for Information Security

https://www.usenix.org/conference/usenixsecurity21/presentation/khodayari

JAW: Studying Client-side CSRF with Hybrid Property Graphs
and Declarative Traversals

Soheil Khodayari
CISPA Helmholtz Center
for Information Security

Giancarlo Pellegrino
CISPA Helmholtz Center
for Information Security

Abstract
Client-side CSRF is a new type of CSRF vulnerability

where the adversary can trick the client-side JavaScript pro-
gram to send a forged HTTP request to a vulnerable target site
by modifying the program’s input parameters. We have little-
to-no knowledge of this new vulnerability, and exploratory
security evaluations of JavaScript-based web applications are
impeded by the scarcity of reliable and scalable testing tech-
niques. This paper presents JAW, a framework that enables the
analysis of modern web applications against client-side CSRF
leveraging declarative traversals on hybrid property graphs, a
canonical, hybrid model for JavaScript programs. We use JAW
to evaluate the prevalence of client-side CSRF vulnerabili-
ties among all (i.e., 106) web applications from the Bitnami
catalog, covering over 228M lines of JavaScript code. Our ap-
proach uncovers 12,701 forgeable client-side requests affect-
ing 87 web applications in total. For 203 forgeable requests,
we successfully created client-side CSRF exploits against
seven web applications that can execute arbitrary server-side
state-changing operations or enable cross-site scripting and
SQL injection, that are not reachable via the classical attack
vectors. Finally, we analyzed the forgeable requests and iden-
tified 25 request templates, highlighting the fields that can be
manipulated and the type of manipulation.

1 Introduction
Client-side Cross-Site Request Forgery (client-side CSRF) is
a new breed of CSRF vulnerabilities affecting modern web ap-
plications. Like the more traditional CSRF, with a brief visit to
a malicious URL, an adversary can trick the victim’s browser
into sending an authenticated security-sensitive HTTP request
on the user’s behalf towards a target web site without user’s
consent or awareness. In the traditional CSRF, the vulnerable
component is the server-side program, which cannot distin-
guish whether the incoming authenticated request was per-
formed intentionally, also known as the confused deputy prob-
lem [45, 55]. CSRF is typically solved by adding a pseudo-
random unpredictable request parameter, preventing forgery
(see, e.g., [34]), or by changing the default browsers’ behav-

ior and avoiding the inclusion of HTTP cookies in cross-site
requests (see, e.g., [28, 29]). In the client-side CSRF, the vul-
nerable component is the JavaScript program instead, which
allows an attacker to generate arbitrary requests by modifying
the input parameters of the JavaScript program. As opposed
to the traditional CSRF, existing anti-CSRF countermeasures
(see, e.g., [28, 29, 34]) are not sufficient to protect web appli-
cations from client-side CSRF attacks.

Client-side CSRF is very new—with the first instance af-
fecting Facebook in 2018 [24]—and we have little-to-no
knowledge of the vulnerable behaviors, the severity of this
new flaw, and the exploitation landscape. Studying new vul-
nerabilities is not an easy task, as it requires the collection and
analysis of hundreds of web pages per real web applications.
Unfortunately, such analyses are primarily impeded by the
scarcity of reliable and scalable tools suitable for the detection
and analysis of vulnerable JavaScript behaviors.

In general, studying client-side CSRF vulnerabilities in
JavaScript-based web applications is not an easy task. First,
there is no canonical representation for JavaScript code. Sec-
ond, JavaScript programs are event-driven, and we need mod-
els that capture and incorporate this aspect into the canonical
representation. Third, pure static analysis is typically not suf-
ficiently accurate due to the dynamic nature of JavaScript
programs [43, 46, 72], and their execution environment [47],
calling for hybrid static-dynamic analysis techniques. Finally,
JavaScript libraries constitute a noteworthy fraction of code
across web pages, and analyzing them repeatedly leads to in-
efficient models poorly suitable for detecting vulnerabilities.

In this paper, we address these challenges by proposing
hybrid property graphs (HPGs), a coherent, graph-based
representation for client-side JavaScript programs, captur-
ing both static and dynamic program behaviors. Inspired
by prior work [91], we use property graphs for the model
representation and declarative graph traversals to identify
security-sensitive HTTP requests that consume data values
from attacker-controllable sources. Also, we present JAW, a
framework for the detection of client-side CSRF that, start-
ing from a seed URL, instantiates HPGs by automatically

USENIX Association 30th USENIX Security Symposium 2525

collecting web resources and monitoring program execution.
Finally, we instantiated JAW against all (i.e., 106) web ap-

plications of the Bitnami catalog [2] to detect and study client-
side CSRF, covering, in total, over 228M lines of JavaScript
code over 4,836 web pages. Overall, our approach uncovers
12,701 forgeable client-side requests affecting 87 web appli-
cations. For 203 forgeable requests, we successfully created
client-side CSRF exploits against seven web applications that
can execute arbitrary server-side state-changing operations
or enable cross-site scripting and SQL injection, that are not
reachable via the classical attack vectors. Finally, we analyzed
forgeable requests and identified 25 distinct request templates,
highlighting the fields that can be manipulated and the type
of manipulation.

To summarize, we make the following main contributions:
• We perform the first systematic study of client-side

CSRF, a new variant of CSRF affecting the client-side
JavaScript program, and present a taxonomy of forgeable
requests considering two features, i.e., request fields, and
the type of manipulation.

• We present hybrid property graphs, a single and coherent
representation for the client-side of web applications,
capturing both static and dynamic program behaviors.

• We present JAW, a framework that detects client-side
CSRF by instantiating a HPG for each web page, starting
from a single seed URL.

• We evaluate JAW with over 228M lines of JavaScript
code in 106 popular applications from the Bitnami cata-
log, identifying 12,701 forgeable requests affecting 87
applications, out of which we created working exploits
for 203 requests of seven applications.

• We release the source code of JAW1 to support the fu-
ture research effort to study vulnerable behaviors of
JavaScript programs.

2 Background
Before presenting JAW, we introduce the client-side CSRF
vulnerability and a running example (§2.1). Then, we present
the challenges to analyze client-side CSRF vulnerabilities
(§2.2). Finally, we give an overview of our approach (§2.3).

2.1 Client-side CSRF
Client-side CSRF is a new category of CSRF vulnerability
where the adversary can trick the client-side JavaScript pro-
gram to send a forged HTTP request to a vulnerable target
site by manipulating the program’s input parameters. In a
client-side CSRF attack, the attacker lures a victim into click-
ing a malicious URL that belongs to an attacker-controlled
web page or an honest but vulnerable web site, which in turn
causes a security-relevant state change of the target site.
Impact. Similarly to the classical CSRF, client-side CSRF
can be exploited to perform security-sensitive actions on the

1https://github.com/SoheilKhodayari/JAW

server-side and compromise the database integrity. Successful
CSRF attacks can lead to remote code execution [51, 69],
illicit money transfers [69, 93], or impersonation and identity
riding [23, 24, 25, 26, 27, 37], to name only a few instances.
Root Causes. Client-side CSRF vulnerabilities originate
when the JavaScript program uses attacker-controlled in-
puts, such as the URL, for the generation of outgoing HTTP
requests. The capabilities required to manipulate different
JavaScript input sources (e.g., see [60]) are discussed next.
Threat Model. The overall goal of an attacker is forging
client-side HTTP requests by manipulating various JavaScript
input sources. In this paper, we consider the URL, window
name, document referrer, postMessages, web storage, HTML
attributes, and cookies, each requiring different attacker capa-
bilities. Manipulating the URL, window name, referrer and
postMessages require an attacker able to forge a URL or con-
trol a malicious web page. For example, a web attacker can
craft a malicious URL, belonging to the origin of the honest
but vulnerable web site, that when visited by a victim leads to
automatic submission of an HTTP request by the JavaScript
program of the target site. Alternatively, a web attacker can
control a malicious page and use browser APIs to trick the vul-
nerable JavaScript of the target page to send HTTP requests.
For example, a web attacker can use window.open() [21]
to open the target URL in a new window, send postMes-
sages [81] to the opened window, or set the window name
through window.name API [20]. Furthermore, a web attacker
can manipulate document.referrer leveraging the URL of
the attacker-controlled web page.

For web storage and HTML attributes, the attacker needs
to add ad-hoc data items in the web storage or DOM tree. A
web attacker could achieve that assuming the web application
offers such functionalities (e.g., by HTTP requests). Similarly,
a web attacker with a knowledge of an XSS exploit can ma-
nipulate the web storage or DOM tree. Finally, modifying
cookies may require a powerful attacker such as a network
attacker. This attacker can implant a persistent client-side
CSRF payload in the victim’s browser by modifying cookies
(e.g., see [78, 84, 94]), which can lie dormant, and exploited
later on to attack a victim. We observe that all attacks per-
formed by the web attacker can be performed by a network
attacker too.
Vulnerability. Listing 1 exemplifies a vulnerable script–
based on a real vulnerability that we discovered in SuiteCRM–
that fetches a shopping invoice with an HTTP request during
the page load. First, the program fetches an HTML input
field with id input (line 1), and then defines an event han-
dler h that is responsible for retrieving the price of the in-
voice with an asynchronous request and populating the input
with the price (lines 2-9). For asynchronous requests, the
function h uses YUI library [22], that provides a wrapper
asyncRequest for the low-level XMLHttpRequest browser
API. Then, the function h is registered as a handler for a cus-

2526 30th USENIX Security Symposium USENIX Association

https://github.com/SoheilKhodayari/JAW

Listing 1: Example client-side CSRF vulnerability derived from SuiteCRM.

1 var i = document.querySelector('input');
2 async function h(e){
3 var uri = window.location.hash.substr (1);
4 if (uri.length > 0) {
5 let req = new asyncRequest("POST", uri);
6 // Add Synchronizer Token
7 req.initHeader('X-CSRF-TOKEN', token);
8 var price = await req.send();
9 i.value = price;}}
10 i.addEventListener('loadInvoice', h);
...
14 function showInvoicePrice(input_id) {
15 document.getElementById(input_id).dispatchEvent(new

CustomEvent('loadInvoice', {}));}
16 showInvoicePrice('input');

tom event called loadInvoice. This event is dispatched by
the function showInvoicePrice (lines 14-16). The vulnera-
bility occurs (in lines 3-5) when the JavaScript program uses
URL fragments to store the server-side endpoint for the HTTP
request, an input that can be modified by the attacker.
Attack. Figure 1 shows an example of attack exploiting the
client-side CSRF vulnerabilities of Listing 1. First, the at-
tacker prepares a URL of the vulnerable site, by inserting the
URL of the target site as URL fragment (step 1). Then, the
victim is lured into visiting the vulnerable URL (step 2), as it
belongs to an application that the user trusts. Upon comple-
tion of the page load (step 3), the JavaScript code will extract
a URL from the URL fragment, and send an asynchronous
HTTP request towards the target site, which in turn causes a
security-relevant state change on the target server.
Existing Defenses are Ineffective. Over the past years,
the community proposed several defenses against CSRF
(e.g., [34, 39, 52, 53, 63, 74]). Recently, browser ven-
dors proposed to introduce a stricter same-site cookies pol-
icy [28, 29, 30], by marking all cookies as SameSite=Lax by
default [90]. Unfortunately, existing mechanisms cannot offer
a complete protection against client-side CSRF attacks, e.g.,
when synchronizer tokens [34, 39] or custom HTTP head-
ers [34, 86] are used, the JavaScript program will include
them in the outgoing requests as shown in line 7 of Listing 1.
Also, if the browser or the web site is using the same-site
policy for cookies, JavaScript web pages, once loaded, can
perform preliminar same-site requests to determine whether a
pre-established user session exists, circumventing the same-
site policy.

2.2 Challenges
In this work, we intend to study the new client-side CSRF
vulnerability in the client-side JavaScript code of a web appli-
cation. Before presenting our solution, we show the challenges
we need to address to achieve our objective.
(C1) Static Representational Models. JavaScript programs
are incredibly challenging to be analyzed via static analysis.
For example, prior work have proposed inter-procedural con-
trol flow graphs [50, 67], data flow dependency graphs [62,
82], type analyzers [38, 44, 49], and points-to analysis [61,

Figure 1: Example of client-side CSRF attack.

