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Abstract
In successful enterprise attacks, adversaries often need to
gain access to additional machines beyond their initial point
of compromise, a set of internal movements known as lateral
movement. We present Hopper, a system for detecting lat-
eral movement based on commonly available enterprise logs.
Hopper constructs a graph of login activity among internal
machines and then identifies suspicious sequences of logins
that correspond to lateral movement. To understand the larger
context of each login, Hopper employs an inference algorithm
to identify the broader path(s) of movement that each login
belongs to and the causal user responsible for performing a
path’s logins. Hopper then leverages this path inference algo-
rithm, in conjunction with a set of detection rules and a new
anomaly scoring algorithm, to surface the login paths most
likely to reflect lateral movement. On a 15-month enterprise
dataset consisting of over 780 million internal logins, Hop-
per achieves a 94.5% detection rate across over 300 realistic
attack scenarios, including one red team attack, while generat-
ing an average of < 9 alerts per day. In contrast, to detect the
same number of attacks, prior state-of-the-art systems would
need to generate nearly 8× as many false positives.

1 Introduction

Organizations routinely fall victim to sophisticated attacks,
resulting in billions of dollars in financial harm, the theft
of sensitive data, and the disruption of critical infrastruc-
ture [11, 15, 33, 37, 41]. In many of these attacks, adversaries
need to move beyond their initial point of compromise to
achieve their goal [28, 33, 48]. For example, an employee
compromised by a spearphishing attack often does not have
all of an organization’s sensitive secrets readily accessible
from their machine; thus, attackers will need to move to other
machines to access their desired data. This set of malicious
internal movements is known as lateral movement [8, 47].

In this work, we focus on detecting lateral movement in
enterprise networks. We present Hopper, a system that uses

commonly-collected log data to detect lateral movement at-
tacks with a manageable rate of false alarms. Hopper builds a
graph of user movement (logins) between internal machines
and then identifies suspicious movement paths within this
graph. While prior work has proposed similar graphical mod-
els, these approaches have either relied on narrowly crafted
signatures [30], leaving them unable to detect many lateral
movement attacks, or applied standard anomaly detection
methods that alert on rare login paths [27, 29, 44]. Unfor-
tunately, the scale of modern enterprises inherently produces
large numbers of anomalous-but-benign logins, causing tradi-
tional anomaly detection to generate too many false alarms.

Hopper overcomes these challenges by employing a dif-
ferent approach, which we call specification-based anomaly
detection. Our approach leverages an attack specification that
captures fundamental characteristics of lateral movement as
a set of key path properties (§ 4). This specification states
that successful lateral movement attacks will (1) switch to
a new set of credentials and (2) eventually access a server
that the original actor could not access. We then combine this
specification with anomaly detection, to reduce false positives
and imprecision due to the limitations of real-world data.

Our attack specification capitalizes on a key observation:
adversaries generally perform lateral movement to access a
machine that their initial victim lacked access to. Thus, as
part of their lateral movement activity, attackers will need to
acquire and switch to a new set of credentials that enables
their sought-for access. As a result, lateral movement paths
will exhibit the two key attack properties identified in our
specification. In the context of an attack’s full lifecycle, our
specification observes that standard authentication logs not
only provide a window into lateral movement activity, but also
contain implicit artifacts of other key stages in an enterprise
attack. For example, attackers use a variety of techniques to ac-
quire privileged credentials (as detailed in the Credential Ac-
cess and Privilege Escalation stages of the MITRE ATT&CK
Framework [46]). While prior work detects these other attack
stages through intricate host-activity analysis [18, 24, 32], the
fruits of these malicious actions manifest themselves during

USENIX Association 30th USENIX Security Symposium    3093



lateral movement, since attackers use these new credentials to
access new data and machines. Through the detection meth-
ods that we develop, Hopper infers and leverages such signals
(reflected in our two key attack properties) to help uncover
lateral movement activity.

To identify paths with the two key properties, we develop
methods for reconstructing a user’s global movement activity
from the point-wise login events reported in common authen-
tication logs. These methods allow Hopper to infer the causal
user responsible for performing each login and the broader
path of movement a login belongs to (§ 5). Unfortunately,
real-world authentication logs do not always contain sufficient
information for Hopper to clearly identify the causal user who
made each login, resulting in uncertainty about whether some
paths truly exhibit the two key attack properties. To resolve
these cases of uncertainty, Hopper employs a new anomaly de-
tection algorithm to identify the most suspicious paths to alert
on (§ 6). This selective approach to anomaly detection is a
key distinction that allows Hopper to significantly outperform
prior work that relies on traditional anomaly detection [44] or
signature-based detection [30].

We evaluate Hopper on a 15-month enterprise data set that
contains over 780 million internal login events (§ 7). This
data includes one lateral movement attack performed by a
professional red team and 326 simulated attacks that span
a diverse array of real-world scenarios (ranging from ran-
somware to stealthy, targeted machine compromise). On this
data set, Hopper can detect 309 / 327 attacks while generat-
ing < 9 false positives per day on average, which is an 8×
improvement over prior state-of-the-art systems [44].

