
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

PriSEC: A Privacy Settings Enforcement Controller
Rishabh Khandelwal and Thomas Linden, University of Wisconsin–Madison;

Hamza Harkous, Google Inc.; Kassem Fawaz, University of Wisconsin–Madison
https://www.usenix.org/conference/usenixsecurity21/presentation/khandelwal

PriSEC: A Privacy Settings Enforcement Controller

Rishabh Khandelwal1, Thomas Linden1, Hamza Harkous2, and Kassem Fawaz1

1University of Wisconsin–Madison
1{rkhandelwal3, tlinden2, kfawaz}@wisc.edu

2Google Inc.
2harkous@google.com

Abstract
Online privacy settings aim to provide users with control

over their data. However, in their current state, they suffer
from usability and reachability issues. The recent push to-
wards automatically analyzing privacy notices has not ac-
companied a similar effort for the more critical case of pri-
vacy settings. So far, the best efforts targeted the special case
of making opt-out pages more reachable. In this work, we
present PriSEC, a Privacy Settings Enforcement Controller
that leverages machine learning techniques towards a new
paradigm for automatically enforcing web privacy controls.
PriSEC goes beyond finding the webpages with privacy set-
tings to discovering fine-grained options, presenting them in a
searchable, centralized interface, and – most importantly – en-
forcing them on-demand with minimal user intervention. We
overcome the open nature of web development through novel
algorithms that leverage the invariant behavior and render-
ing of webpages. We evaluate the performance of PriSEC to
find that it precisely annotates the privacy controls for 94.3%
of the control pages in our evaluation set. To demonstrate
the usability of PriSEC, we conduct a user study with 148
participants. We show an average reduction of 3.75x in the
time taken to adjust privacy settings compared to the baseline
system.

1 Introduction

For decades, the “Notice and Choice” model has been the
governing framework for disclosing and controlling online
privacy practices [29]. Privacy notices, manifesting in lengthy
privacy policies, inform users about how websites, devices,
apps, or service providers handle their data. Online settings
and menus provide users with options to opt-in for data collec-
tion, manage their communication and marketing preferences,
and control the extent to which their data is shared. However,
in their current forms, privacy control settings suffer from
usability issues [10]. With the introduction of regulations like
the GDPR [9] and the CCPA [34], online entities are required

to provide more privacy control settings to the users. In some
instances, these privacy controls have become more cumber-
some to locate, often distributed across multiple pages. As
we later show in this work, the users needed to navigate to
ten URLs, on average, to adjust a privacy setting in our user
study.

Taking Twitter as an example, to set their privacy prefer-
ences, the user should first expand the “More” side-bar menu,
navigate to the “Settings and privacy” page, traverse the rel-
evant settings tabs (each of which contains numerous sub-
modules a user must enter), change the settings, and then exit.
Additionally, the users already have to know the actual terms
to look for when navigating these interfaces.

Therefore, users may find it hard to exercise informed pri-
vacy control for websites with deep menus for privacy settings.
They are far more likely to rely on default configurations than
they are to fine-tune their settings for each service [1, 15].
In several cases, these default settings are privacy-invasive
and favor the service providers, which results in privacy risks
[21,24,25]. While several proposals have aimed at alternative
interfaces for presenting privacy notices [12, 30, 40], online
privacy controls have received less attention. The main work
in that context has been on automatically extracting opt-out
links from privacy policies [11, 14, 32].

In this work, we propose a new paradigm to improve the
accessibility of web privacy controls: we automatically find
webpages with privacy settings, locate the fine-grained op-
tions within these pages, group them by topic, present them in
a searchable user interface, and allow users to automatically
enforce them on demand. Achieving these objectives requires
(1) building a unified understanding of the privacy control
settings that scales across providers and web technologies and
(2) developing flexible user and programming interfaces that
allow the user to interact with the settings in an intuitive way.

To realize these goals, we built PriSEC, a privacy settings
enforcement controller that utilizes machine learning tech-
niques to discover, present, and enforce privacy settings. To
address the challenges described above, PriSEC leverages a
key insight to enable the robust extraction of privacy control

USENIX Association 30th USENIX Security Symposium 465

elements: their presentation to the user and behavior should be
consistent to maintain the user experience. Using this insight,
PriSEC applies a three-stage pipeline that, given a domain,
extracts a machine-readable representation of its privacy con-
trols. First, PriSEC crawls the domain and identifies privacy
control pages via a machine-learning classifier that exploits
the site’s textual and UI features. Next, PriSEC simulates
users’ behavior by interacting with every UI element on the
page. Using a deep-learning-based visual classifier, it catego-
rizes these elements into types, regardless of their underlying
implementation. Finally, it clusters these UI elements into
groups, creating “control recipes,” ready to be consumed by
the application interface.

To demonstrate these recipes, we built a Chrome browser
extension that presents them to the users in a centralized
location. Also, it enables the users to pose free-form natural-
language queries that are semantically matched with the rel-
evant privacy controls. Once the user provides their choices
in the extension, PriSEC automatically enforces the relevant
setting, without any further interaction, thereby making the
privacy settings more accessible and reducing the overhead
of the user at the same time.

We further perform an end-to-end evaluation of PriSEC,
assessing its core components:

• We show that our pipeline for generating enforceable
control recipes correctly extracts such recipes for 94.3%
of the pages in our manually annotated control pages’
dataset. This evaluation showcases the generality of
PriSEC’s design, despite the variance in the HTML im-
plementation of the analyzed pages.

• We evaluate PriSEC’s performance on matching user
queries with privacy options, and we find that it achieves
a top-3 accuracy of 95.6% on a dataset of free-form
queries that originate from real users on Twitter and
Reddit. This result shows the extent to which PriSEC
can reduce the user’s effort to locate a privacy setting of
interest.

• We further conduct an online user study with 148 par-
ticipants on Amazon MTurk to evaluate PriSEC’s client
implemented as a browser extension. We find that time
taken to adjust privacy settings on a set of 6 popular web-
sites is reduced by a factor of 3.75. Moreover, PriSEC
received a higher average System Usability Scale (SUS)
of 72 compared to 63 for the manual baseline.

2 Background on Privacy Settings

Before delving into PriSEC’s design, we start with the neces-
sary background and definitions around privacy settings that
we use later in the paper. Online service providers offer pri-
vacy settings, in the form of Privacy Control Pages, for their

Figure 1: (Left) Settings page on twitter.com showing vari-
ous groups. (Right) Rendering of the client side showing the
search interface of PriSEC.

users to control the access, processing, and sharing of personal
data. The anatomy of privacy control pages is typically differ-
ent from other common types of webpages. They are not rich
with text, and, depending on the domain, they might contain a
set of input elements. Privacy settings can be either co-located
within general settings pages or embedded in privacy policies.
There are two types of privacy settings: browser-centric and
user-centric. Browser-centric settings cover managing cookies
through centralized user interfaces, such as browser settings
or site-provided banners [35]. In contrast, user-centric settings
require the user to find and interact with specific pages (some-
times requiring a login) designed by the service providers.
We focus on user-centric settings due to their challenging,
non-standard, and distributed aspects in this work.

One can view a privacy control page as a set of Privacy
Control Groups. Each group is associated with a single privacy
topic and a set of options for that topic. Fig. 1 shows an
example of a privacy control page from twitter.com. The
page contains three control groups corresponding to the topics:
Push Notifications, Tweets, and Mentions and replies. For
example, the Mentions and Replies group has three options:
Tailored for you, From anyone, and Off. In our context, each
privacy option is associated with an input HTML element
with which the user can interact. This interaction results in
setting a choice for that privacy topic. For instance, Fig. 1
shows a case where radio-button elements can be used to set
one of three options for configuring mentions and replies. It
also shows another case where a checkbox element can be
used to enable push notifications for tweets.

In PriSEC, we use the term Control Recipe to refer to the
sequence of actions required to set a specific privacy option.
PriSEC utilizes a browser extension that presents these op-
tions in a centralized interface. The user can then decide on

466 30th USENIX Security Symposium USENIX Association

twitter.com
twitter.com

BackendClient

Client Service

Domain
Crawler

Recipe Database

Recipe
Generator

User Interface

Control
pages

Control
recipes

Enforcer

Control
recipes

Control

recipe

<query>

Figure 2: The system overview of PriSEC. The client-side
handles the user interaction whereas the backend performs
the offline processing and generates control recipes.

their privacy preference within the plugin. PriSEC then au-
tomatically enforces these preferences. To do so, it takes the
control recipe of the privacy option and packs it as a JavaScript
snippet. Then, it executes JavaScript in the corresponding pri-
vacy settings webpage.

3 System Overview

PriSEC extracts the privacy settings, presents them to the
users in an intuitive way, and enables automatic enforcement
of their choices. It employs two components: a backend com-
ponent responsible for offline processing of control pages
and building the control recipes, and a client-side JavaScript
extension to handle user interaction. A high-level diagram of
PriSEC is shown in Fig. 2.