83]. Unfortunately, these approaches provide ad-hoc represen-
tation of programs, each focusing on an individual aspect that
is alone not sufficient to study client-side CSRF. Recently,
we have seen new ideas unifying static representations with
code property graphs (CPGs) [33, 91]. However, these new
ideas are not tailored to JavaScript’s nuances, such as the
asynchronous events [82], or the execution environment [47].
To date, there are no models for JavaScript that can provide
a canonical representation to conduct both detection and ex-
ploratory analysis of the code.
(C2) Vulnerability-specific Analysis Tools. Over the past
years, there have been a plethora of approaches to detect vul-
nerabilities in client-side JavaScript programs. To date, these
approaches have been mainly applied to XSS [60, 64, 75,
81, 84], or logic and validation vulnerabilities [35, 36, 66,
76, 79, 80, 87, 89], resulting in tools that are rather tightly
coupled with the specific analysis of the vulnerability. Thus,
researchers seeking to study new client-side vulnerabilities
like client-side CSRF are forced to reimplement those ap-
proaches rediscovering tweaks and pitfalls.
(C3) Event-based Transfer of Control. Existing unified rep-
resentations such as CPGs [33, 91] assume that the transfer
of control happens only via function calls, an assumption
no longer valid for JavaScript. In JavaScript, the transfer of
control happens also via events which either originate from
the environment, e.g., mouse events, or are user-defined, as
shown in Listing 1. When an event is dispatched, one or more
registered functions are executed, which can change the state
of the program, register new handlers, and fire new events.
Representing the transfer of control via event handlers is fun-
damental for the analysis of JavaScript programs.
(C4) Dynamic Web Execution Environment. JavaScript
programs rely on many dynamic behaviors that make it chal-
lenging to study them via pure static analysis. A typical exam-
ple is the dynamic code loading [46]. In essence, JavaScript
programs can be streamed to the user’s web browser, just like
other resources. Thus, contrary to the assumption in most
static analysis approaches, the entire JavaScript code may
not be available for the analysis [43]. Another example is
the interaction between JavaScript and the DOM tree. Con-
sider, for example, two variables containing the same DOM
tree node; however, the content of one variable is fetched
via document.querySelector("input") and the other by
document.form[0].input. In such a case, it is often impor-
tant to determine whether the two variables point to the same

USENIX Association 30th USENIX Security Symposium 2527

object (i.e., point-to analysis). However, it can be consider-
ably hard to determine this by looking at the source code, as
DOM trees are often generated by the same program.
(C5) Shared Third-party Code. Most modern web applica-
tions include at least one third-party JavaScript library [59],
such as jQuery [12], to benefit from their powerful abstrac-
tions over the low-level browser APIs. Detection of client-
side CSRF requires the ability to determine when the program
performs HTTP requests, also when the program delegates
low-level network operations to libraries. Similarly, library
functions can be part of the data flows of a program.

To date, existing approaches are highly inefficient as they
include the source code of libraries in the analysis. We ob-
serve that external libraries account for 60.55% of the total
JavaScript lines of code of each web page2, thus requiring
existing techniques to re-process the same code even when
visiting a new page of the same web application. An alter-
native approach consists of creating hand-crafted models of
libraries (see, e.g., [48]). While such an approach is effective
when modeling low-level browser APIs, it does not scale well
to external libraries. First, external libraries are updated more
frequently than browser APIs and second, there are many
alternative libraries that a JavaScript program can use [31].

2.3 Overview of our Approach
To overcome our challenges, we propose hybrid property
graphs (hereafter HPGs), a canonical, graph-based model for
JavaScript programs. Also, we propose JAW, a framework
that constructs HPGs starting from a seed URL, and detects
client-side CSRF leveraging declarative graph traversals.
Addressing challenges. Our approach addresses our chal-
lenges as follows:
(C1) HPGs provide a uniform canonical representation for

JavaScript source code, similarly as code property graphs
for C/C++ [91] and PHP [33].

(C2) We define HPGs and develop JAW to enable us to per-
form a variety of security tasks, i.e., detection and ex-
ploratory analyses of the client-side CSRF vulnerability.
We believe that decoupling the code representation (the
graph) from the analysis (traversals) potentially renders
JAW more suitable for reuse (like other CPG-based ap-
proaches [33, 91]). In this paper, however, we do not
target nor claim the HPG reusability, as our objective is
to study client-side CSRF.

(C3) HPGs captures JavaScript nuances such as event-based
transfer of control by proposing the Event Registration,
Dispatch and Dependency Graph (ERDDG).

(C4) HPGs captures the dynamics of the web execution en-
vironment of client-side JavaScript programs via both
snapshots of the web environment (e.g., DOM trees) and
traces of JavaScript events.

2We calculated the fraction of library lines of code over the testbed web
applications of §5.1 using the crawler and the configuration of the data
collection phase of §4.1.

(C5) JAW can generate reusable symbolic models of external
libraries, that will be used as proxy in our HPGs.

Overview. JAW takes in input a seed URL of the application
under test. Then, it uses a web crawler to visit the target. Dur-
ing the visit, JAW stores the JavaScript and HTML code, and
monitors the execution capturing snapshots of the DOM tree,
HTTP requests, registered handlers, and fired events. By using
a database of known signatures for common libraries, JAW
identifies external libraries and generates a symbolic model
for each of them. The symbolic model consists of a mapping
between elements of the library (e.g., function names) and
a set of semantic types characterizing their behaviors. Then,
JAW builds the HPG for each stored page, and link the HPG
with the pre-generated semantic models. Finally, JAW can
query the HPG for detection or interactive exploration of
client-side CSRF vulnerabilities.

3 Hybrid Property Graph
This section introduces hybrid property graphs (HPGs). A
HPG comprises of the code representation and state values.
The code representation unifies multiple representations of
a JavaScript program whereas the state values are a collec-
tion of concrete values observed during the execution of the
program. We use a labeled property graph to model both, in
which nodes and edges can have labels and a set of key-value
properties. The example below shows a graph where li is the
node label and r j is the relationship label. Nodes and edges
can store data by using properties, a key-value map.

Figure 3: Example of labeled property graph

In the rest of this section, we present how we map the
code representation and state values into a graph (Sections 3.1
and 3.2), and show how we can instantiate and query such a
graph to study client-side CSRF vulnerabilities (§3.3).

3.1 Code Representation
The code representation models the JavaScript source code
and builds on the concept of code property graph (CPG) which
combines three representations for C programs, i.e., abstract
syntax tree, control flow graph, and program dependence
graph [91]. Later, the same idea has been adapted to study
PHP programs [33], extending CPGs with call graphs. HPGs
further extend CPGs with the event registration, dispatch, and
dependency graph and the semantic types.
Abstract Syntax Tree (AST). An AST is an ordered tree
encoding the hierarchical decomposition of a program to
its syntactical constructs. In an AST, terminal nodes repre-
sent operands (e.g., identifiers), and non-terminal nodes corre-
spond to operators (e.g., assignments). In Figure 2, AST nodes
are represented with rounded boxes. Terminal nodes are in
bold-italic, whereas non-terminal nodes are all capitals. AST

2528 30th USENIX Security Symposium USENIX Association

Figure 2: HPG for the running example in Listing 1. The top part depicts the code representation, including the AST (black edges), CFG (green edges), IPCG
(orange edges), PDG (blue edges), ERDDG (red edges), and the semantic types (blue and orange filled circles representing WIN.LOC and REQ types, respectively).
Note that not all nodes and edges are shown for brevity. Edges connected to dotted boxes reflect that the edge is connected to each node within the box. The
bottom part demonstrates the dynamic state values to augment the static model. Arrows between the two parts represent the link between the two models.

edges connect AST nodes to each other following the produc-
tion rules of the grammar of the language, e.g., in line 10 of
Listing 1, i.addEventListener(‘loadInvoice’, h) is a
call expression (CALL_EXP) with three children, the mem-
ber expression (MMBR_EXP) i.addEventListener, the
literal ‘loadInvoice’ and an identifier h. AST nodes are
core nodes of the code representation, providing the building
blocks for the rest of the presented models.
Control Flow Graph (CFG). A CFG describes the order in
which program instructions are executed and the conditions
required to transfer the flow of control to a particular path of
execution. In Figure 2, CFG is modeled with edges (in green)
between non-terminal AST nodes. There are two types of
CFG edges: conditional (from predicates and labeled with
true or false) and unconditional (labeled with ε). A CFG
of a function starts with a entry node and ends with a exit
node, marking the boundaries of the function scope. These
fragmented intra-procedural flows are connected to each other
by inter-procedural call edges, as discussed next.
Inter-Procedural Call Graph (IPCG). An IPCG allows
inter-procedural static analysis of JavaScript programs. It
associates with each call site in a program the set of functions
that may be invoked from that site. For example, the expres-
sion showInvoicePrice(‘input’) of line 16 in Listing 1
calls for the execution of the function showInvoicePrice
of line 14. We integrate the IPCG in our code representation
with directed call edges, e.g., see the orange edge between the
C_EXP AST node and the F_DECL AST node in Figure 2.
Program Dependence Graph (PDG). The value of a vari-
able depends on a series of statements and predicates, and a
PDG [41] models these dependencies. The nodes of a PDG

are non-terminal AST nodes, and edges denote a data, or
control dependency. A data dependency edge specifies that a
variable, say x, defined at the source node is afterwards used
at the destination node, labeled with Dx. For example, in Fig-
ure 2, variable uri is declared in line 3 (by VAR_DECL), and
used in line 4 (in IF_STMT), and thus a PDG edge (in blue)
connects them together. A control dependency edge reflects
that the execution of the destination statement depends on a
predicate, and is labeled by Ct , or C f corresponding to the
true, or false condition, e.g., the execution of the CALL_EXP
in line 7 depends on the IF_STMT predicate in line 4.
Event Registration, Dispatch and Dependency Graph
(ERDDG). The ERDDG intends to model the event-driven
execution paradigm of JavaScript programs and the subtle
dependencies between event handlers. In an ERDDG, nodes
are non-terminal AST nodes, and we model execution and
dependencies with three types of edges. The first edge models
the registration of an event, e.g., line 10 in Listing 1 regis-
ters h as the handler for the custom event loadInvoice. We
represent the registration of an event with an edge of type
registration between the node C_EXP (i.e., the call site for
addEventListener) and the node F_DECL (i.e., the state-
ment where the function h is defined). The second edge mod-
els the dispatch of events. For example, line 15 in Listing 1
calls the browser API dispatchEvent to schedule the execu-
tion of the handler of the loadInvoice event type. We model
the transfer of control with an edge of type dispatch. See, for
example, the edge (in red) between the C_EXP node of line
15 and the C_EXP registering the handler in Figure 2. The last
edge models dependencies between statements and events.
We implement the dependency with an edge between the AST

USENIX Association 30th USENIX Security Symposium 2529

node for the handler’s declaration and the AST nodes of the
handler’s statements. Figure 2 shows such an edge from the
F_DECL node of line 2 and the body of the function.
Semantic Types. The detection of client-side CSRF requires
identifying statements that send HTTP requests, and that con-
sume data values from pre-defined sources. We model the
properties of statements via semantic types. A semantic type
is a pre-defined string assigned to program elements. Then,
types are propagated throughout the code, following the calcu-
lation of a program, e.g., we can assign the type WIN.LOC to
window.location and propagate it to other nodes, following
PDG, CFG, IPCG, and ERDDG edges. In Figure 2, we use
a blue filled circle for the type WIN.LOC that is propagated
following the Duri PDG edge, i.e., the term uri of line 3, 4,
and 5. Semantic types can also be assigned to functions to
specify their behavior abstractly. For example, we can use the
string REQ for all browser APIs that allow JavaScript programs
to send HTTP requests, such as fetch, or XMLHttpRequest.
HPGs model semantic types as properties of the AST node.
Symbolic Modeling. When analyzing the source code of a
program, we need to take into account the behaviors of third-
party libraries. We extract a symbolic model from each library
and use it as a proxy for the analysis of the application code.
In this work, the symbolic model is an assignment of seman-
tic types to libraries’ functions and object properties. For
example, in Figure 2, we can use the semantic type REQ (rep-
resented with an orange filled circle) for the asyncRequest
term, and abstract away its actual code. Also, to reconstruct
the data flow of programs that use library functions, we define
two semantic types modeling intra-procedural input-output
dependencies of library functions. We use the semantic type
o← i for functions whose input data values flow to the return
value and the type o ~ i for functions whose output is condi-
tioned on the input value (e.g., by an IF_STMT). As we will
show in §4, the symbolic modeling of libraries is performed
automatically by JAW, who creates a mapping between the
library elements and a list of semantic types.