In summary, we make the following contributions:
• We present Hopper, a novel system that uses commonly-

collected authentication logs to detect lateral movement.
Hopper employs a new detection approach based on a
principled set of properties that successful lateral move-
ment paths will exhibit (§ 4).
• Our approach identifies paths with these key properties

by inferring the broader paths of movement that users
make (§ 5), and strategically applies a new anomaly
scoring algorithm to handle uncertainty that arises due
to the limited information in real-world logs (§ 6).
• We evaluate Hopper on 15 months of enterprise data,

including a red team attack and over 300 realistic attack
simulations. Hopper detects 94.5% of these attacks, and
produces 8× fewer false alarms than prior work (§ 7).

2 Background

The internal movements that attackers make between ma-
chines within an enterprise is known as lateral movement
(Figure 1). In this section, we review prior work on defending
against lateral movement and describe the goals and assump-
tions that underlie our detection approach.

Figure 1: Lateral movement, depicted as red arrows, is the set of
attacker movements between internal machines in an enterprise.

2.1 Related Work
Prior work pursues three general strategies for mitigating lat-
eral movement: improving security policies to limit attacker
movement; detecting lateral movement activity; and devel-
oping forensic techniques to help remediate a known attack.
We consider the first and last lines of work as complementary
directions to our work; we focus on developing practical de-
tection for lateral movement attacks. The first direction, proac-
tively improving security policies, enables an organization to
implement better least privilege policies and identify high-risk
machines that warrant additional monitoring [10, 12, 16, 42].
While beneficial, these policies do not fully eliminate all pos-
sible lateral movement paths; indeed, our work aims to detect
attacks that can succeed even at organizations with good least
privilege hygiene. The third line of related work, investigat-
ing a known attack, assumes that an organization has already
identified the existence of a breach. Enterprises can use these
prior methods to effectively analyze and remediate a lateral
movement attack identified by Hopper.

Prior work on detecting lateral movement frequently mod-
els internal logins as a graph of machine-to-machine move-
ment [2, 4, 27, 29, 30, 40, 44, 50], an idea that we draw upon.
However, unlike our work, prior systems detect lateral move-
ment by applying narrow signatures or traditional machine
learning techniques to flag anomalous activity. Kent et al. [27]
detect the use of compromised credentials by training a lo-
gistic regression model to detect when an account accesses
an unusual set of machines; their classifier achieves a true
positive rate of 28% and incorrectly flags 1 / 800 users as
compromised. Bowman et al. [4] and log2vec [29] use deep-
learning methods to build anomaly detection systems, with
hand-tuned thresholds, that identify clusters of suspicious lo-
gins. These approaches incur false positive rates ranging from
0.9% [4] to 10% [29] to detect 80–90% of simulated attacks
and/or red team exercises in their data.

Among the best performing prior work, Siadati and Memon
propose a detector for identifying “structurally anomalous
logins”, which we refer to as SAL [44]. On one month of data,
SAL can detect 82% of randomly generated attack logins at
a 0.3% false positive rate (> 500 false alarms/day on their
dataset). Whereas SAL focuses on identifying point-wise
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anomalous logins (“one-hop” paths), Latte [30] detects two-
hop lateral movement attacks by identifying paths where each
login has rarely occurred in prior history. Latte then uses a
specific signature to reduce false positives by only alerting on
rare paths that also include a remote file execution operation
on the path’s final machine (identified by a set of hard-coded
Windows events). Based on one day of data and a specific
anomaly threshold, Latte can detect a pentester exercise while
generating 13 false alarms. Although Latte can identify longer
attack paths, its narrow signature, which requires the attacker
to perform a specific action on the final host, can lead to
false negatives. Moreover, implementing this signature faces
practical challenges, since common authentication logs from
Linux and Mac OS systems do not provide an easy way to
re-implement Latte’s Windows-specific signature.

Although they provide good starting points for detection,
prior systems generate an impractical volume of false posi-
tives or incur too many false negatives (Section 7.4 reports
the performance of SAL on our data set). Our work addresses
these challenges with a new approach to identifying suspi-
cious login paths. Rather than alerting on paths that are simply
anomalous or relying on signatures that target specific host
operations, we identify a set of key properties about attack
paths based on the overarching goals of lateral movement. By
focusing on paths with these properties, and only applying
anomaly detection in scenarios with high uncertainty, our ap-
proach detects a wider range of attacks than those that employ
a narrow signature, while also generating fewer false positives
than traditional anomaly detection methods.

2.2 Security Model

Detection Goals: Hopper aims to (1) detect a diverse range of
lateral movement attacks, while (2) generating a very low vol-
ume of false positives. We focus on developing detection for
settings where an organization has a team of security analysts
with a limited time budget for reviewing alerts. In particular,
we design Hopper to score a set of movement paths in terms
of how problematic the activity appears to be, allowing an
organization to specify their own bound on the number of
alerts that Hopper generates. Based on prior work [3, 23] and
the practical experiences of our industry collaborators, this
alert-budget design accurately reflects a real-world operating
model for many organizations. We consider Hopper success-
ful if it produces an alert for any login made by an attacker.
Upon confirming the presence of an attack, organizations can
use forensic techniques from complementary work [19,25,50]
to perform further analysis and remediation.