Backend

Given a domain, PriSEC’s Domain Crawler crawls its web-
pages to identify a set of privacy control pages. This crawler
is described in Sec. 4. Then, the Recipe Generator processes
each control page to extract a machine-readable representa-
tion of all the privacy control groups on the page (Sec. 5). We
call such representations the control recipes. They include,
for each control element, the XML Path (XPath) leading to it
(representing the sequence of actions needed to set it) and a
descriptive text extracted from the page.

Client

On the client side, PriSEC has a plugin running on the user’s
browser. As shown in Fig. 2, the Client Service locally main-
tains the per-domain control recipes that have been generated
by the backend. Given a domain, the User Interface presents
these recipes and allows the user to issue free form queries

about specific control settings. To change a setting, the user
can either locate the setting-of-interest through browsing the
list of settings or issuing a free form query, as shown in Fig 1.
The Enforcer module takes the user choices and automatically
applies that setting in a new tab by injecting the necessary
JavaScript, based on the control recipe, without any further
user intervention.

In this paper, we present one example of a user interface that
leverages the functionality of PriSEC. One could, however,
use the underlying system as a more general-purpose API
that can return and enforce control recipes as requested by a
user-level interface.

Challenges

Designing and implementing PriSEC comes with a set of
unique challenges. The major challenge stems from the open
nature of the web domain. Unlike developing with mobile-
device frameworks such as Swift or Android Studio, web de-
velopment is far less structured. Further, the static resources
of most modern webpages do not provide a comprehensive
picture of the service, and the lack of uniform code structur-
ing introduces additional nuances to any third-party analysis.
For example, extracting relevant text for a privacy option is
difficult because the implementation varies among websites.
Thus, our goal of generalizing the search, processing, and
enforcement across webpages is a challenging task.

The next sections explain the design of PriSEC’s modules
(Fig. 2), namely the crawler (Sec. 4), the recipe generator
(Sec. 5), and the client application (Sec. 6).

4 Crawler

The Crawler module identifies the privacy control webpages
for a target domain. This module takes a two-step approach:
it first finds the candidate pages; then it classifies these candi-
dates using a machine learning classifier that we developed.
Fig. 3 highlights the operation of the crawler.

4.1 Candidate Page Identification
Given the domain, PriSEC’s crawler finds a valid starting URL
from the search results of DuckDuckGo, a popular search-
engine. The search query is the domain along with the key-
words: “privacy” and “settings”. The crawler chooses the
starting URL to be the first page with a domain that matches
the target. Then this module extracts all visible anchor tags
located at the starting page. We use the Selenium web-driver
in Python to perform the crawling.

In certain domains, some anchor links are only visible upon
clicking specific elements on the page (e.g., a profile icon).
To reveal these hidden links, the crawler iteratively tabs (i.e.,
simulates a tab click on the keyboard) through the page and
clicks all the interactable elements. The set of obtained links

USENIX Association 30th USENIX Security Symposium 467

Web Search

Control
pages

Domain

BFS + Pruning Is-Control

Landing
URL

Figure 3: The processing pipeline of PriSEC’s crawler.

HTML Page
U

ni
ve

rs
al

 S
en

te
nc

e
En

co
de

r -
2

Te
xt

 E
m

be
dd

in
g

U
I F

ea
tu

re
s

Classifier

De
ns

e
La

ye
rs

Class
probs

Softmax

Text

UI elements

Figure 4: The architecture of PriSEC’s Is-Control classifier.

are crawled in turn in a Breadth-First-Search (BFS) order
with a depth of 3. In order to prune the search space, we
apply a set of pattern-matching heuristics to eliminate URLs
that are known not to contain privacy controls (e.g., https:
//example.com/about or https://example.com/faqs).

The resulting candidate set comprises the discovered an-
chor links during this process. We further apply a keyword-
based filter targeting the page title to reduce the noise in this
set. The keywords are derived from the set of privacy-control
pages used for training the Is-Control classifier in Sec. 4.2.

We note that to find the candidate pages behind a login
page, we first create Chrome profiles and manually login
once to the websites either using third-party logins or test
accounts. We then load these profiles in Selenium, which
automatically reuses the sessions during crawling. We discuss
the limitations of this step and the alternatives in Sec. 8.

4.2 Is-Control Classifier

Now that we have a candidate list of links, we want to keep the
ones corresponding to control pages. PriSEC uses a custom
Is-Control classifier that takes an input as a candidate HTML
page (from the crawler), extracts its textual and visual features,
and predicts whether that page is a control page.

4.2.1 Architecture

We consider two feature sets for representing an input HTML
page: text features extracted from the page and visual features
extracted from its UI elements. The model architecture is
shown in Fig. 4.

Text Features To represent the page’s text, we combine the
page title, text from heading elements (h#), and text from
the buttons. In the cases where the heading elements do not
exist, we add the text from paragraph elements (p) if present,
and from the entire text of the page if not. Next, we encode
the combined text using a pre-trained Universal Sentence
Encoder [5] based on a Deep Averaging Network [13]. This
encoder has previously shown success for text classification
tasks with small datasets [27].

Visual Features Then, the crawler enumerates all the input
elements on the page and builds a binary feature vector. This
4-dimensional vector encodes whether each of the following
types of UI elements is present or not: radio buttons, check-
boxes, select elements, and buttons. The decision to make
this feature vector a binary one was to restrict the input space,
particularly because the training data is relatively small (as
we explain later).

Combining the Features Concatenating the visual feature
vector with the text embedding vector results in the input
vector to a neural network composed of two dense layers with
ReLU activation [2], followed by a Softmax. The classifier
outputs a probability vector indicating whether the page is a
control page or not.

High Recall Goal A major challenge for this classifier is
the inherent noise in HTML pages, due to headers, footers, and
side menus. This noise might affect the classifier’s precision.
However, our main goal from the Is-Control classifier is to act
as an initial filtering stage. It should exhibit high recall on the
control pages, capturing almost all control pages of a domain,
but not necessarily high precision. The subsequent processing
steps of PriSEC’s pipeline will handle false positive instances.

4.2.2 Training and Testing

To create the data for the classifier, we used the privacy poli-
cies dataset from Linden et al. [18] as a starting point. Starting
from the privacy policy links and the corresponding home-
page, two of the authors went through the outgoing URLs, au-
thenticating the user if necessary. In this process, we obtained
198 privacy control URLs (43 located behind logins) and 498
non-control URLs. In total, these sum up to 696 unique web-
pages. The non-control pages we select vary significantly in
purpose as the overarching objective was to collect a diverse
set of pages, including text-rich pages (e.g. articles), privacy-
related pages (e.g. privacy policies), and pages containing
forms (e.g. contact or login pages).

Next, we set aside a balanced test set of 100 pages split
evenly between control and non-control pages. We train the
binary classifier on the remaining set of 596 pages, with 148
control and 448 non-control instances. We used over-sampling
during training to equally represent samples from the two

468 30th USENIX Security Symposium USENIX Association

https://example.com/about
https://example.com/about
https://example.com/faqs

Table 1: A breakdown of Is-Control classifier’s performance
on the test set.

Instances Support Recall Precision F1-score

Control 50 0.98 0.84 0.91
Non-Control 50 0.84 0.98 0.89

Total Pages 100 0.90 0.91 0.90

classes. Table 1 shows the performance of the classifier on the
test set. As evident from the table, the classifier detects 98%
of the control pages and has a false positive rate of 16%. We
purposefully optimized the classifier to have high recall over
the control pages because the Recipe-Generator module is
designed to further filter out the false positives, as discussed
in Sec. 7.

5 Recipe Generator

The Recipe-Generator module receives potential privacy con-
trol pages from the Crawler module. It extracts a “machine-
readable” and uniform representation of the privacy control
page. This representation is the set of privacy control groups,
the privacy options, and their control recipes, as defined in
Sec. 2. With such representation in place, PriSEC enables a
set of client applications that run on different HTML imple-
mentations of control pages. In Sec. 6, we provide an example
of such an application.

In this context, we have to overcome two main challenges
that arise due to the nature of web development. First, the
growing popularity of dynamic-loading of webpage content
suggests that static analysis of HTML is insufficient for dis-
covering the HTML elements associated with privacy options.
Second, in HTML, there is no standard way to implement the
elements with which the user interacts. For example, switches
can be implemented using checkbox as well as div elements.
Identifying the type of an HTML element is important for
recognizing the privacy options once discovered.

To overcome these challenges, we leverage a key property
of webpages; regardless of their underlying implementation,
they should render and behave consistently. PriSEC leverages
the behavior and rendering invariants to extract the privacy
control groups, options, and associated control recipes from
the control pages. Fig. 5 shows a high-level overview of the
Recipe-Generator’s processing pipeline; it assumes the fol-
lowing operation:

1. It mimics the user’s behavior on a control page to dis-
cover all the accessible input elements and organize them
in a graph structure (Sec. 5.1).

2. It uses the invariant rendering of the input elements
to classify them into UI types using an image classi-
fier (Sec. 5.2).

3. It identifies the privacy options from the recognized input
elements and organizes them into privacy control groups.
Then, it associates each privacy option with its control
recipe (Sec. 5.3).

5.1 Extraction of Privacy Options
The Recipe-Generator begins by extracting the set of all can-
didate privacy options within a control page. This process
involves identifying candidate options and organizing them
in a dependency graph, which is later used to generate the
control recipes.