3.2 State Values
JavaScript programs feature dynamic behaviors that are chal-
lenging to analyze via static analysis. As such, we augment
HPGs to include concrete data values collected at run-time,
and link them to the counterpart code representation.
Event Traces. To capture the possible set of fired events
that are not modeled due to the limitations of the static analy-
sis [46], or auto-triggered events, we augment the static model
with dynamic traces of events. Event traces are a sequence
of concrete incidents observed during the execution of a web
page. For example, the load event or a network event for the
response of a HTTP request. We use the trace of events fired
upon the page load to activate additional registration edges in
our ERDDG graph when possible. As shown in Figure 2, the
nodes of the graph for event traces represent concrete events
observed at run-time, and edges denote their ordering.

Figure 4: Examples of vulnerable code. Orange and blue boxes represent
REQ and WIN.LOC semantic types, respectively.

Environment Properties. Environment properties are at-
tributes of the global window and document objects. The
execution path of a JavaScript program and the values of
variables may differ based on the values of the environment
properties. We enrich HPGs by creating a graph of concrete
values for the properties observed dynamically. We also store
a snapshot of the HTML DOM tree [65]. If the value of a
variable is obtained from a DOM API, the actual value can
be resolved from the tree. We use the DOM tree to locate the
objects that a DOM API is referencing. For example, to deter-
mine if an event dispatch is targeting a handler, we can check
if the dispatch and registration is done on the same DOM
object. We create a node for each environment property, and
store concrete values as properties of the node. As depicted
in Figure 2, we connect these nodes by edges representing a
property ownership, or a parent-child relationship.

3.3 Analysis of Client-side CSRF with HPGs
Given a HPG as described in Sections 3.1 and 3.2, we now
use it to detect and study client-side CSRF. We say that a
JavaScript program is vulnerable to client-side CSRF when
(i) there is a data flow from an attacker-controlled input to a
parameter of an outgoing HTTP request req, and (ii) req is
submitted on the page load.

We model both conditions using graph traversals, i.e.,
queries to retrieve information from HPGs. In our work, we
define graph traversals using the declarative Cypher query
language [3], but in this paper we exemplify Cypher syn-
tax with set notation and predicate logic while retaining the
declarative approach. A query Q contains all nodes n of HPG
for which a predicate p (i.e., a graph pattern) is true, i.e.,
Q = {n : p(n)}. We use predicates to define a property of a
node. For example, we use the predicate hasChild(n, c) to
say that a node n has an AST child c. Another example of
predicate is hasSemType(n, t), which denotes a node n with
a semantic type t. Predicates can be combined to define more
complex queries, e.g., via logical operators.
Detection of Client-side CSRF. The first condition for
client-side CSRF vulnerability is the presence of attacker-
controlled input parameters for outgoing requests. Figure 4
shows different instances of vulnerable code taken from real
examples, where by construction, we assigned the WIN.LOC
and REQ semantic types to AST nodes, which are shown as

2530 30th USENIX Security Symposium USENIX Association

blue and orange boxes, respectively. For all three cases of
Figure 4, the goal is to identify the lines of code having both
orange and blue labels (marked with a red arrow). At a high
level, a line of code is a non-terminal AST node for JavaScript
statements or declarations (e.g., EXP_STMT, VAR_DECL),
that we represent with the predicate isDeclOrStmt(n). Then,
once we identify such an AST node n, we need to explore
whether the node has two children c1 and c2 where one is
of type REQ and the other is of type WIN.LOC. Following our
notation for queries, we can write:

N1 ={n : isDeclOrStmt(n) ∧ ∃c1,c2, c1 6= c2 ∧
hasChild(n, c1) ∧ hasSemType(c1, “REQ”), ∧
hasChild(n, c2) ∧ hasSemType(c2, “WIN.LOC”)}

(1)

Query 1 is not a sufficient condition to determine the pres-
ence of a client-side CSRF vulnerability, as the returned nodes
may correspond to lines of code not executed at page load.
We refine it with additional checks for reachability. In general,
starting from a node n such that isDeclOrStmt(n), we could
follow backward CFG edges (both ε, true, and f alse) to deter-
mine whether we reach the CFG entry node. Then, whenever
we reach a function definition (e.g., F_DECL), we jump to
all its call sites following the IPCG call edges. But this will
not be sufficient because a function can be executed when a
specific event is fired. Accordingly, we need to visit backward
the ERDDG edges i.e., the dependency edge, followed by
the registration and the dispatch edge. We handle separately
special cases where events are fired by the browsers automati-
cally during loading a page. We keep on following backward
CFG, ERDDG, and IPCG edges until either we reach the CFG
entry node or when there are no longer nodes matching any
of the previous criteria. We say that a node n is reachable if
the CFG entry node is in the query result set.
Analysis of Vulnerable Behaviors. The previous queries
can identify the general vulnerable behavior of client-side
CSRF, i.e., a program that submits a HTTP request using
attacker-chosen data values. However, programs may imple-
ment a variety of checks on the inputs, which can eventually
influence the exploitation landscape. In Figure 4, for example,
Program 1 shows a vulnerable script whose domain validation
of line 1 restrains the attacker from manipulating the entire
request URL. Program 2, however, shows a case where the at-
tacker can chose the complete URL string, including the path
and query string. One aspect of client-side CSRF vulnerabili-
ties that we intend to study is to identify the extent to which
an attacker can manipulate the outgoing request. For instance,
if window.location properties flow to a request parameter
without any sanitization. Query 2 captures this aspect:

N2 ={n1 : ∀n1 ∈ N1, ∃n2, hasPDGPath(n2, n1) ∧
isAssignment(n2) ∧ ∃c, hasChildOnRight(n2, c) ∧
isMemberExp(c) ∧ hasValue(c,“window.location”)}

(2)

Query 2 checks if the node n1 returned by Query 1 is con-
nected via PDG edges to an assignment statement whose right-
hand side child is a property of the window.location. The

predicate hasPDGPath(n2, n1) specifies that there is a path
from n2 to n1 following PDG edges, and isAssignment(n2)
marks that n2 is a VAR_DECL, or an ASSIGN_EXP node.

Another aspect to consider is the number of attacker-
controllable items within a request. For example, Program 3
of Figure 4 shows a more complex example where the attacker
can also control the content of the request body, increasing
the flexibility to create an exploit for the vulnerable behav-
ior. For this, a query can cluster vulnerable lines of code that
belong to the same HTTP request, making use of the PDG
dependencies among elements of the same request. Then, the
query can count the number of attacker-controllable injection
points (see, e.g., the two injection points in line 6 of Program
3 as well as the injection point in line 4).

4 JAW
In this section, we present JAW, a framework to study client-
side CSRF vulnerabilities using HPGs. Starting from a seed
URL of a web site, JAW visits web pages using a JavaScript-
enabled web crawler to collect the web resources. During the
visit, JAW also collects run-time state values. Then, given
a list of user-defined semantic types and their mapping to
JavaScript language tokens, JAW constructs the HPG. The
construction has two phases. First, JAW identifies external
JavaScript used by the program and processes it in isolation
to extract a symbolic model. Then, it constructs the graph
of the rest of the JavaScript code, and link elements of the
JavaScript program to the state values. Finally, JAW analyzes
client-side CSRF by executing queries on the HPG (§3.3).
Figure 5 shows an overview of the JAW’s architecture.

4.1 Data Collection
The data collection module performs two tasks: crawling to
discover URLs from different user states, and collecting the
JavaScript code and state values for each web page found.
Input. The input of the data collection module is a seed URL
of the web application under test, and, optionally, test cases
to pass the user login, e.g., as scripted Selenium tasks [17] or
via trace recording [15, 16].
Crawler. We developed a crawler that uses a headless in-
stance of Chrome [10] controlled via Selenium [17]. Starting
from the seed URL, the crawler visits the web application to
collect web resources and run-time execution data. It follows
the iterative deepening depth-first search strategy, and termi-
nates when no other URLs are found, or when its allocated
time budget runs out (default is 24h). Optionally, if provided
as input, it executes test cases before the crawling session.
JavaScript Code and State Values. When visiting each
page, the crawler stores the web resources and state values ev-
ery ti = 10 seconds for m = 2 times (configurable parameters).
The crawler collects the HTML page, JavaScript program,
fired events, HTTP requests and responses, and the JavaScript
properties explicitly shown in (bottom left of) Figure 2 for
each ti interval. While JavaScript properties are extracted via

USENIX Association 30th USENIX Security Symposium 2531

Figure 5: Architecture of JAW.

the Selenium interface, we developed a Chrome extension for
our crawler that resorts to function hooking to intercept calls
to the addEventListener for collecting events and to the
chrome.webRequest API to intercept the network traffic.

4.2 Graph Construction
JavaScript code and state values collected are next used to
build a HPG. The built graph is imported into a Neo4j [14]
database allowing for fine-grained, declarative path traversals
to detect and study client-side CSRF. This section delineates
technical details for constructing HPGs.
Normalizing JavaScript Code. As a first step, JAW creates
a normalized JavaScript program by concatenating code seg-
ments inside the script tags and HTML attributes (i.e., inline
JavaScript code), preserving the execution order of program
segments. When combining inline code, JAW replaces inline
event handler registration with addEventListener API.
Library Detection. To identify libraries, we use Library De-
tector [13], a tool that searches for known library signatures
inside the execution environment (e.g., global variables)3.
HPG Construction. JAW constructs HPGs as follows. First,
a graph is created for the symbolic modeling of each detected
library. This step is skipped if a symbolic model for the library
already exists. Then, it creates a graph for the program under
analysis. Regardless the use of the graph, the rules to construct
a HPG do not change, as presented next.

1. AST—JAW uses Esprima [7], a standard-compliant EC-
MAScript [11] parser to generate the AST of the normalized
source code. The output of Esprima is a JSON representation
of the AST. In this representation, a node is a key-value dic-
tionary with a type property (e.g., VAR_DECL) and edges
are represented with ad-hoc dictionary keys. We mapped the
JSON output to AST nodes and AST edges of our graph.

2. CFG— We extensively reviewed open-source CFG gen-
erators, such as escontrol [5], styx [18], or ast-flow-graph [1],
and selected Esgraph [6] because of its popularity, and compli-
ance with Esprima. Starting from an AST, Esgraph generates
a CFG where nodes are AST nodes for statements or dec-
larations, and an edge is labeled with true or false, for a
conditional branch, or ε for a node of the same basic block.

3. PDG—JAW uses dujs [4], a def-use analysis library
based on Esgraph. We modified dujs to add support for global
variables, closures, and anonymous function calls. The output
of dujs is a list of def-use relationships for each variable v

3We refer interested readers to Appendix A.2.

between the AST edges, that JAW import as data dependence
edges Dv in our HPG. For the control dependence edges, JAW
calculates post-dominator trees [58] from the CFG, one for
each statement s. Then, JAW maps each edge of the tree to Ct
or C f for the true or false branch, respectively.

4. IPCG—JAW generates the IPCG as follows. During
the construction of the AST and CFG, JAW keeps track of
all function definitions and call sites. Then, it associates a
call site to the function definition(s) it may invoke. There are
five types of call expressions in JavaScript: function calls on
the global object (e.g., foo()), property calls (e.g., a.foo(),
or a[‘foo’]()), constructor calls (e.g., new Foo()), invoca-
tions via the call() [9], and apply() method [8]. For all
cases, the actual function definition name may be aliased. We
resolve the pointers using our PDG, and connect the call edge
accordingly. If the value of the pointer is conditioned, we
connect an edge to each respective function definition.