Threat Model: Similar to prior work, we focus on detecting
interactive and credential-based lateral movement attacks [44].
Under this threat model, we assume that an attacker has man-
aged to compromise an initial “foothold” machine within
the enterprise, but they (1) need to acquire additional creden-

Nodes (Source + Destination Machines) Edge (Login)

Hostname Timestamp
Client vs. server Target username
Owner’s username (clients only)

Table 1: The information for each login event in our data. Each login
creates a unique edge between two nodes (internal machines) in the
graph that Hopper constructs (§ 4.2).

tials to access the data or systems they ultimately seek, and
(2) move between machines via login or remote command
execution events that use a set of credentials for authentica-
tion. In particular, attackers may exploit vulnerabilities on
machines or weak authentication protocols (e.g., privilege
escalation or pass-the-hash attacks), but we assume that their
movement between machines produces a login event visi-
ble to our detector. Additionally, this threat model focuses
on attackers who manually perform the movement (login)
operations during their attack, as opposed to an attack that
installs malware that moves to new systems autonomously.
Our threat model reflects the behavior of many real-world
lateral movement attacks, ranging from targeted attacks by
state-sponsored actors [5, 20, 31, 34, 36, 39, 45] to newer and
stealthier forms of ransomware [13, 48].

3 Data

Our work uses a collection of successful login events between
internal machines by employees at Dropbox,1 a large enter-
prise that provides storage and cloud collaboration services to
hundreds of millions of users. Whenever a machine receives
a remote access attempt from another machine (e.g., an in-
bound ssh session or a remote command execution issued
via utilities like psexec), the receiving machine generates a
record of a remote “login”. Because most operating systems
record these login events by default, organizations collect
these authentication logs as part of standard security best
practices.

This data provides visibility into the internal logins between
machines within Dropbox’s corporate network, such as client
laptops, authentication servers (e.g., Windows Domain Con-
troller), and a variety of infrastructure and application servers
(e.g., DNS servers, machines that test and build applications,
and analytics servers). Representative of the heterogeneous
nature of modern enterprises, the logins in our data span a
variety of authentication protocols (e.g., Kerberos and ssh)
across many types of devices (laptops, physical servers, and
virtual machines), operating systems (Windows, Mac OS, and
Linux), and account types (e.g., regular users, administrators,
and service accounts).

1Because our work focuses on mitigating successful lateral movement,
our analysis omits failed logins; however, future work could investigate ways
to incorporate such failures as additional detection signals.

USENIX Association 30th USENIX Security Symposium    3095



3.1 Data Size and Schema
Our data contains 784,459,506 successful logins from Jan
1, 2019 to Apr 1, 2020 (15 months). As shown in Table 1,
each login event contains a timestamp, the target username
of the login, the source and destination machines that initiate
and receive the login, respectively, and metadata about these
machines. These logins span 634 accounts and occur between
2,327 machines. Section 8.2 provides more details about the
graph topology of our login data, and how different network
configurations might affect our detection algorithms.

3.2 Data Cleaning
The vast majority of our data’s login events do not reflect
meaningful remote access events (i.e., did not enable a user
to remotely execute commands or access sensitive data on
the destination machine). Hopper applies four filtering rules
described below to remove these logins from our data set. Ex-
cluding these spurious logins, our data set contains 3,527,844
successful logins, with a median of 4,098 logins per day.

Filtering Windows logins: As noted in prior work [27],
many “logins” between internal machines in Windows en-
terprise environments do not represent a meaningful remote
access event. Rather, these logins often correspond to uninter-
esting artifacts and special API calls that result from Windows
enterprise logging, and do not provide a user with the ability
to access data or alter the destination machine. Removing
these logins from our data results in a 40× reduction, which
comes primarily from removing three types of logins: printing
jobs, authentications into update and logging servers, and non-
administrator logins to Windows Domain Controllers. Most
non-administrator logins to Domain Controllers correspond
to artifacts of Kerberos authentication, where Domain Con-
trollers serve the role of a Kerberos Key Distribution Center
(KDC) and requests for a Kerberos ticket generate a record
of a “login” into the Domain Controller. After removing this
collection of spurious logins, our data set contains roughly
19.5 million login events.

Filtering automation logins: We further winnow our data set
by removing internal logins that result from low-risk automa-
tion. Hopper analyzes a historical set of logins and identifies a
set of login edges that correspond to automation. Specifically,
each automation edge consists of a triplet (source, destination,
and username), that (1) occurs frequently across our data,2

(2) occurs on at least 50% of the historical days, and (3) has a
target username that does not match any employee’s account
(i.e., a non-human username). Hopper then outputs a list of
these edges as candidates for automation related logins. After
a review by the organization’s security team, Hopper removes

2In our work, we define a frequently occurring edge as one that occurs
greater than N = 24×D times, where D equals the number of days in the
historical data set (i.e., in total, the edge occurs at least as often as a process
that runs once every hour on each day in the historical data set).

any login whose (source, destination, and target user) matches
an edge listed in the approved automation set.