Discovering the Initial Set of Focusable Elements:
PriSEC’s identifies candidate options through discovering
interactive elements on a webpage. Regardless of their un-
derlying HTML implementation, privacy options represent
elements with which the users can interact. PriSEC’s Recipe-
Generator module leverages the fact that, by default, all com-
ponents designed to handle user interactions are expected to
be focusable. Originally introduced to increase the accessibil-
ity of webpages, focusing allows browsers to designate which
interactive element on a page currently receives keyboard
inputs. Users can switch between elements by pressing the
TAB key (an action to which we refer as tabbing).

The Recipe-Generator module simulates a tabbing behav-
ior to identify all the focusable elements on a page. To reduce
the amount of noise in this focusable set, PriSEC processes
a second webpage from the same domain and filters out all
the focusable elements that are common to both pages. This
reduction technique primarily targets the headers, footers, and
side-navigation walls of webpages, which tend to render sim-
ilarly between pages in the same domain. Our underlying
assumption is that privacy options are unique to the control
page, unlike other input elements.

Click Analysis: The process we described so far misses the
HTML elements which are dynamically injected or enabled.
A typical example of control elements that are dynamically
injected is on the left side of Fig. 6. In this example, the
privacy options controlling the push notification types become
visible only after the switch button is enabled. To capture such
elements, PriSEC performs click analysis by simulating the
user clicks on the identified focusable elements. Each action
might result in dynamically injected HTML code, which is
then analyzed using the same tabbing approach.

The other types of elements that the previous process
misses are disabled elements, such as the ones on the right
side of Fig. 6. Before clicking the “switch” element in the
top right corner, the “checkbox” component was disabled and
inaccessible. The Recipe-Generator tests how the focusable
elements react in response to click actions to identify the ac-
cessible elements as well the interaction sequence that leads to

USENIX Association 30th USENIX Security Symposium 469

Identify Focusables Classify UI Elements Group UI Elements

Page Root

Generate Dependency Graph

Push
Notifications

Tailored For you From Anyone Off

Mentions and Replies

Tweets

Push
Notifications

Figure 5: The recipe generation pipeline of PriSEC. It starts by identifying the focusable elements on the page. Next, it generates
the dependency graph, which captures the relations between the elements, if any. Then, it classifies the elements according to
their UI type using a visual classifier. Finally, it groups the UI elements in control groups. These groups are used to build a
control recipe representing the privacy choices and controls of a page.

U
I E

le
m

en
t I
nj
ec
tio

n

U
I E

le
m

en
t E

na
bl
in
g

Figure 6: Examples from the PriSEC’s click analysis. One
highlighting the discovering dynamically injected options, the
other showing dynamically enabled options.

each element. The final set of candidate options includes both
the original and dynamically discovered focusable elements.
We refer to this set of candidates as the “focusable-set”.

Constructing a Dependency Graph: PriSEC not only de-
tects option candidates; it also extracts the sequences of ac-
tions required to reach each focusable element. PriSEC’s
client applications can utilize these sequences to enforce user
privacy preferences. Accordingly, the Recipe-Generator orga-
nizes the focusable-set into a directed acyclic graph (second
step in Fig. 5). The graph nodes represent focusable elements,
and directed edges between the nodes represent the destina-
tion node’s dependency on the source node’s execution. As

such, the leaves in this graph represent the privacy options.
To construct this graph, we use the interaction sequences

that lead to each focusable element. First, we define a place-
holder source node as the initial state of the webpage. We then
create a set of edges from that source node to the focusables
which are accessible upon that initial page loading. Then the
Recipe-Generator clicks on each focusable to discover the dy-
namically injected and enabled focusables. Whenever a click
on a focusable reveals another previously unseen focusable,
the Recipe-Generator creates an edge between a copy of the
source and destination elements. As such, the source focus-
able will appear twice in the graph: as a leaf in the graph as
well as a parent to the newly discovered nodes (e.g., “Push No-
tifications” in Fig. 5). The process continues in a depth-first
manner until no new elements are discovered.

5.2 UI-Element Classification

After discovering the candidate elements for privacy options,
the Recipe-Generator module identifies their types, which
is important for automatic enforcement. For example, a user
can only choose one radio button from a group but can check
several checkboxes in a control group. PriSEC classifies the
visualized rendering of candidates as one of seven possible
types of UI focusable elements (“text”, “button”, “link”, “ra-
dio button”, “checkbox”, “switch”, and “select”).

Empirically, we found that the HTML attributes of “radio
buttons” and “text inputs” were consistent and reliable across
the top 500 websites from the Amazon Alexa Top Sites List,
which was not the case for the rest of the UI element types. For
example, we found that “switches”, “buttons” and “selects”
can all be implemented using the “div” element, making it im-
possible to classify them only based on the HTML tags. Thus,
PriSEC first leverages the HTML of a webpage to determin-
istically identify “radio button” and “text inputs” elements.

470 30th USENIX Security Symposium USENIX Association

Input Image
Greyscale –

100x100

Fl
at

te
n

Class
probs

Softmax

De
ns

e(
12

8)

De
ns

e(
16

)

Conv Layers + ReLU + MaxPool Dense Layers

Dr
op

ou
t (

0.
5)

Filters : 32
Kernel : 3x3

Pool Size : 2x2

Filters : 64
Kernel : 5x6

Pool Size : 2x2

Figure 7: The architecture of the visual classifiers for PriSEC.

For the remaining five types of elements (“button”, “link”,
“checkbox”, “switch”, and “select”), we designed a classifier
to identify the type of focusable element using its screenshot.
The screenshot of the element is automatically taken using its
coordinates and the full control page’s screenshot.

UI Component Dataset Usually, training such visual clas-
sifiers requires a large amount of labeled data. From the top
500 websites from the Amazon Alexa Top Sites List, we
observe that many privacy control pages exhibit just one or
two controls. Instead of manually labeling the elements from
these control pages, we create a synthetic dataset of UI com-
ponents that we can easily scale and introduces a wider range
of variations in style and size.

We implemented a ReactJS web application loaded with 11
popular React UI building libraries (listed in Appendix A) to
generate the synthetic data. We traverse through the libraries’
implementations for each of the five UI component types and
render a UI component for each available style the library
offers. For introducing further variations, we populate the
text-containing elements (the default label for selects, the an-
chor links’ text, and the button text) and render a component
instance for each variation. Finally, for the binary-state com-
ponents (checkboxes, and switches), we render an instance for
both the checked and unchecked states. Our final dataset has
699 UI components, composed of 450 buttons, 13 switches,
100 links, 28 checkboxes, and 108 selects.

Visual Classifier: The visual classifier is a convolutional
neural network consisting of two convolutional layers for fea-
ture extraction followed by two dense layers for classification.
A schematic diagram of the architecture is shown in Fig. 7.
We further augment the synthetic set using horizontal and
vertical shifts to emulate the irregularity in screenshot cap-
turing. We then train the classifier on this augmented set by
splitting data into two sets: train (80%) and test (20%); we
used early stopping to prevent overfitting. The classifier has
a near-perfect accuracy (around 99.9%) on the five classes
on the synthetic set. We evaluated its performance on 102 UI

Table 2: Performance of the visual classifier

Class Precision Recall F1-score #(Elements)

checkbox 1.00 1.00 1.00 26
select 0.93 0.93 0.93 14
switch 1.00 1.00 1.00 26
button 0.95 1.00 0.97 18
link 1.00 0.94 0.97 18

Total 0.98 0.98 0.98 102

elements extracted from control pages of the top 500 websites
from the Amazon Alexa Top Sites List. Table 2 shows the
classifier’s F1-score for each of the five classes. The classi-
fier generalizes well on the samples from the wild (average
F1-score of 98%), despite being trained on synthetic data.

5.3 Constructing Control Recipes
With each node (an input element) in the directed graph now
tagged with its corresponding UI type, the Recipe-Generator
seeks to group options representing a single privacy topic. As
a first step, it distinguishes between different roles that these
elements can play: “selectors” that represent privacy options
(such as checkboxes) and “enforcers” that are used to apply
these options (such as a “save” button). Then, the elements are
assembled to create a machine-readable representation of the
privacy control page: a set of control groups, each associated
with text describing the privacy topic (per-group text). A con-
trol group has a set of privacy options, each represented with
its own text (per-option text). Then, the Recipe-Generator
associates each privacy option with a control recipe.

5.3.1 Selector vs. Enforcer Tagging

PriSEC defines two execution roles for candidate options. “Ra-
dio buttons”, “check-boxes”, “text-inputs”, “switches”, and
“selects” are categorized as selectors; the role of these com-
ponents is choosing privacy options. However, if a user were
to solely interact with these components, in many cases, their
choices are not submitted. In these cases, the control page
has some “button” or “link” that acts as the enforcer. The
Recipe-Generator first categorizes the components into their
execution roles based on the detected element type. Should an
enforcer exist on the page, this module associates the selec-
tors with that enforcer. In the case of multiple enforcers, we
choose the enforcer closest to a given selector by comparing
on-screen distances between the selector and the enforcers.