5. ERDDG—For the generation of the ERDDG, JAW
keeps track of event dispatches and handler registrations dur-
ing the creation of the AST and the CFG. For each event
handler found, JAW creates a registration edge that connects
the top-level AST node (i.e., CFG node) to the handler func-
tion, and a dependency edge connecting the handler function
to statements of the body. To associate each event dispatch
to a registration site, we check if they target the same DOM
element. For this, we resolve the pointer on which the event
is dispatched, and the pointer on which the handler is regis-
tered leveraging our PDG, and check if they refer to the same
variable declaration or different variables with verbatim or
semantically same values. We use the DOM snapshot to check
if two different DOM queries can semantically target the same
element. For example, an element can be queried with its id,
or alternatively its name attribute. Once we determine that
the pointers reference the same element, we connect an edge
between the dispatch and registration sites.

6. Semantic Types and Propagation— The input for this
step is a mapping T between a semantic type t and a sig-
nature for AST node σ, e.g., we map the type WIN.LOC to
the JavaScript property window.location. For each pair
(t,σ) ∈ T , JAW stores each type t to the AST node that is
matching the signature σ. Then, JAW propagates the type t
through the HPG.

Algorithm 1 propagates forward a type t from a node n
to other nodes. First, the function propagateLeft assigns
the type t to the variable v on the left-hand side (e.g., of
an assignment), if any, and returns it. Then, the function

2532 30th USENIX Security Symposium USENIX Association

Algorithm 1: Forward semantic type propagation
inputs :Node n with a variable having semantic type t.
outputs :Propagates semantic types and returns the last tainted node.

1 function propagateForward(n, t):
2 v← propagateLeft(n, t) // taint left-hand side
3 nt ← n // last tainted node
4 P← propagateByPDG(n, v, t) // tainted PDG paths
5 for pi ∈ P do
6 nt ← pi [pi .length−1] // last CFG-level tainted node
7 vt ← getRightHandSideTaintedVariable(nt , t)
8 if hasSymbolicFunctionCall(nt) and hasSemanticType(nt ,

“o<-i”) then
9 o← propagateLeft(nt , t)

10 propagateForward(o, t) // recursion
11 end
12 if hasCallExpressionWithCallArgOfType(nt , t) then
13 c← traverseCallEdge(nt , vt , t) // call def param
14 ret← propagateForward(c, t) // returned variable
15 if isRetStmt(ret) and hasSemanticType(ret, t) then
16 vle f t ← propagateLeft(nt , t)
17 if vle f t is not null then
18 propagateForward(vle f t , t) // recursion
19 end
20 end
21 end
22 if hasDispatchEdgeWithArgOfType(nt , t) then
23 e← traverseDispatchAndRegistrationEdges(nt , vt , t) //

handler param
24 propagateForward(e, t)
25 end
26 end
27 return nt // last tainted node

propagateByPDG propagates t following PDG edges and
returns the visited paths P. Then, for each node nt at the
end of the path pi ∈ P, we distinguish three cases. The first
case is that nt is a function call that is modeled by the spe-
cial semantic types assigned during the symbolic modeling.
If so, we taint the output variable o, and recursively call
propagateForward for o. Second, nt is a call expression
having an IPCG edge. In this case, we taint the parameter
c on the function definition corresponding to the argument
tainted on the call site, and call propagateForward for c.
Then, we check if the last tainted node from the context of
the function definition is a tainted return statement. If so, we
call propagateForward for the variable vle f t on the call site
that holds the returned result. Third, nt is an event dispatch
expression that passes tainted data. In this case, we jump the
dispatch and registration edges, taint the corresponding event
variable, and call propagateForward for the variable. This
process terminates when none of the above criteria holds.

JAW performs the semantic type propagation when creating
both the HPG for the symbolic modeling of a library and the
HPG of the rest of the code. When creating the HPG for the
rest of the code, the semantic type mapping T includes the
mapping created during the symbolic modeling.
Symbolic Modeling. The output of this step is a mapping
of semantic types and AST nodes, which is used during the
construction of a HPG for the program under analysis. Sym-
bolic modeling starts with the construction of a HPG from
the library source code. Then, after the propagation of the
semantic types, JAW searches for function definitions with
intra-procedural input-output relationships. More specifically,
JAW identifies all non-anonymous function expressions with
at least one input parameter, and track the value of its re-
turn statement(s), if any, through a backward program slicing

approach. At a high level, we start from where a value is re-
turned, flow through where it is modified, and end at where it
is generated leveraging the PDG, CFG, IPCG, and ERDDG
graphs. If the returned variable, say o, has a PDG control de-
pendency to a function input, say i, we assign the type o ~ i to
the function. If we establish a PDG data dependency, we mark
it with o← i. Finally, JAW selects all function expression and
object property nodes with at least one semantic type, that
will be used in the HPG construction of the JavaScript code.

5 Evaluation
The overarching goal of our evaluation is to study client-side
CSRF vulnerabilities and to assess the efficacy and practi-
cality of JAW. We run JAW on 4,836 web pages, crawled
from 106 popular web applications, generating HPGs for
228,763,028 LoC. During this process, we discover 12,701
forgeable client-side requests split across 87 applications. We
find that seven applications suffer from at least one zero-day
client-side CSRF vulnerability that can be exploited to per-
form state-changing actions and violate the server’s integrity.

Before presenting the evaluation results, we discuss the
experimental setup (§5.1) and show properties of problem
space and how JAW tackled them (§5.2). Then, we report the
findings of our experiments (§5.3), and finally, conclude with
the analysis of JAW’s results (§5.4).

5.1 Experimental Setup and Methodology
Testbed. We select web applications from the Bitnami
catalog [2] that offers ready-to-deploy containers of pre-
configured web applications. We choose Bitnami applications
due to their popularity (e.g., see [19]), diversity, and use by
prior work (e.g., see [69]). At the time of the evaluation, Bit-
nami contains 211 containers. We discard 105 containers
without web applications and duplicates, e.g., the same web
application using different web servers. The remaining 106
web applications are: 23 content management system, 15 ana-
lytics, 11 customer relationship management, ten developer
tools and bug tracking, eight e-commerce, eight forum and
chat, five email and marketing automation, four e-learning,
three media sharing, two project management, two account-
ing and poll management, and 15 other. The complete list of
web applications is in Appendix B.1, among which we have
WordPress, Drupal, GitLab, phpMyAdmin, and ownCloud.

Then, for each web application, we created one user account
for each supported levels of privilege and a Selenium test case
to perform the login. In total, we created 136 test scripts,
ranging from one to five test cases per application.
JAW Inputs. The inputs of JAW are the seed URLs, the Se-
lenium test cases, and a semantic type mapping. The seed
URLs contain the URLs for the user login (total of 113 login
URLs), whereas the test cases are the ones we prepared when
configuring the testbed. Then, for all web applications, we
used the semantic types listed in Table 4 in Appendix A.1.
Methodology for Client-side CSRF Detection. We de-

USENIX Association 30th USENIX Security Symposium 2533

ployed the web applications under evaluation locally, and
instantiated JAW against each of the targets. After the data
collection and creation of the HPGs, we run a set of queries to
identify attacker-controllable requests. We then use additional
queries to identify the request fields under the control of the
attacker and the type of control. We assess the accuracy of the
query results via manual verification. For each forgeable re-
quest, we load the page in an instrumented browser and verify
whether the manipulated inputs are observed in the client-side
requests. For example, if the request uses data values of type
WIN.LOC, we inject a token in the vulnerable page URL and
search the token in the outgoing request. After confirming the
forgeability of the request, we look for its use in an attack.
First, we search for server-side endpoints performing security-
relevant state-changing actions, such as modifying data on
the server-side storage. Then, we construct a string that, when
processed by the vulnerable page, it will result in a request
towards the identified endpoint. Finally, we pack the string
into a malicious URL and verify whether the attack works
against a web application user with a valid session, who clicks
on the URL.
Methodology for Impact of Dynamic Snapshotting. We
performed additional experiments to assess the impact of our
dynamic snapshotting approach in (i) vulnerability detection,
and (ii) HPG construction. First, we prepared a variant of
JAW, hereafter referred to as JAW-static, which follows a
pure static approach for HPG construction and analysis (§3.1).
Specifically, JAW-static does not consider the following dy-
namic information: fired events, handler registrations, HTTP
messages, global object states, points-to analysis for DOM
queries, dynamic insertion of script tags, and the DOM tree
snapshot. We repeated our evaluation using JAW-static, and
determined the lower bound of false negative and false pos-
itive vulnerabilities in JAW-static by comparing it to JAW’s
evaluation results. Also, we compare the differences in HPG
nodes, edges and properties.

Then, we logged all the fired events that are not auto-
triggered and that JAW failed to find their line of code for
HPG construction. Such cases are an indication of false neg-
ative edges in HPGs generated by JAW. Accordingly, we
manually review all cases to uncover the reasons for false
negative edges. Finally, we conducted another experiment to
assess the false positive and false negative edges as a result of
using the DOM tree snapshots for points-to analysis of DOM
queries. For all web pages, we instrumented the JavaScript
code to log the actual element a DOM query is referring to,
and compared it against the value that JAW resolved. JAW
uses these resolutions to create ERDDG edges, opening the
possibility for both false positive and false negative edges.

5.2 Analysis of Collected Data
Size of the Analysis. Starting from 113 seed URLs, JAW
extracted 4,836 web pages, ranging from 1 to 456 web pages
per web application, and about 46 web pages per application.

The structural analysis of these URLs reveals that 865 of them
have a hash fragment, an indication that these URLs carry
state information for the client-side JavaScript program—a
characteristic of single-page web applications. In total, 39
web applications use URLs with hash fragments.

From the 4,836 pages, JAW extracted 228,763,028 LoC,
which amounts to generating 4,836 HPGs by processing about
47,304 LoC per page. When looking at the origin of the code,
we observed that the majority of it, i.e., 60.55%, is from shared
libraries, e.g., jQuery (28,645 LoC per page and 138,525,092
LoC in total), whereas the remaining is application code in
script tags (39.42% or 18,649 LoC per page, over 90,188,256
LoC in total) and a negligible amount is inline code (0.02%
or 10 LoC per page, over 49,680 LoC in total).

Finally, at run-time, we observe that about 2.63% of the
script tags are loaded dynamically (i.e., by inserting a script
tag programmatically), over a total of 104,720 script tags.
Also, JAW observed 51,974 events that are fired when loading
the page (about 11 events per page) distributed across 46
event types, of which 38 are HTML5 types (e.g., animation
and DOM mutation events) and 8 are custom. As we will
show next, even if the number of run-time monitored events
is negligible, their role in the analysis is fundamental.
Importance of Symbolic Modeling. The analysis of client-
side programs requires to process 228,763,028 LoC of which
138,525,092 of them are for the libraries alone, about 60% of
the total. Our analysis reveals that libraries are largely reused
both across web applications and across pages. First, the 106
web applications in our testbed use in total 31 distinct libraries.
Second, each page contains from zero to seven script libraries,
with an average number of two libraries per page. Third, the
total amount of code of the 31 libraries is 412,575 LoC, which
is 335 times smaller than the total 138,525,092 LoC across all
pages. Accordingly, pre-processing the library code to extract
a symbolic model reduces by more than half (-60.37%) the
effort required to generate HPGs, moving from 228,763,028
LoC to 90,650,511 (i.e., the sum of LoCs of the application,
inline JavaScript, and the 31 libraries).