In our data, Hopper identifies a set of approximately 30 au-
tomation edges that account for over 16 million login events.
Manually inspecting these automation logins reveals that they
correspond to mundane operations with minimally privileged
service accounts via a restricted set of remote-API calls (e.g.,
specific remctl calls [1] exposed by the destination machines).
For example, many of these logins resulted from file synchro-
nization operations between a central “leader” node and geo-
graphic replicas (e.g., a central software repository machine
syncing its content with replicated, regional servers). Another
common category of these automation logins corresponds to
version control and bug tracking software performing git op-
erations to synchronize state among each other; these internal
logins occurred under a restricted “git” user account that has
access to a limited API of git operations.

3.3 Ethics
This work involved a collaboration between academia and in-
dustry. Our research used an existing, historical data set of em-
ployee logins between internal machines at Dropbox, which
enterprises commonly collect to secure their environment.
Only authorized security employees at Dropbox accessed this
data; no sensitive data or personally identifying information
was shared outside of Dropbox. Additionally, the machines
that store and operate directly on data from Dropbox’s cus-
tomers reside on separate infrastructure; our study did not
involve that infrastructure or access any customer-related data.
This project underwent internal review and received approval
by the legal, privacy, and security teams at Dropbox.

4 Modeling Lateral Movement

Our Approach: Hopper, our system, constructs a graph of
user logins between internal machines and then detects lateral
movement by identifying suspicious paths in this graph. A
suspicious path corresponds to a sequence of logins made
by a single actor with two properties: (1) the path has at
least one login where the actor uses a set of credentials that
does not match their own, (2) the path accesses at least one
machine that the actor does not have access to under their
own credentials.

Motivating Intuition: This approach leverages a simple yet
powerful observation: in many real-world enterprise attacks,
adversaries conduct lateral movement to acquire additional
credentials and access new machines that their initial foothold
did not have access to [9,20,31,34,36,39,45]. For example, at
many organizations, access to sensitive data and/or powerful
internal capabilities requires a special set of privileges, which
most enterprise users lack. Thus, attacker lateral movement
will produce paths that use a new (elevated) set of credentials
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Figure 2: Hopper analyzes login events between internal machines
within an enterprise and generates alerts for paths of logins that
correspond to suspicious lateral movement activity. Hopper has two
key components: (1) a causality engine that infers a set of causal
paths that a login might belong to (§ 5), and (2) detection and scoring
algorithms that decide whether to alert on a path of logins (§ 6).

(Property 1) and access sensitive machines that their initial
victim could not access (Property 2). By searching for these
two key properties, Hopper also illustrates how login data not
only provides visibility into attacker lateral movement, but
also contains latent signals that reveal the completion of other
core stages of an attack’s lifecycle. For example, Property 1
captures the fact that attackers frequently acquire privileged
credentials (the “privilege escalation” and “credential access”
stages from the MITRE ATT&CK Framework [46]) to access
additional machines within an organization.

Moreover, the combination of these two attack path prop-
erties corresponds to characteristics that we do not expect in
benign paths: users should access machines under their own
credentials and they should only login to machines that they
have legitimate privileges to access.

4.1 Challenge: Anomalies at Scale

Prior work detects lateral movement by identifying logins that
traverse rare graph edges, under the assumption that attacker
movement will occur between users and machines that rarely
interact with each other [2, 30, 44]. While intuitive, these ap-
proaches generate too many false positives, due to the volume
of rare-but-benign behavior that occurs in large enterprises.

Even after applying Hopper’s data cleaning steps (§ 3.1),
tens of thousands of logins create “rare” graph edges in our
data set. If we alerted on logins whose edges have never
occurred in recent history, such a detector would produce
over 24,000 alerts across our data (over 1,600 alerts / month).
These rare-but-benign logins stem from a diverse set of causes,
such as users performing maintenance on machines they rarely
access (e.g., a user serving on their team’s on-call rotation),
new users or employees returning from a long vacation, and
users simply accessing rare-for-their-role services. Although
prior work introduces techniques to refine this anomaly de-
tection approach, they still produce too many false positives
(§ 7.4). By re-framing the definition of an attack path from
simply anomalous paths, to paths that contain the key proper-
ties we highlight, Hopper can detect a range of lateral move-
ment attacks with significantly fewer false positives.

Machine A (Client)

Owner = Alice

Machine B (Client)

Owner = Bob

Machine Y (Server)

Owner = None

Machine Z (Server)

Owner = None

L3 : ( t3 , Alice )

L4 :  ( t4 , Bob )

L1:  ( t1 , Alice )

L2:  ( t2 , Bob )

Figure 3: An example of a simple login graph. Solid black edges
(L1 and L2) correspond to benign login events. Dashed red edges
(L3 and L4) correspond to a lateral movement attack path.

4.2 Hopper: System Overview
Hopper consists of two stages, shown in Figure 2. The first
stage of Hopper (§ 5) runs a “causality engine” that aggregates
a set of logins into a graph of user movement and identifies
broader paths of movement formed by groups of logically-
related logins. The second stage of Hopper (§ 6) takes a set
of login paths and decides whether to generate an alert by
identifying which login paths contain the two key attack prop-
erties described above. During this final stage, Hopper prunes
common benign movement paths, extracts a set of features for
each path, and uses a combination of detection rules and a new
anomaly scoring algorithm to compute the “suspiciousness”
of each login path.