5.3.2 Privacy Option Grouping

The next step of the Recipe-Generator is to build the control
groups from the identified selectors. First, it sorts the selectors
according to their order of appearance in the HTML of the
control page. Then, it forms the group using this guiding

USENIX Association 30th USENIX Security Symposium 471

principle: each group is the list of consecutive selectors of
the same UI type that share the lowest common ancestor in
HTML parse tree. For example, the slider in Fig. 5 will form
one group, the checkbox will form the second group, and the
radio buttons will form the third group.

To provide context for the privacy options, the Recipe-
Generator module extracts the relevant text for the selectors
(per-option text) and the groups (per-group text). For the per-
option text of the selector, the Recipe-Generator searches for
the closest node in the HTML parse tree, which contains text.
This node can be the selector element itself, an ancestor, or a
child of an ancestor. The Recipe-Generator forces two condi-
tions for this node: it should not have any other selector as a
child, and its text should not have been used for another selec-
tor. Both conditions ensure that the per-option text is unique
to the selector. For the per-group text, the Recipe-Generator
searches for the lowest common ancestor of all its selectors,
which contains text. The only condition is that the text should
not be the per-option text of any of the selector elements.

5.3.3 Privacy Control Recipes

Finally, PriSEC generates the control recipe for each privacy
option. Recall that each privacy option is represented as a leaf
selector in the dependency graph (second diagram in Fig. 5).
Also, each selector either acts as an enforcer or is assigned a
separate enforcer element. The control recipe is the path from
the root of the graph to the enforcer of each privacy option.
The path includes the list of UI elements required to reach the
privacy option.

PriSEC leverages XML Path (XPath) queries to implement
the privacy control recipes. XPath expresses the location of an
element via a query starting at an anchor point in the page (an
element with a fixed HTML attribute). The client-side scripts
of PriSEC use the XPath expression of each element in the
recipe to automatically locate it and perform user actions such
as clicking. The sequence of these actions allows PriSEC to
reach the privacy options and set the user’s chosen value.

6 Client Application

As discussed in Sec. 3, the client application of PriSEC is
a browser extension supported by a natural language query
interpreter. PriSEC’s client presents the users with an interface
to view and search for the privacy options. The interface,
as shown in Fig. 1, is designed to serve two purposes: the
viewing option allows the users to learn about the privacy
settings offered by the given website, and the search option
allows the users to search for their preferences. Using this
interface, users can decide on their preferences and interact
with the extension to enforce them in an automated way. In
this section, we discuss the components and the workflow of
the client application.

PriSEC’s Extension

Privacy Control Page

Injected JavaScript

1

2

3

Figure 8: A typical workflow of enforcement in PriSEC:
1) User searches for a setting and provides their choice. 2)
PriSEC generates the JavaScript for enforcement and injects
it in a new tab. 3) Status of the setting after enforcement

.

6.1 User Interface
The user can activate PriSEC’s browser extension by clicking
the extension icon in their browser. The extension consists
of a basic form interface that renders the list of privacy op-
tions that PriSEC identified. For those domains providing
numerous privacy settings, users might find it cumbersome
to navigate all the options and select the ones matching their
preferences. PriSEC improves the accessibility of the privacy
options by including the ability to semantically search for
relevant privacy options, as shown in Step 1 of Fig. 8.

As previously depicted in Fig. 2, the Client Service (ex-
plained below) handles the user’s search queries. Then the
interface presents the matching privacy control groups in a
sorted order according to their semantic similarity to the user’s
query.

6.2 Client Service
The client service is responsible for two main tasks (as de-
picted in Figure 2): (1) managing the life-cycle of control
recipes and (2) performing the semantic matching of the pri-
vacy options with user queries. Starting with the first task: for
a given website, the client service fetches the control recipes
and exposes them to the user interface. In our implementa-
tion, the service fetches these recipes on-demand from the
backend. In case the extension is required to operate without
communicating with the backend (e.g., if the client prefers not
to send the timestamped URLs it visits), PriSEC can package
the recipes within the extension and update them periodically
for common domains. Once the user makes a choice in the
extension’s user interface, the corresponding control recipe is

472 30th USENIX Security Symposium USENIX Association

pushed to the enforcer module.
The second component of the client service performs the

semantic matching. This component encodes the user’s query
text and the text associated with each privacy option in the
same embedding space. Then, it ranks the control groups ac-
cording to the cosine similarity between their embeddings and
the query text. We investigated several types of pre-trained
encoders that target the task of semantic similarity, including
Universal Sentence Encoders [5] and SBERT [31]. We evalu-
ate several variants of this approach in Sec. 7.3. Additionally,
we compare large models designed to work on the server and
small models that function completely within the browser
extension. Our goal is to understand the trade-off between
higher accuracy (larger models) and better privacy (locally
resolving user queries).

It is important to emphasize that the recipes are only fetched
when the user clicks on the browser extension. Further, the
time cost of loading the recipes and performing a search is
relatively small: it takes around 100ms to load the recipe and
300ms to execute a semantic search query.

6.3 Enforcer Module
PriSEC triggers the enforcement when the user selects a pri-
vacy option and clicks on “set”. The module first retrieves
the recipe associated with that option and dynamically gener-
ates the JavaScript code for executing the recipe. Leveraging
the elevated privileges granted to extension, the application
opens a browser tab and injects the corresponding enforce-
ment JavaScript code. Fig. 8 shows the dynamically generated
script (Step 2) and the adjusted privacy option (Step 3) as a
result of the user action. Throughout this process, the user
only interacts with the popup screen of the browser extension
– PriSEC sets the privacy preference automatically without the
user’s involvement. Once done, the user can navigate outside
that popup and continue the regular website experience. A
working demo of PriSEC can be found by navigating to the
links in the footnotes below1,2.

7 Experiments

We perform an end-to-end evaluation of PriSEC, evaluating
its core components. The evaluation covers the complete
pipeline of PriSEC: the crawler, recipe generator, and client
applications. The experiments corresponding to the evaluation
of our system are as follows:

Experiment 1 — End-to-End Evaluation: We evaluate
the automatic identification and annotation of privacy control
pages by testing the Crawler and Recipe-Generator modules
against a set of 100 privacy control pages never before seen

1Reddit: https://youtu.be/Am27HdQ5u1w
2 Twitter: https://youtu.be/YXHwPGg_Z-M

by our system. We compare the results to a manual extraction
executed by the authors.

Experiment 2 — Semantic Matching: We test the natu-
ral language query interpreter against a set of relevant user
queries asked on Twitter and Reddit about the domains in
our privacy control set. We compare the results to the ground
truth annotated by the authors.

Experiment 3 — User Study: We conduct an online user
study with six popular websites to evaluate the usability of the
automatic presentation and enforcement modules of PriSEC.

7.1 Datasets
We curated two new datasets to evaluate PriSEC. The first
consists of a set of control pages from popular domains, and
the other consists of questions people posted about privacy
settings on Twitter and Reddit. The development of PriSEC
was entirely blind for these sets, which we curated solely for
evaluation purposes.

7.1.1 Privacy Control Pages (PCP) Dataset

We manually curated an evaluation set from the top 500 web-
sites from the Amazon Alexa Top Sites List3. For each do-
main, two authors manually searched for the privacy control
pages. We created alias accounts for those websites requiring
logging in and navigated the user settings to ensure that all
control pages are captured. After removing the non-English
pages and discarding the domains we had already seen in
training/testing sets of the Is-Control classifier, we were left
with 100 privacy control pages across 58 unique domains.

7.1.2 Natural Language Queries (NLQ) Dataset

To evaluate PriSEC’s search-based interface with realistic
questions, we created a new query test dataset covering pri-
vacy settings. We developed this dataset with two goals: (1)
including free-form queries around the privacy settings of
the domains in our PCP dataset, and (2) ensuring that the
queries correspond to existing privacy options within the con-
trol pages. To achieve these goals, we collected questions from
Twitter and Reddit that users had asked about the privacy set-
tings of domains in our PCP dataset. Following this approach
avoids the biases related to soliciting questions from individ-
uals about privacy options [12]. Consistent with research on
evaluating human-annotated queries [7, 23, 36, 37], we sought
a dataset with a size in the range of 100-200 queries.

For extracting queries from Twitter, we followed a method-
ology inspired by Harkous et al. [12]. We searched for re-
ply tweets that contain the URLs of the pages in our PCP
dataset. Then, we backtracked each reply to get the original

3https://www.alexa.com/topsites

USENIX Association 30th USENIX Security Symposium 473

https://youtu.be/Am27HdQ5u1w
https://youtu.be/YXHwPGg_Z-M

tweet, which includes the question that solicited the reply.
We automatically filtered the resulting queries to keep those
containing question marks and at least four words, resulting
in 77 tweets containing free form queries by the users.

We followed a similar methodology for Reddit, and we
searched within threads located in subreddits corresponding
to the domains in our PCP dataset. This process resulted
in 101 queries. An example from the Twitter subreddit is:
“Anyone know how to make it so people gotta request to follow and
see my tweets?”