For each of the 31 libraries, JAW generates one HPG and
extract a symbolic model. Table 1 shows an overview of the
results of the symbolic modeling step. In total, JAW mod-
eled 11,977 functions in around half an hour, half of which
have the input-output relationship semantic types (i.e., 5,923
functions)—a relevant function behavior to correctly recon-
struct the data flows of a program.
Role of ERDDG. In total, JAW generated 4,836 HPGs,
one for each page, for a total of 508,810,412 nodes and
652,662,573 edges. Of these edges, the ones that are cru-
cial to analyze JavaScript programs are those modeling the
transfer of control via event handlers. In total, JAW identified
64,854,097 event edges (i.e., registration, dependence and
dispatch) of which 6,451,582 are dispatch edges, i.e., edges
modeling the intention to execute the event handlers. For com-
parison, the number of call edges that also transfer the control

2534 30th USENIX Security Symposium USENIX Association

Library Usage % LoC Funcs. I/O Time (s)

JQuery 81.13% 10,872 428 238 57.54
Bootstrap 38.67% 2,377 55 55 41.07
JQuery UI 27.35% 18,706 320 320 82.33
ReactJS 9.43% 3,318 130 40 39.59
ReactDOM 9.43% 25,148 688 368 81.98
RequireJS 8.49% 1,232 50 50 35.72
AngularJS 5.66% 36,431 852 558 82.92
Analytics 5.66% 20,345 244 233 69.21
Backbone 5.66% 2,096 148 50 38.26
Modernizer 5.66% 834 292 21 34.50
Prototype 5.66% 7,764 266 243 54.10
YUI 4.71% 29,168 2,414 637 149.34
JIT 3.77% 17,163 430 255 69.11
ChartJS 2.83% 16,152 263 253 76,75
Dojo 2.83% 18,937 696 313 63.32
LeafletJS 2.83% 14,080 650 208 62.65
Scriptaculous 2.83% 3,588 97 84 46.11
HammerJS 1.88% 2,643 67 47 37.01
MomentJS 1.88% 4,602 138 138 45.44
ExtJS 1.88% 135,630 2,701 1,135 231.86
Vue 1.88% 11,965 638 288 62.77
YUI History 1.88% 789 20 10 18.41
Bootstrap Growl 0.94% 215 7 7 32.21
Bpmn-Modeler 0.94% 19,139 231 228 65.84
CookiesJS 0.94% 79 3 0 31.29
FlotChartsJS 0.94% 1,267 15 15 42.38
GWT WebStarterKit 0.94% 110 3 2 31.15
Gzip-JS 0.94% 280 4 4 31.87
Handlebars 0.94% 6,726 103 103 50.83
SpinJS 0.94% 190 4 4 31.99
SWFObject 0.94% 729 20 16 33.61

Total 412,575 11,977 5,923 1919.84

Table 1: Symbolic modeling of shared JavaScript libraries.

to other sites of a program, are 7,179,021, meaning that the
ERDDG representation enables the identification of +89.87%
edges transferring the program control.

5.3 Forgeable Requests
The first step to detect client-side CSRF is the identification
of lines of code that can generate attacker-controlled requests.
For that, we prepared a set of queries as discussed in §3.3.
Based on our threat model (§2.1), we considered different
attacker-controlled inputs for JavaScript programs (see [60])
that can be forged by different attackers.

JAW identified 49,366 lines of code across 106 applications
that can send an HTTP request, and marked 36,665 of them
as unreachable during the page load or not using attacker-
controlled inputs. The remaining 12,701 requests could be
controlled by an attacker. We grouped these requests by the
semantic types of the input source corresponding to different
attackers (see §2.1), as shown in Table 2. We observe that the
majority of applications, i.e., 87, sends at least one forgeable
request at page load.
False Positives. Considering the high number of forgeable
requests, we could not verify all of them via manual inspec-
tion. Instead, we first selected all requests across all groups,
except for DOM.READ. Then, for DOM.READ, we focused on one
request (randomly selected) for each web application, i.e., 83
requests. In total, we inspected 516 forgeable requests. For the
inspection, we loaded the vulnerable page in an instrumented
browser to inject manipulated strings and observe whether
the outgoing requests include manipulated strings. We con-
firmed that all requests, except for one of the 83 DOM.READ

Sources Forgeable Apps

DOM.COOKIES 67 5
DOM.READ 12,268 83
*-STORAGE 76 8
DOC.REFERRER 1 1
POST-MESSAGE 8 8
WIN.NAME 1 1
WIN.LOC 280 12

Total forgeable 12,701 87
Non-reachable code 36,665 101

Total 49,366 106

Table 2: Number of forgeable requests and affected web applications.

requests include the manipulated content. After a careful in-
vestigation, we observed that the false positive occurs as a
result of inaccurate pointer analysis of the context-sensitive
this keyword, which has a run-time binding, and may be
different for each invocation of a function depending on how
the function is called, e.g., dynamically called functions, or
different invocation parameters using a hierarchy of call and
apply methods [8, 9] lead to different bindings of this.
Exploitations. Next, we looked for practical exploitations for
the 515 requests manually. In these experiments, we assumed
a web attacker model for all input sources, except for cookies
for which we assumed a network attacker model (see §2.1).
We were able to generate a working exploit for 203 forge-
able requests affecting seven web applications, all of them
using data values of WIN.LOC, that can be forged by any web
attacker. For the other groups of requests, we were not able
to find an exploit. We point out that it is hard to achieve com-
pleteness when looking for exploitations manually as such
a task requires extensive knowledge of web applications for
identifying target URLs and the points where an attacker
could inject malicious payloads. The fact that we could not
find an exploit does not imply that an exploit does not exist.
For these cases, we confirmed that the JavaScript code sends
HTTP requests by processing data values taken from different
data structures unconditionally. A highly motivated attacker
could eventually find a way to inject malicious payloads in
these data structures and exploit these forgeable requests.

5.4 Analysis of Forgeable Requests
In this section, we have a closer look at the degree of ma-
nipulation an attacker can have on the forgeable requests of
Table 2. We extracted the stack trace for the lines of code that
send forgeable requests and characterized the vulnerable be-
havior along three dimensions: forgeable request fields, type
of manipulation, and the request template.
Forgeable Fields. First, the request field(s) that can be ma-
nipulated can determine the severity of the vulnerability. For
example, if the attacker can change the domain name of a
request, the client-side CSRF could be used to perform cross-
origin attacks. We grouped web applications in four cate-
gories, based on the field being manipulated and found that in
nine, 34, 41, and 41 web applications, an attacker can manip-
ulate the URL domain, the URL path, the URL query string,
and the body parameter, respectively. Also, we grouped appli-

USENIX Association 30th USENIX Security Symposium 2535

Outgoing HTTP Request Total
Dom. Path Query Body Part Control Reqs Apps

X One -, A, - 16 11
X One -, A, - 5 5
X One W, -, - (∗)166 25
X One -, -, P 1 1

X One W, -, - 28 1
X One -, A, - 7 7
X One -, -, P 6 6

X One -, -, P 11 11
X X Mult -, A, - 4 1
X X Mult W, -, - (∗)20 1
X X Mult W, A, P 6 1

X X Mult W, -, - 2 1
X Mult -, A, - 7 7

X Mult -, -, P 2 2
X Mult -, A, - 3 3

X Mult -, -, P 1 1
X Mult -, A, - 5 5

X Mult -, -, P 6 6
X Mult W, -, - 28 8

X X Any W, -, - 1 1
X X X Any W, -, - (∗)185 8
X X X X Any W, -, - 1 1

X Any W, -, - (∗)1 1
X Any W, -, - 2 2

X X X Any W, -, - 1 1

Legend: A=Appending; P=Prepending; W=Writing.

Table 3: Taxonomy of client-side CSRF. Each template reflects the level
of attacker’s control on the outgoing HTTP request. ∗ are the templates for
which we found an exploit.

cations by the number of fields that can be manipulated in a
request. In total, 55, 34, and 12 applications allow modifying
one, more than one, and all fields, respectively.
Operation to Forge a Field. Another factor that influences
the severity is the operation that copies a manipulated value
in one or more fields. We found that 28 applications allow an
attacker to change the value of one or multiple fields. Also, 38
and 28 applications allow an attacker to add one or multiple
fields by appending and prepending the attacker-controlled
string to the final string, respectively.
Forgeable Request Templates. We characterize HTTP re-
quests via templates, where we encode the type and number
of fields that can be manipulated as well as the type of op-
eration. Table 3 lists all templates, and for each template, it
shows the number of matching requests and web applications
using them. In total, we identified 25 distinct templates. We
observed that the majority of web applications use only one
template (i.e., 68 applications) across all their web pages or
two templates (i.e., 17 applications).

5.5 Exploitations and Attacks
The 203 exploitable client-side CSRF affect seven targets, as
shown next. Our exploits attack web applications the same
way classical CSRFs do, i.e., by performing security-relevant
state-changing requests. In addition, we found exploitations
of client-side CSRF that enable XSS and SQLi attacks, which
cannot be exploited via the classical attack vector.
SuiteCRM and SugarCRM. In total, we found 115 and 38
forgeable requests in SuiteCRM and SugarCRM, which can
be exploited to violate the server’s integrity. In both appli-

cations, the JavaScript code reads a hash fragment parame-
ter, e.g., ajaxUILoc, and uses it verbatim as the endpoint to
which an asynchronous request is submitted. An attacker can
forge any arbitrary request towards state-changing server-side
endpoints to delete accounts, contacts, cases, or tasks–just to
name only a few instances that we confirmed manually.
Neos. We found eight forgeable requests in Neos. In all of
them, each parameter p of the HTTP request originates from
the page’s URL parameter moduleArguments[@p]. Among
these, we have, for example, the action and controller param-
eters that are used by the backend server to route the request
to internal modules. Such behavior allows an attacker to di-
rect a request to any valid internal module, including those
implementing state-changing operations. For example, we
exploited this behavior to delete assets from the file system.
Kibana. We found one forgeable request, generated by Time-
lion, a Kibana’s component that combines and visualizes in-
dependent data sources. Timelion allows running queries on
data sources using a own query syntax. The JavaScript code
can read queries from the page’s URL fragment and pass
them to the server side. As a result, an attacker can execute
malicious queries without the victim’s consent or awareness.
Modx. We discovered 20 forgeable requests in Modx that can
be exploited in two distinct ways. First, Modx’s JavaScript
fetches a URL string from the query parameter of the page’s
URL, and uses it verbatim to submit an asynchronous request
with a valid anti-CSRF token. Similarly to SuiteCRM and Sug-
arCRM, an attacker can forge requests towards state-changing
server-side endpoints. Also, in one forgeable request, Modx
copies a page’s URL parameter in a client-side request, which
is reflected back in a response and inserted into the DOM
tree, allowing an attacker to use client-side CSRF to mount
client-side XSS. Based on our manual evaluation, the attacker
can exploit the client-side XSS only via client-side CSRF.
Odoo. We found one forgeable request that uses an id pa-
rameter of the URL fragment to load a database entity. We
discovered that the server uses this parameter in a SQL query
which is not properly validated, resulting in an SQLi vulnera-
bility. We note that, due to a anti-CSRF token, the exploitation
of the SQLi vulnerability via direct requests is extremely hard
without exploiting first the client-side CSRF vulnerability.
Shopware. We found 20 forgeable requests sent by Shopware
on page load. The code maps the page’s URL hash fragment
to different parts of the outgoing request. First, the code uses
the first fragment of the hash fragment as URL path of the
outgoing request. Then, it uses the remaining fragments as pa-
rameters of the outgoing request body. This allows an attacker,
for instance, to delete products of the shop’s catalog.

5.6 Impact of Dynamic Snapshotting
We designed and carried out additional experiments to show
the impact of dynamic snapshotting in vulnerability detection
and HPG construction (see our methodology in §5.1).