The Login Graph: Given a set of logins, Hopper constructs
a directed multi-graph that captures the interactions among
users and internal machines. Figure 3 shows a simple ex-
ample of a login graph constructed by Hopper. Each login
creates a directed edge in the graph, where the edge’s source
and destination nodes correspond to the machine initiating
and receiving the login. Edges represent unique, timestamped
logins from the source to the destination machine; multiple lo-
gins between the same two machines generate multiple edges.
Each edge is annotated with a target username: the account
that was logged into on the destination machine (the username
and permissions that the new session operates under).

Login Paths and Causal Users: A path of logins corre-
sponds to a series of connected edges, where each edge is
“caused” by the same actor. We use the term causal user to
refer to the actor whose machine initiated a path of logins,
which might not be the same as the target user recorded in
each login. The causal user is the original actor responsible
for making these logins (taken from the first edge in each
path), while each login’s target user reflects the credentials
that the login’s destination machine received.

For example, in Figure 3, an attacker compromises Alice’s
machine (A) and makes a series of internal logins that forms
a two-hop lateral movement path from Machine A to Z. The
attacker first uses Alice’s credentials in a login to Machine
Y , shown as L3. Then the attacker compromises Bob’s cre-
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dentials on Y and uses them to login to Bob’s account on Z,
labeled L4. For each of the logins in this path, Alice is the
causal user, since all of the logins were made (caused) by a
user starting from Alice’s machine. Alice and Bob are the tar-
get users of L3 and L4 respectively, since each login presented
those usernames and credentials during authentication.

Path Types: One of the key attack properties that Hopper
looks for is whether a path’s causal user ever authenticates into
a machine with a new set of credentials. As described later in
Section 5, the information provided in standard authentication
logs does not always enable Hopper to precisely infer whether
a path exhibits this property. Accordingly, Hopper makes a
distinction between three types of paths: a BENIGN path, a
path with a CLEAR credential switch, or an UNCLEAR path.

Hopper labels a path as BENIGN if every login in the path
uses the causal user’s credentials (e.g., no switch in creden-
tials occurred). A path has a CLEAR credential switch if at
least one login in the path must have switched to a new set
of credentials. For example, in Figure 3, assume that login
L2 did not occur at all, then the paths (L1, L4) and (L3, L4)
correspond to paths with a CLEAR switch, because all paths
leading to L4 previously used a different set of credentials. On
the other hand, if all of L1, L2, L3 occurred and Hopper cannot
clearly determine which of them caused L4, then Hopper will
treat both the paths (L1, L4) and (L3, L4) as UNCLEAR paths.
An UNCLEAR path corresponds to a situation where Hopper
cannot cleanly infer a causal path for a given login, but rather
infers multiple potential paths, where some of the paths in-
volve a switch in credentials (e.g., L3 to L4), but others do not
(e.g., L2 to L4). As discussed in Section 6, because of these
different levels of certainty, Hopper uses two sets of detection
algorithms to classify a path as malicious. For paths with a
CLEAR credential switch, Hopper applies a simple rule-set
(§ 6.1). However, when limitations in real-world logs create
uncertainty about the paths that Hopper’s causality engine in-
fers (i.e., UNCLEAR paths), Hopper uses an anomaly scoring
algorithm to determine when to alert on a path (§ 6.2).

5 Inferring Causal Login Paths

Standard authentication logs describe point-wise activity that
lacks broader context about each login, such as from whom
and where the login originated. For example, in Figure 3,
given login L4 in isolation, a detector does not know whether
Bob accurately reflects the user responsible for making the
login, or whether another user such as Alice has stolen Bob’s
credentials and used them in a malicious login. Thus, for
each login (Li) that occurs, the first stage of Hopper runs
a “causality engine” that coarsely infers the broader path
of movement that a login belongs to and the causal user
responsible for initiating the movement path. To do so, Hopper
uses a time-based heuristic to infer a set of “causal paths”
for Li, where each path corresponds to a unique sequence of

Path Component Description

Login List List of logins in the path

Causal User Username of the employee whose
machine initiated the path

Changepoint Logins A list of logins where the username
differs from the path’s preceding login

Path Type BENIGN, CLEAR, or UNCLEAR: whether
the path switches to new credentials

Table 2: Information in each path generated by Hopper’s causality
engine (§ 5). Given a new login, Hopper infers a set of these causal
paths, each of which reflects a sequence of logins that an actor could
have made up to and including the new login.

connected logins that could have led to Li and occurred within
the maximum time limit for a remote login session.

Identifying Causally-Related Logins: Hopper produces a
set of causal paths by running a backwards-tracing search
from Li to identify a sequence of causally-related logins that
include Li. Two logins are causally related if they (1) form
a connected set of edges in the login graph and (2) occur
within T hours of each other. Concretely, we say that Lk is a
causal, inbound login for Li if the destination of Lk equals the
source machine of Li, and Lk occurred within 24 hours prior
to the time of Li. We choose a threshold of 24 hours based
on the maximum duration of a login session at Dropbox; for
sessions that exceed this duration, the company requires the
source machine to re-authenticate, which produces a fresh
login event in our data. For example, in Figure 3, L1, L2, and
L3 are all causal logins for L4 if they occurred within 24 hours
prior to t4. Using this causal rule, Hopper infers a set of login
paths by identifying all of the causal logins for Li, and then
recursively repeats this search on each of those causal logins.