At this point, we have automatically collected a set of 178
candidate queries about privacy settings from Twitter and
Reddit. These candidates constitute a superset of free-form
queries that address privacy controls. Next, two authors in-
dependently analyzed each query and decided whether it is a
valid query about some privacy control. The authors manually
tagged each query with the control element that answered the
query – discarding the queries without an answer. The annota-
tors exhibited a near-perfect agreement on the annotations of
the queries (valid vs. invalid) and the answers to the queries.
In particular, Cohen’s Kappa for both authors was very high
(κ = 0.82) [16]. They both tagged 122 of the queries as valid
and 43 as invalid. They only disagreed on the answers for
13 queries, which they resolved after discussions. The final
outcome of this process is a set of 135 queries covering 15
domains, including the answer to each query.

7.2 End-to-End Evaluation of the Backend

We perform an end-to-end evaluation of PriSEC starting with
the 58 unique domains of our PCP dataset. Our objective is
to extract the machine readable representations of the control
pages across these domains and manually assess their correct-
ness. This evaluation includes validating the control group,
the per-group text, the privacy options, the per-option text,
and the privacy control recipes.

We first pass the domains of the PCP dataset as arguments
to the Crawler module which returns a total of 9909 candidate
URLs for control pages, with the mean number of extracted
URLs per domain being 170. The keyword-based filter of
the crawler (Sec. 4.1) reduces the number of candidates to
1400. This set of candidates contained 95 of the 100 URLs for
privacy control pages of the PCP dataset. The webpages that
the Crawler missed implement their navigation to privacy
control pages without hyperlinks, which are currently out
of scope. Analyzing these pages requires computationally
demanding interactions with the websites which slows the
crawling.

Next, the Is-Control classifier classifies 323 pages out of
the 1400 candidates as control pages (“positive” label). This
set contains all the remaining 95 control pages from the PCP
dataset, indicating that the recall of the classifier on this set is
100%. Manually analyzing the remaining 228 pages classified
positively, we find that: (1) 29 of these pages are present in

Table 3: Details of the URLs that were missed in Recipe
Generation

Domain

Pages
Missed /

Total Pages
In Domain

Total
Groups

Num
Groups
Missed

Comments

Goodreads 1/3 21 15 Incorrect Text Extraction

Medium 1/1 8 6 Radio elements imple-
mented as buttons

Mediafire 1/1 1 1 Not Reachable using tab-
bing

Daily
Mail 1/1 10 - Enforcers not captured;

nested in tables

Wordpress 2/5 9 9 Tables implemented us-
ing div elements

our PCP dataset but with a different URL, (2) 23 of them
are privacy policy pages, (3) 59 of them are settings pages
which do not contain privacy settings, and (4) 107 of them
are pages which have privacy related content (like blog posts)
but are not privacy control pages. Further, we find 10 new
privacy control pages which were missed during the manual
annotation.

At this stage, we have 323 pages tagged as privacy control
pages by the Is-Control classifier, out of which 105 are actual
privacy control pages. Next, the Recipe-Generator module
processes this set of pages; we evaluate the annotation, group-
ing, and recipe generation of the Recipe-Generator. We find
that the Recipe-Generator is able to correctly extract recipes
for 94.3% of the actual privacy control pages. We further an-
alyze the pages that the Recipe-Generator missed manually.
The summary of this manual analysis is shown in Table 3. We
observe that the Recipe-Generator misses the instances where
the HTML implementation deviates significantly from the
standard web practices. For example, the Recipe-Generator
cannot analyze tables that do not use the HTML <table> tag.
This result is not surprising because the hierarchy of HTML
elements inside custom tables differs from that of a normal
control page. We note here that while determining the number
of pages missed (Table 3), we take the conservative approach
and tag a page as missed if it contains any errors (missing
group, missing option or extracting the wrong text). Further,
we note that other than non-standard HTML implementation,
we did not find any underlying pattern in the type of pages
missed by the Recipe-Generator module.

For the remaining 218 pages, the Recipe-Generator module
only generates recipes for 54 pages. These pages refer the
users to general settings pages and contain control elements.
The rest of the pages (164) are filtered out as they lack any
unique control elements. Effectively, the Recipe-Generator
acts as a second stage filter for the false positives from the
Is-Control classifier. While these generated recipes are not
privacy related per-se, they do not have a significant impact on
the user experience. This is particularly the case for users who

474 30th USENIX Security Symposium USENIX Association

utilize the semantic matching component of PriSEC, where
they issue specific queries that sort privacy control groups
based on their similarity to that query.

The main takeaway of this evaluation is that despite the
variance in the HTML implementation of the analyzed pages,
PriSEC accurately annotates 94.3% of the control pages.

7.3 Semantic Matching

We use the NLQ dataset to evaluate the natural language query
interpreter in PriSEC’s client. This set contains 135 questions
about 15 domains from our PCP dataset. In our dataset, we
observe that the average number of privacy control groups per
domain is 11. We pass each query to the semantic matching
module alongside the automatically collected privacy options
for its domain. The ground truth for these queries was deter-
mined by the independent manual annotation by two authors
as part of the NLQ dataset.

We evaluate the performance of this module using several
encoders. The Universal Sentence Encoder (USE) [5] encoder
is trained with a Deep Averaging Network (USE-DAN) [13].
In addition to the full model (916 MB), we include the
lightweight version USE-Lite (25MB). We also include two
other encoders, based on SBERT [31] and SRoBERTa [31],
which are finetuned versions of BERT [8] and RoBERTa [22]
using siamese and triplet network structures. These models
are first trained on Natural Language Inference (NLI) datasets,
then fine-tuned on the Semantic Textual Similarity dataset
(STSB).

The results from the evaluation are compared in Table 4,
which shows that the USE model outperforms the other en-
coders in this task. The results indicate that the user now only
needs to see the top 3 control groups 96% of the time on a
domain, as compared to browsing around 11 control groups,
on average. Even if the relevant control is not found in the top
3 results, the user is almost certain to find the relevant group
in the top 7 results. A near perfect top-7 accuracy is partic-
ularly useful for websites like Twitter for which 24 control
groups were extracted. These results further confirm that the
semantic matching component can play an important role in
reducing the user’s burden, making it easier to enforce their
privacy preferences.

The difference between the accuracy of USE and USE-Lite
is around 3.8% for the top-1 accuracy. Hence, it is possible
to keep the semantic matching component completely on the
client-side while partially sacrificing the matching accuracy.
From a timing perspective, the local query with USE-Lite took
100ms on average on a Macbook Pro 2017 model. Guided
by this result, it is possible to make an informed decision at
deployment time concerning the privacy-utility trade-off in
PriSEC.

Table 4: Top-k accuracy in % for the different encoders in
semantic matching on the NLQ dataset

Model Top-1 Top-3 Top-5 Top-7

USE 66.7 89.6 95.6 100
USE-Lite 62.9 84.4 91.8 97.8
SBERT-nli-stsb-base 48.2 76.3 84.4 92.6
SRoBERTa-nli-stsb-base 45.9 69.6 85.2 90.4

7.4 User-based Evaluation

We perform a user-based evaluation of the PriSEC extension
through recruiting 148 participants from Amazon Mechanical
Turk. We chose participants with > 90% HIT approval rate
who reside in the United States. The location criterion ensures
that the participants were familiar with the test websites and
their services. We paid each participant $4.00 to complete
the study that lasted 21 minutes on average. Out of all the
participants, 69% were male, 30% were female, 64% had at
least a Bachelor’s degree, and 32% did not have a degree.
The average age of the participants falls in the age range of
25-44 years. We did not ask for any personally identifiable
information, and the IRB at our institution approved the study.

7.4.1 Study Design

We develop a within-subject user study to assess the usability
of the PriSEC extension. We used limited deception in
that we did not expose the study’s purpose to be about
improving privacy settings’ interfaces. In the study, we ask
the participants to perform several tasks on a set of six
websites. These tasks are derived from the queries of the
NLQ dataset that we described in Sec. 7.1. The wording of
the tasks reuses the queries themselves, with a few changes to
address the task to the user. An example task for Twitter.com
is shown below:
Query : Does anyone know if there is a ways how you can set that
people you don’t follow back can still DM you?
Task : You would like to set that people you don’t follow back can still
DM you. Find the corresponding setting and change it.

For this study, we choose six popular websites: amazon.

com, duckduckgo.com, twitter.com, reddit.com, flickr.com,
and spotify.com. We generated three tasks for Amazon and
DuckDuckGo as there were very few queries for them in the
dataset. For the other websites, we generated five tasks each,
resulting in a total of 26 tasks.