2536 30th USENIX Security Symposium USENIX Association

5.6.1 Vulnerability Detection

We repeated our evaluation using JAW-static, and compared
the results with JAW (§5.1). In total, JAW-static found 48,543
requests, out of which 11,878 reported to be forgeable. By
comparing the difference, we observed that JAW-static has
detected 840 less forgeable requests (i.e., a lower bound of
+7.07% false negatives). Out of the 840 false negatives, 161
cases are vulnerabilities for which we found an exploit, i.e.,
JAW-static does not detect 79.3% of the exploitable client-side
CSRF vulnerabilities that was detected by JAW. Additionally,
JAW-static reported 17 more cases that were not vulnerable
(i.e., a lower bound of +0.15% false positives). We manually
examined all the false positive and false negative cases to
discover the underlying reasons.
False Positives (FP). Out of 17 FPs, 12 were due to non-
existing dynamically fetched code (i.e., by dynamic insertion
of script tags) where the value of the tainted variable changed
in the dynamic code. Such FPs are eliminated in JAW because
it monitors the program execution leveraging the DOM tree
and HTTP messages. Then, 3 out of the 17 cases were due to a
subsequent removal of the event handlers using dynamic code
evaluation constructs with dynamically generated strings. Fi-
nally, the last two FPs occurred due to the removal of elements
from the DOM tree, and thus the implicit removal of their
event handlers. Similarly, such FPs do not occur with JAW,
as it monitors the fired events and their handlers at run-time.
False Negatives (FN). We observed that almost half of the
FNs, i.e., 405, occurred because the vulnerability resided in
dynamically loaded code. For 78 and 7 FNs, points-to anal-
ysis for DOM queries were not accurate as the state of the
DOM tree and environment variables were necessary for such
analysis, respectively. The remaining 350 FNs stemmed from
the fact that the JavaScript program used setTimeout and
eval for firing events by generating code at run-time.

5.6.2 HPG Construction

In total, JAW-static generated 498,054,077 nodes and
639,323,601 edges for the 4,836 HPGs, which is 10,756,335
nodes (-2.11%) and 13,338,972 edges (-2.04%) less than JAW
(false negatives). Out of the total missing edges, 1,048,172
are ERDDG edges that are critical for modeling events, and
the remaining 12,290,800 edges are the AST, CFG, PDG and
IPCG edges. Furthermore, JAW-static misses 16,710 edge
properties (set on ERDDG registration edges) that mark if an
event handler has been triggered at run-time, and that has not
been marked with static analysis.

Following additional experiments based on our methodol-
ogy (§5.1), we logged the fired events that JAW cannot map
to their line of code. In total, JAW observed 51,974 events
at run-time across 4,836 HPGs, out of which 34,808 were
already marked by static analysis and fired dynamically. The
remaining 17,166 events trigger at run-time, while not cap-
tured by pure static analysis. Out of the 17,166 events, JAW

fails to find the corresponding event handlers of 456 events
in the code (0.88%), an indication of FN nodes and edges
in the HPG. Manual analysis revealed that the reasons for
the majority of cases (387 events) is the use of eval and
setTimeout functions with dynamically constructed strings
for firing events. The remaining 69 events are not mapped due
to the dynamic loading of code and in ways that JAW does
not monitor (e.g., loading code from inside iframes).

Finally, we assess the FP and FN edges introduced by the
usage of the DOM tree snapshots when performing points-to
analysis of DOM queries. In total, JAW encountered 241,428
DOM query selectors in 4,836 HPGs, out of which in 127 se-
lectors (0.05%) JAW imprecisely resolved the DOM element
the query is pointing to. To determine the ERDDG dispatch
edges, JAW compares the pointers for a total of 87,340 pairs
of DOM query selectors against each other (i.e., an event
dispatched on one DOM query selector is linked to its event
handler that uses another query selector for the event registra-
tion). Our evaluation suggests that JAW accurately decides to
connect or not to connect a dispatch edge between the dispatch
and registration sites in 87,212 cases (decision accuracy of
99.85%), with 56,923 true positives and 30,289 true negatives.
In the remaining 128 cases, JAW’s decision to create or not
to create an edge is inaccurate, with 94 FN and 34 FP edges
(decision inaccuracy of 0.15%). Interestingly, we observed
that such FP and FN edges may occur for query selectors
that are interpreted within 53.7 mili-seconds of page load (on
average), and a maximum of 92.5 mili-seconds, which is up to
ca. ten times lower than the average access time of all query
selectors, i.e., 559.2 mili-seconds. In this experiment, we used
run-time program instrumentation to obtain the ground truth
for assessing JAW’s accuracy in HPG construction. However,
such techniques come with performance hits, and are poorly
suitable for large HPGs (e.g., in model construction, and vul-
nerability detection). We believe the impact of JAW’s FP and
FN edges as a result of DOM snapshots is negligible.

6 Discussion
Properties of Client-side Forgeable Requests. In this paper,
we showed that 82% of the web applications have at least one
web page with a client-side forgeable request that can be
exploited to mount CSRF attacks, suggesting that forgeable
requests are prevalent. We also showed that client-side CSRF
can be used to mount other attacks, such as XSS and SQLi,
which cannot be mounted via the traditional attack vectors.
Then, the analysis of forgeable requests suggest that some
client-side CSRF templates are more prevalent than others,
e.g., in 28.7% of vulnerable applications, the attacker can
overwrite a parameter in the request body.
Interesting Properties of Vulnerable Applications. We
found that 39 out of 106 targets in our testbed are single
page applications (SPA), i.e., 36.7%. We manually examined
the 87 vulnerable targets and observed that 44.8% of them are
SPA’s. Also, we found exploits in 17.9% of the tested SPAs

USENIX Association 30th USENIX Security Symposium 2537

(§5.5). We believe this sheds light into the fact that client-side
CSRF instances are more prevalent among SPA applications.
Transfer of Control and Run-time Monitoring. Our evalu-
ation shows that dynamic information increases the transfer
of control path by 0.26%. Despite its negligibility, our eval-
uation shows that dynamic information is fundamental for
the identification of the forgeable requests of 14 out of 87
vulnerable applications and three out of seven exploitable
applications (an increase of +19.1% and +75%, respectively).
Vulnerability Originates from the Same Code. The manual
analysis of the 515 forgeable HTTP requests reveals that each
vulnerability originates from different copies of the same code
used across various pages. The templates for vulnerabilities
range between one to four per application, with a majority
of applications (i.e., 78.1%) having only a single template.
These facts suggest that developers tend to repeat the same
mistake across different pages.
False Positives. We observed that using state values together
with traditional static analysis will help to remove spurious
execution traces (§5.6). Nevertheless, our extensive manual
verification uncovered that 1/516 requests was a false positive
due to inaccurate pointer analysis of the this statement in
dynamically called functions (see §5.3). We observed that
such a request is using data values originating from the DOM
tree, meaning that 1/83 requests of the DOM-READ forgeable
request category may be a false positive. We plan to address
this shortcoming by incorporating the call-sensitive resolution
of the this keyword into JAW in the future.
Limitations. The vulnerabilities found in this paper are those
captured by our model and traversals. However, it could hap-
pen that a forgeable request in the program is not found be-
cause the construction of the model is bound by the soundness
properties offered by the individual static analysis tools we
use for the construction of the property graph, e.g., CFG,
PDG, etc. Accurately building these models by static anal-
ysis is a challenging task due to the streaming nature of
JavaScript programs [43], and JavaScript dynamic code gen-
eration capabilities. We point out that, similar to prior work
(e.g., see [46]), JAW extracts the code executed by dynamic
constructs, i.e., eval, setTimeout and new Function(), as
long as the string parameter can be reconstructed statically.
As a future work, we plan to replace our extension with a
modified JavaScript engine (e.g., VisibleV8 [54]), to provide
better support for reflection and such dynamic constructs, and
to minimize the potential side effects of function hooking,
especially with respect to event handlers. Furthermore, the
vulnerabilities discovered in this paper affect those pages that
JAW reached with our crawler. However, crawling is a chal-
lenging task (see, e.g., [40, 70]) and JAW may have missed
pages with vulnerable code. To increase coverage, we plan to
provide support for the smooth integration of other crawlers.
Incremental Static Analysis. JAW can reduce by 60% the
effort required to analyze client-side JavaScript programs via

pre-built symbolic models. When looking at the unique ap-
plication code, we observe that a large fraction of code is
also shared between pages. For example, the 4,836 pages con-
tain in total 104,720 application scripts, of which only 4,559
are unique, suggesting that the shared code of different web
pages can be modeled once, and reused through incremental
program analysis, a problem we plan to address in the future.
Vulnerability Disclosure. At the time of writing this paper,
we are in the process of notifying the affected vendors about
our discovery, following the best practices of vulnerability
notification (see [85]).

7 Related Work
Request Forgery Vulnerabilities. Request forgery is a
widely exploited web vulnerability (see, e.g., [23, 25, 26, 27,
32, 51, 88]) that we can divide into two families: SSRF [68]
and CSRF [37, 69]. Research in this area has largely focused
on request forgery defenses (e.g., [34, 39, 52, 53, 56, 63, 73,
74]), with very few proposing detection techniques that can
help security testing community to uncover CSRF exploits
(i.e., [37, 69, 77, 86]). Only a fraction of these works, most
notably, Deemon [69], and Mitch [37], went beyond manual
inspection by presenting (semi-)automated approaches. As
opposed to these works, this paper proposes JAW, a frame-
work to study client-side CSRF vulnerabilities at large-scale
based on HPGs and declarative graph traversals.
Property Graphs and Vulnerability Detection. Graph-
based analysis of source code has a long history and has a been
considered by several researchers (e.g., [33, 41, 57, 71, 91]).
Yamaguchi et. al. [91] proposed the notion of CPGs for find-
ing software bugs in C/C++ applications (i.e., a non-web-
based execution environment). Backes et. al. [33] later ex-
tended this idea to detect vulnerabilities in the server-side
of PHP web applications. In contrast to these works, our ap-
proach adapts the concept of CPGs to the client-side of web
applications, and extends them with dynamic information, i.e.,
state values (§3.2). Also, existing CPGs are poorly suited for
large-scale analyses which is a needed feature to analyze web
applications (a web application can have hundreds of pages
to analyze, each with thousands of lines of JavaScript code).
Backes et. al. [33] needed up to 5 days and 7 hours for a single
query when analyzing 77M LoC. In comparison, JAW took 3
days (sequential execution) to model and query 228M LoC.
This improvement is largely due to the introduction of the
new notion of symbolic models for shared third-party code
(§5.2). We believe that these contributions are key enablers to
use graph-based analyses on web applications, at scale.
Security Analysis of JavaScript Programs. Over the past
years, we have seen different techniques for analyzing
JavaScript programs (e.g., [38, 42, 44, 46, 61, 62, 67, 82, 83]).
To date, these approaches have been mostly applied to
XSS [60, 64, 75, 84] and validation flaws [66, 76, 79, 89, 92]).
Most notably, Lekies et. al. [60] modified the JavaScript en-
gine in Chromium to enhance it with taint-tracking capabili-

2538 30th USENIX Security Symposium USENIX Association

ties, and used a crawler that leverages the modified Chromium
to detect DOM-based XSS vulnerabilities. Saxena et. al. pro-
posed Kudzu [75], a tool that performs dynamic taint-tracking
to identify sources and sinks in the current execution using
a GUI explorer, and then generates XSS exploits by apply-
ing symbolic analysis to the detected source-sink data flows.
In general, these techniques could be useful to detect client-
side CSRF provided their crawler/GUI-explorer can trigger
the executions that are connecting sources to sinks. How-
ever, crawlers/GUI-explorers often fall short of visiting mod-
ern web UIs, providing low code coverage when compared
with static analysis techniques. As opposed to approaches
like [60, 75], JAW follows a hybrid approach, addressing
shortcomings of JavaScript static analysis such as dynamic
loading of script tags and point-to analysis for DOM ele-
ments.

8 Conclusion
In this paper, we presented JAW, to the best of our knowledge
the first framework for the detection and analysis of client-
side CSRF vulnerabilities. At the core of JAW is the new
concept of HPG, a canonical, static-dynamic model for client-
side JavaScript programs. Our evaluation of JAW uncovered
12,701 forgeable client-side requests affecting 87 web ap-
plications. For 203 of them, we created a working exploit
against seven applications that can be used to compromise
the database integrity. We analyzed the forgeable requests
and identified 25 different request templates. This work has
successfully demonstrated the capabilities of our paradigm
for detecting client-side CSRF. In the near future, we intend
to use our approach toward additional vulnerability classes.