This process is similar to provenance and taint-tracking
methods that trace the flow of information from a sink (Li’s
destination machine) back to its source (the root node of Li’s
login path) [18, 24, 25]. As with these flow-tracking meth-
ods, naive backwards-tracing risks a “dependency explosion”,
where each backwards step can exponentially increase the
number of paths that Hopper infers, but only one of these
paths represents Li’s true causal path. We find that four opti-
mizations and environmental factors mitigate this risk.

First, Hopper can use an optimized implementation that
requires only a single-step of backwards-tracing per login.
At a high-level, based on our key attack properties, Hopper
only needs to analyze paths that involve a switch in creden-
tials (Property 1). As a result, Hopper can incrementally build
a set of “watchlist” paths that contain a potential switch in
credentials. For each new login, Hopper only needs to per-
form one step of backwards-tracing to determine if the new
login involves a switch in credentials, or if it extends one of
these watchlist paths; Appendix A in our extended techni-
cal report [22] describes this implementation in more detail.
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Second, we observe that enterprise networks tend to have a
relatively flat topology, since most users prefer to directly
access their target server; this behavior limits dependency
explosion, which we discuss more in Section 8.2. Third, due
to the natural workflows of users and a standard implementa-
tion of least privileges, most machines only get accessed by a
handful of users for specific job duties. This clustering limits
the number of inbound logins per machine, which reduces the
potential for path explosion (§ 8.2). Finally, to mitigate path
explosion that can occur from users or scripts making many
repeated logins to/from a machine, Hopper deduplicates paths
to one unique path per day (i.e., one unique set of daily login
edges, where a daily edge is a four-tuple of a login’s source,
destination, target username, and timestamp rounded to the
date it occurred).

Path Components and Types: Every causal path inferred
by Hopper contains the information in Table 2. Each path
includes a list of “changepoint” logins: logins that used a
different username than the preceding login in the path. For
logins that occurred from a client source machine, if the target
username does not match the source machine’s owner, Hopper
also adds this login to its changepoint list.

Hopper computes a path’s causal user by examining the
first (earliest) login in the path. If the login’s source machine
is a server, then Hopper treats the target username as the path’s
causal user. However, if the first login’s source machine is a
client, Hopper takes the owner of that source machine and
treats that username as the causal user: clients typically corre-
spond to the start of a user’s movement path and logins from
these machines should use their owner’s credentials. Addi-
tionally, Hopper takes a user-provided list of special “bastion”
machines: hardened gateway servers that provide access to
restricted network segments or machines, and which require
users to perform heightened authentication to access these
protected parts of the network (e.g., password and hardware-
based 2FA authentication during each login). Whenever Hop-
per encounters a login that originates from a bastion source
machine, it treats this login as the root login for the path:
i.e., Hopper treats the username of the bastion login as the
path’s causal user, and stops performing backwards-tracing
for the path. Because bastions require robust forms of authen-
tication, logins forwarded from bastion source machines (i.e.,
logins that successfully authenticated to the bastion server)
indicate that the login’s purported username does reflect the
true actor responsible for making the login.

Paths belong to one of three types: a BENIGN path, a path
with a CLEAR credential switch, or a path with UNCLEAR
causality. For each changepoint login in a path, Hopper checks
whether the changepoint login’s username matches any of the
usernames across its potential inbound (causal) logins. If
all of the inbound hops used a different username, or if the
changepoint login originated from a client source machine,
then the path has a CLEAR credential switch; otherwise, Hop-

per labels the path as UNCLEAR. If a path does not have any
changepoint logins, then Hopper marks the path as BENIGN.

For example, in Figure 3, if L1, L2, and L3 occurred within
24 hours prior to L4, Hopper will produce 3 causal paths for L4.
The paths starting with L1 and L3 will form UNCLEAR paths,
and the path starting with L2 will get marked as BENIGN. The
path from L2 to L4 will list Bob as its causal user and have
no changepoints logins. Both the attack path (L3 to L4) and
the path from L1 to L4 will list Alice as their causal user, and
contain L4 in their list of changepoint logins.

6 Detection and Alerting

Hopper classifies each path given two additional inputs: a set
of historical logins for feature extraction and a user-provided
“budget” that controls the daily number of alerts that Hopper
produces for UNCLEAR paths (§ 6.2). Hopper first checks
whether the path matches one of five benign scenarios; if so,
it does not generate an alert. For paths that do not match a
benign scenario, Hopper identifies which of two attack sce-
narios the path might belong to and applies the scenario’s
corresponding detector. These detectors apply either a rule set
(§ 6.1) or an anomaly scoring algorithm (§ 6.2), and produce
an alert if the path is marked as suspicious.

Benign Movement Scenarios: In the first benign scenario,
Hopper marks a path as benign if every one of its logins uses
its causal user’s credential (i.e., a path labeled as BENIGN
by the causality engine); because these paths do exhibit the
first key attack property, Hopper discards them. Hopper also
labels approximately 170,000 paths as benign if they match
one of four other benign and low-risk scenarios.