In the study, the participants first install the PriSEC ex-
tension from the Google Chrome Web store. Then, we ask
them to select the websites they are familiar with from the
six websites. For each participant, we randomly select two
of the selected websites and assign a task to them. This way,
each user performs two tasks, corresponding to the baseline
condition and the PriSEC condition. The baseline condition

USENIX Association 30th USENIX Security Symposium 475

amazon.com
amazon.com
duckduckgo.com
twitter.com
reddit.com
flickr.com
spotify.com

Baseline (Manual) PriSEC
Interface Type

0

100

200

300

400

500

600

700

Ti
m

e
P

er
 T

as
k

(s
ec

on
ds

) pvalue = 1.5x10 17

(a) Time per task

Baseline (Manual) PriSEC
Interface Type

0

20

40

60

80

100

S
ys

te
m

 U
sa

bi
lit

y
S

ca
le pvalue = 2x10 6

(b) System Usability Scale

Figure 9: The results of our user study suggest a decrease in
time per task and an increase in usability using PriSEC versus
baseline.

involves manually searching through the website to achieve
the task’s goal. The PriSEC condition involves using the
PriSEC extension to perform the task. To account for the fa-
tigue effect, the order of these two conditions is randomized
per user. We ensure that, for a given user, the two tasks are for
different websites to avoid any learning effects. For websites
where the privacy settings are behind a login, the participants
are instructed to log in before starting the task. We include
snapshots of the tasks in Appendix B.

We measure the user effort by recording the total time
each participant takes to complete each task. To calculate
the time, we ask the participants to start from a fixed page
(https://example.com) and use this as an anchor to determine
the start time. We also store the URLs that they visit (on the
website of interest) during this time. At the end of each task,
the users fill the System Usability Scale questionnaire [4].
After each task, there are several checks in place to ensure
that the participants have finished the task. We conclude the
study with an open-ended question asking for general feed-
back about the extension. The final study was a result of an
iterative process which included several pilot runs on Amazon
Mechanical Turk.

To ensure that no harm was done to participants due to
the study, we asked them to go back to the privacy control
page (by providing them with the URL of the page where
they changed the setting) and to adjust the settings according
to their preferences. That way, we partially mitigate the risk
associated with asking the participants to change their privacy
settings. Still, the effect cannot be completely eliminated if
some data was shared due to the temporary settings during
the study.

7.4.2 Findings

Fig. 9a compares the average time the participants took to
complete the tasks using the PriSEC extension and the base-
line system (manually searching the website). The PriSEC
extension performs better than the baseline method. On av-
erage, the participants took 3.75x more time to complete the
same task when using the baseline method. To test the sta-

Table 5: Analysis for user effort (average time) and usability
(SUS score) for each domain used in the study. The entries
with * denote that the change is statistically significant after
accounting for multiple hypothesis correction (p < 0.05

7)

Website Avg Time (sec) Avg SUS Score # Participants
Manual PriSEC Manual PriSEC Manual PriSEC

Amazon 348.9 53.8* 72.5 73.5 32 42
DuckDuckGo 185.5 39* 58.7 74.8* 17 14
Flickr 501 54.3* 65.6 66.3 4 6
Reddit 237 94.6* 60.2 66.5 48 32
Spotify 181.3 71.3* 64.5 74.7 20 30
Twitter 282.9 90.7* 59.8 72.9* 27 24

tistical significance of the result, we perform the Wilcoxon
Signed rank test [39] as the data is not normally distributed.
We reject the null hypothesis that the difference in time taken
is not significant with a p-value of 1.5e-17. As a second indi-
cator for user effort, we find that, on average, the participants
visited 10 URLs before finishing the task using the baseline
method. In PriSEC, however, the user can find and change
the setting in just a few clicks within the extension without
getting their browsing session interrupted. This result shows
that PriSEC reduces the user’s effort and time for configuring
privacy settings.

Next, we evaluate the usability by comparing the SUS
scores in Fig. 9b. SUS scores are widely used in the liter-
ature [3] to compare different UI designs; a SUS score of
more than 68 is considered above average [33]. With an aver-
age SUS score of 72, PriSEC again outperforms the manual
baseline (average SUS score of 63), and we reject the null
hypothesis with a p-value of 2e-6.

Table 5 shows the breakdown of average time taken and
SUS scores with the websites that we used in the study. For
the average time taken, it is evident that PriSEC performs
significantly better than the manual method. The average
time taken for manual tasks on DuckDuckGo and Spotify is
lower than the others, indicating that the participants found it
easier to locate the settings on these websites. Comparing the
average SUS score, we see that PriSEC obtains a higher score
for each website. However, the change is not significant (after
accounting for multiple hypothesis correction) in websites
like Flickr, Amazon, Reddit, and Spotify.

It is important to note that the participants are interacting
with the extension for the first time, which reflects in the aver-
age time taken to complete the task. In many cases, the user
tried to set a couple of extra settings to test and understand
the extension. Furthermore, since the users were not aware
that these were timed tasks, they may have taken breaks be-
tween completing the tasks. Our within-subjects study design
accounts for this effect, which is common to both the tasks.

The majority of the participants who responded to the open-
ended feedback question exhibited a positive sentiment to-
wards the extension. A couple of the comments from the users
are: “. . . I love how I won’t have to learn a new system every

476 30th USENIX Security Symposium USENIX Association

https://example.com

time I want to change a setting and I can just search the same
way every time. . . ” and “. . . seems to make it easier to find
options that may be buried behind multiple clicks . . . ”. More
comments are listed in Appendix C.

8 Discussion

This section describes the potential technical limitations of
PriSEC, touching upon the deployment aspects, and suggest-
ing further extensions.

Limitations. The majority of limitations for PriSEC derive
from the high variance in web technology implementations.
For example, websites might require users to fill multiple
text inputs before pressing an enforcer element (e.g., a but-
ton). While PriSEC presents these controls, handling multiple
selectors before enforcement is out of scope.

Further, PriSEC works in the general case scenario of web
implementation, but, as evident from Sec. 7.2, there are a
few cases where the system fails. In principle, there can be
two types of failures: a) recipe generation failures and b)
enforcement failures.

We analyzed an additional set of privacy control pages to
uncover possible patterns of error in the recipe generation.
We tested the Recipe-Generator on a set of 55 privacy control
pages from an additional set of 40 domains not used in devel-
opment (or the evaluation). We extracted these domains from
Linden et al. [18]. We found that the results are similar to
what we observed in Table. 3. The Recipe-Generator module
missed three pages. Two of the pages missed were due to
non-standard HTML implementation (‘anchor links’ used for
‘selects’) while one page was missed due to the group text
extraction failure. Some of these recipe generation failures
can be detected by relying on user feedback, which can trigger
manual reviews.

On the other hand, failures in enforcement result from stale
recipes (due to the evolving site’s HTML). These failures can
be detected locally by checking the errors in the extension.
Upon detection, PriSEC can trigger a recipe update for that
webpage on its backend.

Another limitation of PriSEC is when its backend cannot
log in to the website. We mitigate this issue by relying on
third-party social logins (such as Google, Facebook, and Ap-
ple) existing in websites. We provide PriSEC’s backend with
test accounts on major social login providers to discover their
recipes. We have a human-in-the-loop fallback for the remain-
ing cases, where the system maintainers create the necessary
logins.

The evolving nature of webpages can also cause the recipes
to refer to stale elements. It is possible to mitigate this issue
by replacing the fixed 24-hr period of recipe generation with a
learned, dynamic period that accounts for the size of changes
seen with time.

Furthermore, PriSEC shows its users the potential privacy
options without considering their existing settings. Keeping
the extension aware of these settings is challenging for any
entity that is not the service provider. Hence, we accept this
as a potential limitation in the user experience. We also note
that studies aimed at understanding the effect of PriSEC on
user choices are left for future work. Similarly, we have only
considered a non-adversarial context in this work; studying
how the system would operate in an adversarial scenario is
also left for future work.

Deployment Aspects. PriSEC seeks to alleviate the user
burden of enforcing privacy preferences. The system is in-
tended to be used as an assistant while interacting with privacy
settings. Hence, it builds on top of the existing choices of-
fered by domains; it does not seek to replace them. Given
that PriSEC increases the usability of the domain’s privacy
controls, we believe that there is an incentive for sites to en-
courage its use. For instance, PriSEC can be deployed in a
guided mode to reduce the potential implications of an auto-
mated solution. In such a mode, users can see how to enforce
their privacy preferences in a step-by-step fashion. This mode
can also reduce the concerns about the non-perfect aspects of
machine-learning-driven solutions to enforcing privacy prefer-
ences. Unlike most other privacy-conscious applications, our
system works within regular user workflows. PriSEC imitates
a user by opening tabs in the browser, navigating to the con-
trol page URLs, and sending user actions to the appropriate
components. As more choices become available (e.g., due
to the emergence of new regulations, such as the GDPR or
CCPA), PriSEC can provide users with the newly available
options.

Further Applications. One can view PriSEC an extensible
framework that takes a domain and returns control recipes
that are automatically enforceable. We provide a sample appli-
cation that builds on top of it. We envision further extensions
where the user declares a set of preferences within PriSEC;
these preferences can be automatically enforced/suggested
for new websites, akin to the proposed approaches for An-
droid permissions [26, 38]. While Android permissions are
standardized, online privacy settings are not.

PriSEC further leverages the semantic similarity encoders
to match the users’ preferences with privacy settings across
websites. Using the semantic similarity, it is also possible
to group similar settings to enable users to set particular
preferences for all websites, instead of asking them to set
preferences for each website. This approach would require
extending PriSEC to support matching user queries with the
privacy options.