Acknowledgments
We would like to thank our shepherd Stefano Calzavara and
the anonymous reviewers for their valuable feedback.

References
[1] Ast-Flow-Graph library. https://www.npmjs.com/

package/ast-flow-graph.
[2] Bitnami application catalog. https://bitnami.com/

stacks.
[3] Cypher query language. https://neo4j.com/develo

per/cypher-query-language/.
[4] Dujs library. https://github.com/chengfulin/du

js.
[5] Escontrol library. https://www.npmjs.com/packag

e/escontrol.
[6] Esgraph CFG generator. https://github.com/Swa

tinem/esgraph.
[7] Esprima. https://esprima.org/.
[8] Function.prototype.apply(). https://developer.mo

zilla.org/en-US/docs/Web/JavaScript/Refere
nce/Global_Objects/Function/apply.

[9] Function.prototype.call(). https://developer.mozi

lla.org/en-US/docs/Web/JavaScript/Referenc
e/Global_Objects/Function/call.

[10] Headless chromium. https://chromium.googlesou
rce.com/chromium/src/+/lkgr/headless/READM
E.md.

[11] JavaScript language resources. https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Lang
uage_Resources.

[12] JQuery library. https://jquery.com/.
[13] Library Detector for chrome. https://www.npmjs.co

m/package/js-library-detector.
[14] Neo4j graph database. https://neo4j.com.
[15] Selenium browser automation. https://www.seleni

um.dev.
[16] Selenium IDE. https://www.selenium.dev/proje

cts.
[17] Selenium-python. https://selenium-python.read

thedocs.io/index.html.
[18] Styx library. https://www.npmjs.com/package/st

yx.
[19] Usage statistics of content management systems. https:

//w3techs.com/technologies/overview/conten
t_management.

[20] window.name API. https://developer.mozilla.
org/en-US/docs/Web/API/Window/name.

[21] window.open() API. https://developer.mozilla.
org/en-US/docs/Web/API/Window/open.

[22] YUI library. https://yuilibrary.com/.
[23] CSRF: Adding optional two factor mobile number in

slack, 2016. https://hackerone.com/reports/15
5774.

[24] Client-side CSRF, 2018. https://www.facebook.c
om/notes/facebook-bug-bounty/client-side-c
srf/2056804174333798/.

[25] Two factor authentication cross site request forgery
(CSRF) vulnerability in wordpress. cve-2018-20231.,
2018. https://www.privacy-wise.com/two-fac
tor-authentication-cross-site-request-forg
ery-csrf-vulnerability-cve-2018-20231/.

[26] Account take over in US Dept of Defense, 2019. https:
//hackerone.com/reports/410099.

[27] Critical CSRF vulnerability on facebook, 2019. https:
//www.acunetix.com/blog/web-security-zone/
critical-csrf-vulnerability-facebook/.

[28] Intent to implement and ship: cookies with SameSite by
default, 2019. https://groups.google.com/a/ch
romium.org/forum/#!msg/blink-dev/AknSSyQTG
Ys/SSB1rTEkBgAJ.

[29] Intent to implement: Cookie SameSite=lax by default
and SameSite=none only if secure, 2019. https://gr
oups.google.com/forum/#!msg/mozilla.dev.pla
tform/nx2uP0CzA9k/BNVPWDHsAQAJ.

[30] SameSite cookie attribute, chromium, blink, 2020. ht
tps://www.chromestatus.com/feature/4672634

USENIX Association 30th USENIX Security Symposium 2539

https://www.npmjs.com/package/ast-flow-graph
https://www.npmjs.com/package/ast-flow-graph
https://bitnami.com/stacks
https://bitnami.com/stacks
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
https://github.com/chengfulin/dujs
https://github.com/chengfulin/dujs
https://www.npmjs.com/package/escontrol
https://www.npmjs.com/package/escontrol
https://github.com/Swatinem/esgraph
https://github.com/Swatinem/esgraph
https://esprima.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://jquery.com/
https://www.npmjs.com/package/js-library-detector
https://www.npmjs.com/package/js-library-detector
https://neo4j.com
https://www.selenium.dev
https://www.selenium.dev
https://www.selenium.dev/projects
https://www.selenium.dev/projects
https://selenium-python.readthedocs.io/index.html
https://selenium-python.readthedocs.io/index.html
https://www.npmjs.com/package/styx
https://www.npmjs.com/package/styx
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://developer.mozilla.org/en-US/docs/Web/API/Window/name
https://developer.mozilla.org/en-US/docs/Web/API/Window/name
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://yuilibrary.com/
https://hackerone.com/reports/155774
https://hackerone.com/reports/155774
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.privacy-wise.com/two-factor-authentication-cross-site-request-forgery-csrf-vulnerability-cve-2018-20231/
https://www.privacy-wise.com/two-factor-authentication-cross-site-request-forgery-csrf-vulnerability-cve-2018-20231/
https://www.privacy-wise.com/two-factor-authentication-cross-site-request-forgery-csrf-vulnerability-cve-2018-20231/
https://hackerone.com/reports/410099
https://hackerone.com/reports/410099
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/SSB1rTEkBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/SSB1rTEkBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/AknSSyQTGYs/SSB1rTEkBgAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/nx2uP0CzA9k/BNVPWDHsAQAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/nx2uP0CzA9k/BNVPWDHsAQAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/nx2uP0CzA9k/BNVPWDHsAQAJ
https://www.chromestatus.com/feature/4672634709082112
https://www.chromestatus.com/feature/4672634709082112

709082112.
[31] Usage statistics of JavaScript libraries for websites,

2020. https://w3techs.com/technologies/o
verview/javascript_library.

[32] S. Abdelhafiz. SSRF leaking internal google cloud data
through upload function, 2019. https://hackerone.
com/reports/549882.

[33] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Ya-
maguchi. Efficient and Flexible Discovery of PHP Ap-
plication Vulnerabilities. In Proceedings of the 2nd
IEEE Euro S&P, 2017.

[34] A. Barth, C. Jackson, and J. C. Mitchell. Robust de-
fenses for cross-site request forgery. In CCS, 2008.

[35] A. Barth, J. Weinberger, and D. Song. Cross-Origin
JavaScript Capability Leaks: Detection, Exploitation,
and Defense. In USENIX Security, 2009.

[36] S. Calzavara, M. Bugliesi, S. Crafa, and E. Steffinlongo.
Fine-Grained Detection of Privilege Escalation Attacks
on Browser Extensions. In ESOP, 2015.

[37] S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and
G. Tolomei. Mitch: A machine learning approach to the
black-box detection of csrf vulnerabilities. In Proceed-
ings of the IEEE Euro S&P, 2019.

[38] S. Chandra, C. S. Gordon, J. Jeannin, C. Schlesinger,
M. Sridharan, F. Tip, and Y. Choi. Type Inference for
Static Compilation of Javascript. In ACM SIGPLAN
Notices, 2016.

[39] A. Czeskis, A. Moshchuk, T. Kohno, and Helen J. Wang.
Lightweight server support for browser-based csrf pro-
tection. In Proceedings of the International Conference
on World Wide Web, 2013.

[40] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. En-
emy of the State: A State-Aware Black-Box Web Vul-
nerability Scanner. In USENIX Security, 2012.

[41] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
In ACM Transactions on Programming Languages and
Systems, 1987.

[42] K. Gallaba, A. Mesbah, and I. Beschastnikh. Dont́
Call Us, Weĺl Call You: Characterizing Callbacks in
Javascript. In Proceedings of the 2015 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering
and Measurement, 2015.

[43] S. Guarnieri and B. Livshits. GULFSTREAM: Staged
Static Analysis For Streaming JavaScript Applications.
In Proceedings of the USENIX conference on Web ap-
plication development, 2010.

[44] B. Hackett, S. Lebresne, B. Burg, and J. Vitek. Fast and
Precise Hybrid Type Inference for Javascript. In PLDI,
2012.

[45] N. Hardy. The confused deputy: (or why capabilities
might have been invented). In ACM SIGOPS Operating
Systems Review, 1988.

[46] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying

the Eval that Men Do. In Proceedings of ISSTA, 2012.
[47] S. H. Jensen, M. Madsen, and A. Møller. Modeling

the HTML DOM and Browser API in Static Analysis
of Javascript Web Applications. In Proceedings of the
ESEC/FSE, 2011.

[48] S. H. Jensen, M. Madsen, and A. Møller. Modeling
the HTML DOM and browser API in static analysis
of JavaScript web applications. In Proceedings of the
ESEC/FSE, pages 59–69, 2011.

[49] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis
for Javascript. In Proceedings of the 16th International
Symposium on Static Analysis, 2009.

[50] S. H. Jensen, A. Møller, and P. Thiemann. Interproce-
dural Analysis with Lazy Propagation. In International
Static Analysis Symposium, Lecture Notes in Computer
Science, vol 6337. Springer, Berlin, Heidelberg, 2010.

[51] M. Johns. The three faces of csrf. talk at the deepsec2007
conference. 2007. https://deepsec.net/archive/
2007.deepsec.net/speakers/index.html#marti
n-johns.

[52] M. Johns and J. Winter. RequestRodeo: Client side
protection against session riding, 2006. https://www.
owasp.org/images/4/42/RequestRodeo-MartinJ
ohns.pdf.

[53] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross
site request forgery attacks. In SecureComm, 2006.

[54] J. Jueckstock and A. Kapravelos. VisibleV8: In-browser
Monitoring of JavaScript in the Wild. In Proceedings of
the ACM IMC, 2019.

[55] K. Käfer. Cross site request forgery. In Hasso-Plattner-
Institut, Technical report, 2008.

[56] F. Kerschbaum. Simple cross-site attack prevention. In
SecureComm, 2007.

[57] D. A. Kinloch and M. Munro. Understanding c pro-
grams using the combined c graph representation. In
Proceedings of the International Conference on Soft-
ware Maintenance, 1994.

[58] M. S. Lam., R. S. Avaya, and J. D. Ullman. Compil-
ers: Principles, techniques, and tools (2nd edition). In
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2006. ISBN 0321486811, 2006.

[59] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson,
C. Wilson, and E. Kirda. Thou shalt not depend on me:
Analysing the use of outdated javascript libraries on the
web. NDSS 2017, 2017.

[60] S. Lekies, B. Stock, and M. Johns. 25 million flows
later: large-scale detection of DOM-based XSS. In CCS,
2013.

[61] M. Madsen, B. Livshits, and M. Fanning. Practical
Static Analysis of Javascript Applications in the Pres-
ence of Frameworks and Libraries. In Proceedings of
the ESEC/FSE, 2013.

[62] M. Madsen and A. Møller. Sparse Dataflow Analysis
with Pointers and Reachability. In International Static

2540 30th USENIX Security Symposium USENIX Association

https://www.chromestatus.com/feature/4672634709082112
https://w3techs.com/technologies/overview/javascript_library
https://w3techs.com/technologies/overview/javascript_library
https://hackerone.com/reports/549882
https://hackerone.com/reports/549882
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf

Analysis Symposium, Lecture Notes in Computer Sci-
ence, vol 8723. Springer, Cham, 2014.

[63] Z. Mao, N. Li, and I. Molloy. Defeating cross-site re-
quest forgery attacks with browser-enforced authenticity
protection. In 13th International Conference on Finan-
cial Cryptography and Data Security, 2009.

[64] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia.
Riding out domsday: Towards detecting and preventing
dom cross-site scripting. In NDSS, 2018.

[65] Mozilla. Introduction to the DOM, 2020. https://de
veloper.mozilla.org/en-US/docs/Web/API/Doc
ument_Object_Model/Introduction.

[66] J. Nicolay, V. Spruyt, and C. D. Roover. Static Detection
of User-specified Security Vulnerabilities in Client-side
JavaScript. In PLAS, 2016.

[67] C. Park and S. Ryu. Scalable and Precise Static Analysis
of JavaScript Applications via Loop-Sensitivity (Arti-
fact). In ECOOP, 2015.

[68] G. Pellegrino, O. Catakoglu, D. Balzarotti, and
C. Rossow. Uses and abuses of server-side requests.
In RAID, 2016.