First Hopper identifies one-hop paths (i.e., logins) from new
machines and new users: Hopper labels the path as benign if
either the user and/or source machine have existed for less
than one week (based on their earliest occurrence in historical
logins and the organization’s inventory databases). Second,
Hopper ignores all paths that originate from a machine under-
going provisioning for a new owner. As part of this process,
an administrator runs a script that authenticates into several
specialized servers to configure the machine (e.g., installing
the operating system and configuring the new owner’s ac-
count). These logins will seem suspicious to Hopper because
they will use an administrator’s credentials (target username)
that differs from the machine’s owner (the causal user). To
identify login events that relate to machine re-provisioning,
Hopper checks for three properties: (1) the login’s destina-
tion belongs to a set of dedicated provisioning servers, (2)
the login’s target user is a system administrator, and (3) the
login originates from a dedicated subnet used for machine
provisioning. If Hopper encounters a login with these three
properties, it does not run its causality engine or generate an
alert. In total, Hopper removes approximately 125,000 logins
related to new machines or those undergoing provisioning.
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Figure 4: Architecture of Hopper’s alert generator (§ 6). Given a login path (§ 5), Hopper checks whether the path matches a benign scenario
or an attack scenario. Based on the path’s scenario, Hopper either discards the path or generates an alert if the scenario’s detector triggers.

Third, the use of (non-human) service accounts produces
roughly 42,000 one-hop paths that Hopper would otherwise
label as cases of clear-credential switching. In these logins, a
legitimate user performed a login using a “mismatched” set
of credentials that correspond to a service account; however,
the credential “switch” in these logins reflects the benign, ex-
pected way to access these enterprise services. For example,
these logins include users running a script to launch testing
jobs when building a new version of Dropbox’s desktop appli-
cation; part of this script includes remote commands issued
to the build and test machines under a service account (e.g.,
user = test-services). Hopper infers a set of these service user-
names by identifying any username that (1) does not match
an employee username, and (2) was used in successful logins
from more than ten different source machines across a set of
historical data. To ensure that usernames inferred by Hopper
do not provide widespread access or highly privileged capa-
bilities, Hopper outputs the set of inferred service accounts
for an organization’s security team to confirm, and uses only
the set of approved service usernames when filtering these
benign logins. Because these accounts are designed for a lim-
ited and specific service operation, organizations can mitigate
the risk of lateral movement via these credentials by config-
uring them with a limited set of permissions to a specific
set of machines; at Dropbox, many of these service accounts
also access their destinations via a limited remote command
API [1], as opposed to creating a full interactive session.

The final benign scenario involves logins to and from a bas-
tion host. Organizations often segment parts of their network
for improved efficiency, maintenance, and security by plac-
ing a set of machines behind a hardened bastion host [6, 49].
To access a server within this network segment, a user must
first tunnel and authenticate through the network segment’s
bastion. Dropbox’s corporate network contains a few such
network segments. Because bastion machines correspond to
hardened hosts, perform a limited set of operations (authen-
tication and connection forwarding), and often do not allow
users to establish logins onto the host itself, a login that orig-
inates from a bastion likely reflects legitimate user activity.

Given a list of bastion hosts at an organization, Hopper does
not alert on any one-hop path that originates from a bastion
or any two-hop paths that traverse a bastion.

Attack Scenarios: If a path does not match any of these be-
nign scenarios, Hopper checks whether it matches one of
two attack scenarios and, if so, applies the corresponding de-
tection algorithm to see whether it should produce an alert.
First, if the path contains a login that switches credentials
and the causality engine has high confidence that the switch
occurred (a CLEAR path), Hopper applies a simple rule set
to classify the path as suspicious or not (§ 6.1). However,
because of imperfect information contained in real-world au-
thentication logs, Hopper’s causality engine sometimes infers
multiple potential paths that a login could belong to, where
not all of the paths contain a credential switch (i.e., paths with
UNCLEAR causality). Because of this uncertainty, Hopper’s
second detector evaluates how suspicious each such path is
with a probabilistic scoring algorithm (§ 6.2) and alerts if the
path has one of the most suspicious scores in recent history.

6.1 Attack Scenario 1: Paths with a Clear Cre-
dential Switch

Paths with a clear credential switch contain at least one login
where Hopper knows that the causal user it inferred for the
path must have switched to a different set of credentials (the
first key attack property). For these paths, Hopper generates
an alert if the path accesses any destination that its causal user
has never accessed in prior history; a conservative estimate of
when a path’s causal user accesses an unauthorized machine.

More formally, let P represent a path with a causal user of
Alice and DestP refer to the destination machines across all
of P’s logins. Hopper generates an alert if P exhibits the two
key attack properties:

1. Property 1: P has a CLEAR credential switch (path type).

2. Property 2: P contains at least one destination in DestP
that Alice has never accessed in the historical training
data (e.g., past 30 days).
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6.2 Attack Scenario 2: Paths with Unclear
Causality

The second attack scenario handles paths with UNCLEAR
causality: when Hopper infers multiple causal paths for a lo-
gin, where some paths contain a credential switch and others
do not (§ 5). To handle unclear paths, Hopper uses a prob-
abilistic detection algorithm to identify and alert on paths
that are highly anomalous. This selective use of anomaly de-
tection, only in cases where the limitations of authentication
logs introduce uncertainty about whether a path contains the
key attack properties, distinguishes Hopper from prior work,
which simply applies anomaly detection to every path.