USENIX Association 30th USENIX Security Symposium 477

9 Related Work

Automating settings in mobile context: There exists a long
thread of research on automating the configuration of permis-
sions on mobile operating systems [17, 19, 20, 26, 38]. Liu et
al. [20] studied the feasibility of constructing generalized pri-
vacy profiles that predict user permission decisions. Further
followup works also conducted field studies with actual users
to test the usability of such profiles [19]. Wijesekera et al. [38]
and Olejnik et al. [26] designed systems for dynamically grant-
ing user permissions based on users’ preferences or context.
When it comes to privacy settings, Chen et al. [6] were re-
cently the first to study the discoverability of these settings for
Android applications systematically. Their methodology uses
static analysis to extract the elements within the UI layout.
It then leverages the semantic relationship between the text
descriptions of UI elements and the titles of application views
to discover privacy menus hidden in apps.

In this work, we are first to tackle the web apps’ scenario
where dynamic content loading is a major challenge and
where the UI views are not standardized. Moreover, we go
beyond identification to the automated enforcement of web
privacy controls.

Usability of privacy preferences: Previous research
works have also aimed at understanding the usability of pri-
vacy preferences of online users. In particular, Ravichandran
et al. [28] studied the burden associated with the availability
of several privacy choices on social networking sites like Face-
book and MySpace. In an empirical study, Habib et al. [11]
studied a sample of 150 websites in which they assess the
usability of the websites’ data deletion options and opt-out
for email communications and targeted advertising. In a fol-
lowup work, Habib et al. [10] also conducted a field study to
explore further the usability of these privacy choices from the
perspective of end-users.

More recently, Kumar et al. [14] presented an integrated
system to extract privacy choices from the privacy policies
and present them to the user. They also conducted a field
study of their extension. In this work, we neither restrict our
analysis to opt-out pages nor assume that privacy control
pages only appear in privacy policies. Furthermore, we go
further in locating the fine-grained privacy options on the
control pages and constructing control recipes that enforce the
settings on-demand. By this, we tackle the last-mile problem
in configuring privacy settings: how to go from the URL to
discovering the options buried within the page.

10 Conclusion

In this paper, we present PriSEC, which automatically dis-
covers, extracts, and presents the privacy settings for users.
It also automatically enforces user preferences in a single
interface. PriSEC uses machine learning techniques to create
a machine-readable version of the privacy settings of any do-

main, thus enabling more efficient and usable user interfaces
to be built. PriSEC overcomes the open nature of web devel-
opment through novel algorithms that leverage the invariant
behavior and rendering of webpages. We have evaluated the
performance of PriSEC to find it accurately extracts and orga-
nizes the privacy controls of a given domain. Our user study
showcases the usability improvement of PriSEC’s interfaces.

Acknowledgement

We would like to thank the anonymous reviewers, Nina Taft,
and Emily Stark for constructive comments on the earlier
drafts of this paper. The work reported in this paper was
supported in part by the NSF under grants 1838733, 1942014,
and 2003129.

Availability

The datasets collected in this paper will be made available
at https://github.com/wi-pi/prisec_data. We also plan to
provide API access upon request for researchers to conduct
further research utilizing the privacy settings recipes.

References

[1] Alessandro Acquisti and Ralph Gross. Imagined com-
munities: Awareness, information sharing, and privacy
on the facebook. In International workshop on privacy
enhancing technologies, pages 36–58. Springer, 2006.

[2] Abien Fred Agarap. Deep learning using rectified linear
units (relu). arXiv preprint arXiv:1803.08375, 2018.

[3] Aaron Bangor, Philip T Kortum, and James T Miller. An
empirical evaluation of the system usability scale. Intl.
Journal of Human–Computer Interaction, 24(6):574–
594, 2008.

[4] John Brooke et al. Sus-a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7, 1996.

[5] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant, Mario
Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Univer-
sal sentence encoder. arXiv preprint arXiv:1803.11175,
2018.

[6] Yi Chen, Mingming Zha, Nan Zhang, Dandan Xu, Qian-
qian Zhao, Xuan Feng, Kan Yuan, Fnu Suya, Yuan Tian,
Kai Chen, et al. Demystifying hidden privacy settings
in mobile apps. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 570–586. IEEE, 2019.

[7] Hoa Trang Dang, Diane Kelly, and Jimmy J Lin.
Overview of the trec 2007 question answering track.
In Trec, volume 7, page 63, 2007.

478 30th USENIX Security Symposium USENIX Association

https://github.com/wi-pi/prisec_data

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[9] Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of per-
sonal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection
Regulation). Official Journal of the European Union,
L119:1–88, May 2016.

[10] Hana Habib, Sarah Pearman, Jiamin Wang, Yixin Zou,
Alessandro Acquisti, Lorrie Faith Cranor, Norman
Sadeh, and Florian Schaub. "it’s a scavenger hunt":
Usability of websites’ opt-out and data deletion choices.
In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1–12, 2020.

[11] Hana Habib, Yixin Zou, Aditi Jannu, Neha Sridhar,
Chelse Swoopes, Alessandro Acquisti, Lorrie Faith Cra-
nor, Norman Sadeh, and Florian Schaub. An empirical
analysis of data deletion and opt-out choices on 150
websites. In Fifteenth Symposium on Usable Privacy
and Security (SOUPS 2019), 2019.

[12] H Harkous, K Fawaz, R Lebret, F Schaub, KG Shin, and
K Aberer. Polisis: Automated analysis and presentation
of privacy policies using deep learning. In 27th USENIX
Security Symposium (USENIX Security 18). USENIX
Association, 2018.

[13] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. Deep unordered composition rivals
syntactic methods for text classification. In Proceedings
of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), volume 1, pages 1681–1691, 2015.

[14] Vinayshekhar Bannihatti Kumar, Roger Iyengar, Na-
mita Nisal, Yuanyuan Feng, Hana Habib, Peter Story,
Sushain Cherivirala, Margaret Hagan, Lorrie Faith Cra-
nor, Shomir Wilson, et al. Finding a choice in a haystack:
Automatic extraction of opt-out statements from privacy
policy text. In The Web Conference (the Web Conf),
2020.

[15] Yee-Lin Lai and Kai-Lung Hui. Internet opt-in and
opt-out: investigating the roles of frames, defaults and
privacy concerns. In Proceedings of the 2006 ACM
SIGMIS CPR conference on computer personnel re-
search: Forty four years of computer personnel research:
achievements, challenges & the future, pages 253–263.
ACM, 2006.

[16] J Richard Landis and Gary G Koch. The measurement
of observer agreement for categorical data. biometrics,
pages 159–174, 1977.

[17] Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I Hong.
Modeling users’ mobile app privacy preferences: Restor-
ing usability in a sea of permission settings. In 10th
Symposium On Usable Privacy and Security ({SOUPS}
2014), pages 199–212, 2014.

[18] Thomas Linden, Rishabh Khandelwal, Hamza Harkous,
and Kassem Fawaz. The privacy policy landscape after
the gdpr. Proceedings on Privacy Enhancing Technolo-
gies, 2020(1):47–64, 2020.

[19] Bin Liu, Mads Schaarup Andersen, Florian Schaub,
Hazim Almuhimedi, Shikun Aerin Zhang, Norman
Sadeh, Yuvraj Agarwal, and Alessandro Acquisti. Fol-
low my recommendations: A personalized privacy assis-
tant for mobile app permissions. In Twelfth Symposium
on Usable Privacy and Security ({SOUPS} 2016), pages
27–41, 2016.

[20] Bin Liu, Jialiu Lin, and Norman Sadeh. Reconciling
mobile app privacy and usability on smartphones: Could
user privacy profiles help? In Proceedings of the 23rd
international conference on World wide web, pages 201–
212, 2014.

[21] Yabing Liu, Krishna P Gummadi, Balachander Krishna-
murthy, and Alan Mislove. Analyzing facebook privacy
settings: user expectations vs. reality. In Proceedings
of the 2011 ACM SIGCOMM Conference on Internet
Measurement, pages 61–70. ACM, 2011.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[23] Hector Llorens, Nathanael Chambers, Naushad UzZa-
man, Nasrin Mostafazadeh, James Allen, and James
Pustejovsky. SemEval-2015 task 5: QA TempEval -
evaluating temporal information understanding with
question answering. In Proceedings of the 9th Inter-
national Workshop on Semantic Evaluation (SemEval
2015), pages 792–800, Denver, Colorado, June 2015.
Association for Computational Linguistics.

[24] George R. Milne and Mary J. Culnan. Strategies for
reducing online privacy risks: Why consumers read (or
don’t read) online privacy notices. Journal of Interactive
Marketing, 18(3):15 – 29, 2004.

[25] Kaweh Djafari Naini, Ismail Sengor Altingovde, Ri-
cardo Kawase, Eelco Herder, and Claudia Niederée. An-
alyzing and predicting privacy settings in the social web.

USENIX Association 30th USENIX Security Symposium 479

In International Conference on User Modeling, Adap-
tation, and Personalization, pages 104–117. Springer,
2015.

[26] Katarzyna Olejnik, Italo Dacosta, Joana Soares
Machado, Kévin Huguenin, Mohammad Emtiyaz Khan,
and Jean-Pierre Hubaux. Smarper: Context-aware and
automatic runtime-permissions for mobile devices. In
2017 IEEE Symposium on Security and Privacy (SP),
pages 1058–1076. IEEE, 2017.