[69] G. Pellegrino, M. Johns, S. Koch, M. Backes, and
C. Rossow. Deemon: Detecting CSRF with dynamic
analysis and property graphs. In CCS, 2017.

[70] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow.
jäk: Using Dynamic Analysis to Crawl and Test Modern
Web Applications. In RAID, 2015.

[71] T. Reps. Program analysis via graph reachability. In
Information and Software Technology, 40(11):701–726,
1998.

[72] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
Analysis of the Dynamic Behavior of Javascript Pro-
grams. In PLDI, 2010.

[73] P. D. Ryck, L. Desmet, T. Heyman, F. Piessens, and
W. Joosen. CsFire: Transparent client-side mitigation
of malicious cross-domain requests. In ESSoS, 2010.

[74] P. D. Ryck, L. Desmet, W. Joosen, and F. Piessens. Au-
tomatic and precise client-side protection against CSRF
attacks. In ESORICS, 2011.

[75] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant,
and D. Song. A symbolic execution framework for
JavaScript. In IEEE S&P, pages 513–528. IEEE, 2010.

[76] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX:
Systematic Discovery of Client-side Validation Vulnera-
bilities in Rich Web Applications. In NDSS, 2010.

[77] H. Shahriar and M. Zulkernine. Client-side detection
of cross-site request forgery attacks. In Proceedings
of the IEEE 21st International Symposium on Software
Reliability Engineering, 2010.

[78] S. Sivakorn, I. Polakis, and A. D. Keromytis. The
Cracked Cookie Jar: HTTP Cookie Hijacking and the
Exposure of Private Information. In Proceedings of the
IEEE Euro S&P, 2016.

[79] N. Skrupsky, M. Monshizadeh, P. Bisht, T. Hinrichs,

V.N. Venkatakrishnan, and L. Zuck. WAVES: Auto-
matic Synthesis of Client-side Validation Code for Web
Applications. In 2012 International Conference on Cy-
ber Security, 2012.

[80] D. F. Somé. EmPoWeb: Empowering Web Applications
with Browser Extensions. In Proceedings of the IEEE
S&P, 2019.

[81] S. Son and V. Shmatikov. The Postman Always
Rings Twice: Attacking and Defending postMessage
in HTML5 Websites. In NDSS, 2013.

[82] T. Sotiropoulos and B. Livshits. Static Analysis for
Asynchronous Javascript Programs. In ECOOP, 2019.

[83] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and
F. Tip. Correlation Tracking for Points-To Analysis of
Javascript. In ECOOPs, 2012.

[84] M. Steffens, C. Rossow, M. Johns, and B. Stock. Don’t
Trust the Locals: Investigating the Prevalence of Per-
sistent Client-Side Cross-Site Scripting in the Wild. In
NDSS, 2019.

[85] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and
M. Backes. Hey, you have a problem: On the feasi-
bility of large-scale web vulnerability notification. In
USENIX Security, pages 1015–1032, 2016.

[86] A. Sudhodanan, R. Carbone, L. Compagna, and N. Dol-
gin. Large-scale analysis & detection of authentication
cross-site request forgeries. In IEEE Euro S&P, 2017.

[87] A. Sudhodanan, S. Khodayari, and J. Caballero. Cross-
Origin State Inference (COSI) Attacks: Leaking Web
Site States through XS-Leaks. In NDSS, 2020.

[88] R. Walikar. Cross-site port attacks - xspa, 2012. https:
//ibreak.software/2012/11/cross-site-port-
attacks-xspa-part-1/.

[89] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel,
and G. Vigna. ZigZag: Automatically Hardening Web
Applications Against Client-side Validation Vulnerabili-
ties. In USENIX Security, 2015.

[90] M. West. Incrementally better cookies. 2019. https:
//tools.ietf.org/html/draft-west-cookie-in
crementalism-00.

[91] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Model-
ing and Discovering Vulnerabilities with Code Property
Graphs. In Proceedings of the IEEE S&P, 2014.

[92] F. Yamaguchi, M. Lottmann, and K. Rieck. Generalized
vulnerability extrapolation using abstract syntax trees.
In ACSAC, 2012.

[93] W. Zeller and E. W. Felten. Cross-site request forgeries:
Exploitation and prevention. In Princeton University,
2008.

[94] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, and
T. Wan. Cookies Lack Integrity: Real-World Implica-
tions. In USENIX Security, 2015.

USENIX Association 30th USENIX Security Symposium 2541

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://ibreak.software/2012/11/cross-site-port-attacks-xspa-part-1/
https://ibreak.software/2012/11/cross-site-port-attacks-xspa-part-1/
https://ibreak.software/2012/11/cross-site-port-attacks-xspa-part-1/
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00

A Additional JAW Details
A.1 JAW Semantic Types

Descr. Type Example of use
Window URL WIN.LOC window.location.hash
Cookie DOM.COOKIES doc.cookie
localStorage LOCAL-STORAGE doc.localStorage
sessionStorage SESSION-STORAGE doc.sessionStorage
postMessage POST-MESSAGE addEventListener(evt, h)
Window Name WIN.NAME window.name
Document Referrer DOC.REFERRER doc.referrer
DOM Attribute DOM.READ doc.getElementById(‘x’).value
Client-Side Request REQ XMLHttpRequest
Event Dispatch E-DISPATCH el.triggerHandler(evt)
Handler Registration E-REGISTER el.on(evt, h)
Func. I/O o← i function(i){return o = g(i);}
Func. I/O o ~ i function(i){if(cond(i)) return o;}

Table 4: List of semantic types supported by JAW. Types are assigned to
constructs representing input sources of a web application, functions that send
HTTP requests, dispatch or register events, and functions with inputs/outputs.

Table 4 summarizes the list of semantic types supported
by JAW. We can use one semantic type for each of the injec-
tion points where the attacker can input data. Semantic types
can also be assigned to functions to specify their behavior
abstractly, e.g., functions that delegate the dispatch of events
or the HTTP requests to low-level browser APIs.

A.2 Library Detection
JAW relies on Library Detector [13] to identify the JavaScript
libraries used inside a web page. It is used as a bundled script
injected by Selenium [15]. Library Detector has a series of
pre-defined checks (i.e., usage indicator functions) for each
JavaScript library that it supports. It searches for known li-
brary signatures inside the execution environment by appling
the usage indicator functions. For example, global variables
set on the Window object by a library are an indicator of the
usage of that library. It returns the list of libraries used in the
web page. At the time of writing this paper, Library Detec-
tor provides support for the detection of 114 different library
scripts, including JQuery, React, Angular, and Prototype.

B Additional Evaluation Details
B.1 Testbed (Alphabetically Ordered)
This appendix contains the complete list of the web applica-
tions and their versions in our testbed.
AbanteCart 1.2.16, Akeneo 3.2.26, Alfresco Community
201911, Apache Airflow UI 1.10.8, Axelor 5.3.0, Bonita 7.6,
CMS Made Simple 2.2.14, CanvasLMS 2020.01.01.05, Civi-
CRM 5.25.0, Ckan 2.8.0, Collabtive 3.1, Composr 10.0.30,
Concrete5 8.5.2, Coppermine 1.6.08, Cotonti 0.9.19, Diaspora
0.7.13.0, Discourse 2.4.5, DokuWiki 20180422c, Dolibarr
11.0.4, DreamFactory 4.2.2, Drupal 8.8.6, ELK 7.6.0, ERP-
Next 12.9.3, EspoCRM 5.9.1, FatFreeCRM 0.18.1, Fluentd
UI 1.10.3, Ghost 3.17.1, Gitlab CE 13.0.3, Grafana 6.5.2,
Horde Groupware Webmail 5.2.22, JFrog Artifactory Open
Source 6.19.1, JasperReports 7.5.0, Jenkins 2.204.1, Jet-
Brains YouTrack 2019.3.62973, Joomla 3.9.18, Kibana 7.5.1,

Figure 6: Average time required for JAW to construct and analyze a hybrid
property graph categorized by lines of code (LoC).

Kong Admin UI 0.4.1, Kubeapps 1.9.0, Let’s Chat 0.4.8, Lif-
eray 7.2.1, LimeSurvery 4.2.5, Live Helper Chat 3.27, Lo-
tusCMS 3.0.5, Magento 2.3.5, Mahara 19.10.1, Mantis 2.24.1,
Matomo 3.13.1, Mattermost 5.14.0, Mautic 2.16.2, Medi-
aWiki 1.34.1, Moalyss 7.3.0.0, Modx 2.7.3pl, Moodle 3.8.3,
MyBB Forum 1.8.22, Neos 5.2.0, OXID eShop 6.2.1, Odoo
13.0.20200515, Open Atrium 2.646, Open edX ironwood.2.8,
OpenCart 3.0.3.2, OpenProject 10.5.1, Openfire 4.4.4.1, Or-
angeHRM 4.4, OroCRM 4.1.4, Osclass 3.9.0, Parse Server
4.2.0, ParseDashboard 2.0.5, Phabricator 2020.21, Pimcore
6.6.4, Plone 5.2.1, Pootle 2.8.2, PrestaShop 1.7.6.2, Process-
Maker Community 3.3.6, ProcessWire 3.0.148, Prometheus
2.18.1, Publify 9.1.0, Re:dash 8.0.0, Redmine 4.1.1, Re-
port Server Community 3.1.1.6020, Report Server Enterprise
3.1.1.6020, ResourceSpace 9.2.14719, ReviewBoard 3.0.17,
Roundcube 1.4.5, SEO Panel 4.3.0, Shopware 6.1.0, Silver-
stripe 4.5.2, Simple Machines Forum 2.0.17, SonarQube
8.2.0.32929, Spree 4.1.6, SugarCRM 6.5.13, SuiteCRM 7.1.1,
TestLink 1.9.20, Tiki Wiki CMS Groupware 21, Tiny Tiny
RSS 202006, Trac 1.5.1, Typo3 10.4.3, Weblate 4.0.3, Web-
mail Prop PHP 8.3.20, Wordpress 5.4.1, Xoops 2.5.10, Zurmo
3.2.7, eXo Platform 5.3.0, ownCloud 10.4.1, phpBB 3.3.0,
phpList 3.5.4, and phpMyAdmin 5.0.1.

B.2 Run-time Performance of JAW
We deployed the web applications under evaluation on a desk-
top computer (running MacOS Mojave 10.14.3 on an Intel
Core i5 with 2.4 GHz, 16 GB RAM, and a SSD), and per-
formed the data collection step (§4.1). We let JAW run for a
maximum of 24 hours on each web application, although after
a few hours the data collection module typically does not find
any new URLs. Then, we imported the collected data on our
own server (running Ubuntu 18.04 on an Intel(R) Xeon(R)
CPU E5-2695 v4 with 2.10 GHz and 72 cores, 252 GB RAM),
and instantiated JAW with the data to find client-side CSRF
vulnerabilities. We log all processing times for throughput
evaluation. Figure 6 depicts the average processing time for
each tool component in order to construct and analyze a HPG.
As shown in the figure, the processing time increases as the
LoC grows. The least time consuming operations are AST
and intra-procedural CFG construction. JAW also a incurs
a preparation delay in order to import the constructed prop-
erty graph into a Neo4j database which typically lasts around
8-11 seconds based on the LoC. The most time consuming
operation is the semantic type propagation.

2542 30th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Client-side CSRF
	Challenges
	Overview of our Approach

	Hybrid Property Graph
	Code Representation
	State Values
	Analysis of Client-side CSRF with HPGs

	JAW
	Data Collection
	Graph Construction

	Evaluation
	Experimental Setup and Methodology
	Analysis of Collected Data
	Forgeable Requests
	Analysis of Forgeable Requests
	Exploitations and Attacks
	Impact of Dynamic Snapshotting
	Vulnerability Detection
	HPG Construction

	Discussion
	Related Work
	Conclusion
	Additional JAW Details
	JAW Semantic Types
	Library Detection

	Additional Evaluation Details
	Testbed (Alphabetically Ordered)
	Run-time Performance of JAW