[27] Christian S Perone, Roberto Silveira, and Thomas S
Paula. Evaluation of sentence embeddings in down-
stream and linguistic probing tasks. arXiv preprint
arXiv:1806.06259, 2018.

[28] Ramprasad Ravichandran, Michael Benisch,
Patrick Gage Kelley, and Norman M Sadeh. Capturing
social networking privacy preferences. In International
Symposium on Privacy Enhancing Technologies
Symposium, pages 1–18. Springer, 2009.

[29] Joel R Reidenberg, N Cameron Russell, Alexander J
Callen, Sophia Qasir, and Thomas B Norton. Privacy
harms and the effectiveness of the notice and choice
framework. ISJLP, 11:485, 2015.

[30] Joel R Reidenberg, N Cameron Russell, Vlad Herta,
William Sierra-Rocafort, and Thomas Norton. Trustwor-
thy privacy indicators: Grades, labels, certifications and
dashboards. Washington University Law Review, 96(6),
2019.

[31] Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

[32] Kanthashree Mysore Sathyendra, Shomir Wilson, Flo-
rian Schaub, Sebastian Zimmeck, and Norman Sadeh.
Identifying the provision of choices in privacy policy
text. In Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing, pages
2774–2779, 2017.

[33] Jeff Sauro. A practical guide to the system usability
scale: Background, benchmarks & best practices. Mea-
suring Usability LLC, 2011.

[34] State of California. California Consumer Pri-
vacy Act (CCPA). https://leginfo.legislature.

ca.gov/faces/billTextClient.xhtml?bill_id=

201720180AB375, June 2018. Assembly Bill No. 375.

[35] Christine Utz, Martin Degeling, Sascha Fahl, Florian
Schaub, and Thorsten Holz. (un) informed consent:
Studying gdpr consent notices in the field. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 973–990, 2019.

[36] Ellen M Voorhees and L Buckland. Overview of the
trec 2003 question answering track. In TREC, volume
2003, pages 54–68, 2003.

[37] Mengqiu Wang, Noah A Smith, and Teruko Mitamura.
What is the jeopardy model? a quasi-synchronous gram-
mar for qa. In EMNLP-CoNLL, volume 7, pages 22–32,
2007.

[38] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Rear-
don, Serge Egelman, David Wagner, and Konstantin
Beznosov. The feasibility of dynamically granted per-
missions: Aligning mobile privacy with user preferences.
In 2017 IEEE Symposium on Security and Privacy (SP),
pages 1077–1093. IEEE, 2017.

[39] Frank Wilcoxon. Individual comparisons by ranking
methods. In Breakthroughs in statistics, pages 196–202.
Springer, 1992.

[40] Sebastian Zimmeck and Steven M Bellovin. Privee: An
architecture for automatically analyzing web privacy
policies. In USENIX Security, volume 14, 2014.

480 30th USENIX Security Symposium USENIX Association

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375

Appendix A Synthetic Data Set Details

We created a synthetic dataset to develop the visual classifier
described in Sec. 5.2. We implemented ReactJS web appli-
cation loaded with 11 popular React UI building libraries to
generate the synthetic data. The list of all the libraries used is:
react-bootstrap, material-ui, semantic-ui, react-desktop, ant
design, blueprintjs, shards-react, carbon-components-react,
primereact, gestalt and grommet. For each of the five UI com-
ponent types, we traverse through each library’s implementa-
tion and render a UI component for each available style the
library offers.

Appendix B Details of the User Study

In this section we provide more details regarding the user
study (Sec. 7.4) that we conducted to evaluate PriSEC.

We first ask the participants to fill the demographic infor-
mation Then the participants’ are asked to select the websites
they are familiar with or have used in the recent times. The
participants are required to select two websites and each par-
ticipant is given two tasks for two websites that they are
familiar with. Fig. ?? shows a snapshot of the question asked
to the participant. We note here that if the participant select
‘None of the above’, then the participant exits the survey and
is not considered a part of the study.

Figure 10: Snapshot of the question asking participants to
choose familiar websites

Next, the participants are shown an example of the manual
task and the plugin task on bing.com. The participants are
then asked to complete the priavcy tasks. The snapshots for
manual task and plugin task are shown in Fig. 11 and Fig. 12
respectively. We note a few key important things here:

• If the task is behind a login, the participants are asked to
log in to the account before starting the task.

• Start of the task is considered after they navigate away
from https://example.com

• The next button is only activated after the system verifies
that the participant has completed the task.

Figure 11: Snapshot of an example of manual task presented
to the participant

Figure 12: Snapshot of an example of plugin task presented
to the participant

At the end of each task, the participants fill the System
Usability Scale questionnaire [4]. A snapshot of the question-
naire for the manual task is shown in Fig. 13.

Finally, Fig. 14 shows a snapshot of the page which asks
for the feedback about the study.

Appendix C Quotes from User study

Here, we present the list of answers that we received from the
participants during the user study described in Sec. 7.4. These
answers are in response to the open ended question shown in
Fig. 14

1. The chrome extension seems to make it easier to find options
that may be buried behind multiple clicks so it’s pretty inter-
esting in that regard.

2. This is a really neat feature! I just wish it would keep the tab
open for me to review the setting change.

3. complex but interesting HIT

USENIX Association 30th USENIX Security Symposium 481

bing.com
https://example.com

Figure 13: Snapshot of the SUS questionnaire for the manual
task. The participants are asked to fill the questionnaire after
each task.

Figure 14: Snapshot of the feedback question presented to the
participants at the end of the survey

4. I hope I did it right, but this extension was actually pretty cool.
This is good for people who need to access these settings pretty
quickly.

5. Amazing tool

6. Interesting study - thank you!

7. very nice task

8. It was fun and i enjoyed it

9. nice

10. THANKS FOR GIVING OPPORTUNITY TO TAKE PART
IN YOUR STUDY

11. nice

12. All ok

13. i thought the extension was easy to use

14. I was surprised how tough it was to find that Twitter setting.

15. I was completing the qualtrics survey from firefox initially
while doing task on chrome. On second task (twitter manual
setting) survey said it didn’t recognize my task, so I redid
survey from chrome. I didn’t change anything in survey.

16. interesting

17. was interesting thanks for the opportunity

18. None; I do love this extension though!

19. very nice task

20. Great survey!

21. I completed all tasks as instructed for this study. Thank you
for this opportunity.

22. it was actually quite interesting thank you

23. It was good

24. Reddit parting is having some issue. I think the url parameters
were not set correctly. After clicking the set button in plugin ,
it would redirect to "https://www.reddit.com/settings/privacy"
which was no accessible. Error " Page not found". Rest every-
thing went smooth.

25. A little complicated.

26. What a cool extension!!!! I love how I won’t have to learn a
new system every time I want to change a setting and I can just
search the same way every time. Thank you!!

27. Thank you

28. This was interesting, thank you. Very nice plugin.

29. it awesome and it worth it

30. The example.com page would not load so I typed in the web
address and accessed the site required on the tab that opened
after I selected example.com. The Amazon task was difficult.
There were only two options using PriSEC so I chose "show
me interest based ads provided by Amazon". No results were
given when I did a manual search for ads based on searches
I have conducted on this browser. I also tried searching via
Amazon settings but could not find a specific selection, but
think I made the correct select using PriSEC, this task was a
bit confusing.

31. Cool extension

32. interesting innovation

33. I like this product! It could definitely be useful.

34. cool beans

35. I am SO impressed!!

36. It was interesting

37. This extension is actually quite useful. I think I might just keep
it on my google chrome.

38. Extension lead me to believe it was not working when setting
Duck Duck Go HTTPs; when I clicked "set" it opened a new
tab but quickly closed it. I looked in the extension and DDG
HTTPS was disabled. Upon doing it a second time, it seems
like it worked. This process could be improved upon a great
deal.

39. Interesting service. No issues.

40. I turn off settings all of the time when signing up for new
accounts.

41. I made an additional change to my Reddit settings as the first
one I made was the wrong one. It was related but not exactly
what was asked. I’ve never looked at those specific settings in
Reddit before and found it difficult. I like the extension, though,
and found it useful! Thanks for the HIT! I did my best!

482 30th USENIX Security Symposium USENIX Association

	Introduction
	Background on Privacy Settings
	System Overview
	Crawler
	Candidate Page Identification
	Is-Control Classifier
	Architecture
	Training and Testing

	Recipe Generator
	Extraction of Privacy Options
	UI-Element Classification
	Constructing Control Recipes
	Selector vs. Enforcer Tagging
	Privacy Option Grouping
	Privacy Control Recipes

	Client Application
	User Interface
	Client Service
	Enforcer Module

	Experiments
	Datasets
	Privacy Control Pages (PCP) Dataset
	Natural Language Queries (NLQ) Dataset

	End-to-End Evaluation of the Backend
	Semantic Matching
	User-based Evaluation
	Study Design
	Findings

	Discussion
	Related Work
	Conclusion
	Synthetic Data Set Details
	Details of the User Study
	Quotes from User study