Alert Overview: Unclear Causality: Given an UNCLEAR
path (P), Hopper first checks whether the path ever visits a ma-
chine that its causal user (Alice) has not previously accessed
in the training data (the second attack property). If Alice has
access to all of the path’s destinations, then Hopper marks
the path as benign.3 Otherwise, Hopper runs the following
anomaly detection algorithm on P.

First, Hopper extracts three features that characterize P’s
rareness. Next, Hopper uses P’s features to compute a “sus-
piciousness” score for the path, which it then uses to rank P
relative to a historical batch of paths (e.g., the past 30 days).
If P ranks among the top 30×B most suspicious historical
paths, then Hopper generates an alert. B corresponds to a user-
provided budget that specifies the average number of daily
alerts that an analyst has time to investigate for these types of
attack paths.

Path Features: Hopper uses a set of historical “training” lo-
gins to extract three features for a path. Let A refer to the
path’s starting machine and Z refer to the path’s final destina-
tion. Given a path’s changepoint login (Lc), Hopper computes
two numerical features. First, Hopper computes the historical
edge frequency for each login preceding Lc, where an edge’s
historical frequency equals the number of days that a suc-
cessful login with the exact same edge (source, destination,
and target username) has occurred in the training data; the
first feature value equals the minimum (lowest) frequency
among these preceding logins. Second, Hopper computes the
historical edge frequency for each login in the remainder of
the path, and takes the lowest frequency value among these
hops; i.e., the historical frequency of the rarest login starting
at Lc until the path’s final hop. For the third feature, Hopper
computes the number of historical days where any successful
login path connects Machine A and Machine Z. If a path has
multiple changepoint logins, Hopper computes these three
features for each changepoint login, runs its anomaly scoring
algorithm (below) for each feature set, and then uses the most
suspicious score for the path.

3Future logins in the path will cause Hopper to produce extended paths
that its detection algorithm will subsequently examine.

Algorithm 1 Hopper’s anomaly scoring algorithm
AlertGen(P, A (historical alerts), L (historical paths)):

1: for each path X in A do:
2: if Score(P, L) ≥ Score(X , L):
3: Alert on P

Score(P, L): ∏
F

Sub-Score(P, L, F)

Sub-Score(P, L, F (feature)):
1: SumF ← 0
2: N ← 0 (the total # of true causal paths)
3: for each path X in L do:
4: if P has a smaller value for F than X :
5: SumF ← SumF + Cx

where Cx = the path certainty for X (§6.2)
6: N ← N + Cx,
7: Sub-ScoreF ← SumF / N

Anomaly Scoring: Given a path P and its features, Algo-
rithm 1 shows the anomaly scoring procedure that Hopper
uses to make its alerting decision. Intuitively, Hopper’s scor-
ing algorithm generates an alert for P if it has one of the most
suspicious feature sets in recent history.

Hopper’s alerting algorithm, ALERTGEN, takes three in-
puts: a path to score (P), a set of historical paths (L) to com-
pute P’s anomaly score, and a set of historical alerts (A) for
paths with unclear causality. Hopper generates the set of his-
torical paths (L) by iterating over each login in the historical
training data and running Hopper’s causality engine to pro-
duce an aggregate set of all paths for each login. For efficiency,
Hopper can compute this set of historical paths as a batch job
at the beginning of each week, and reuse it for the entire
week’s scoring. The historical set of alerts (A) consists of
the B × H most suspicious paths during the historical train-
ing window, where H is the number of days in the historical
window and B is the user-provided alert budget.

With these three inputs, Hopper computes an anomaly score
for P that represents the fraction of historical paths where P
had more (or equally) suspicious feature values. Hopper then
compares P’s anomaly score against the scores of the histori-
cal alerts, and generates an alert for P if its score exceeds any
historical alert’s score; i.e., Hopper produces an alert if P is
at least as suspicious as a previous alert’s path.

Computing Scores: Conceptually, a path P’s anomaly score
corresponds to a cumulative tail probability: how much more
suspicious (unlikely) is P relative to the kinds of paths that
benign users historically make? As described in the SCORE
subroutine in Algorithm 1, Hopper calculates this score by
computing a sub-score for each of the path’s features, and
then multiplies these sub-scores to get an overall score.

Each feature’s sub-score estimates the fraction of histor-
ical paths where P had a more suspicious feature value. In
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practice, imprecision from Hopper’s path inference algorithm
could lead a naive computation of this fraction to over-count
certain historical paths. For example, a historical login from
a server with many (N) inbound logins will generate N his-
torical paths, even though only one of those paths reflects a
true causal path. These types of paths, that involve servers
with many inbound logins, will have an inflated volume that
could skew the anomaly sub-scores that Hopper computes;
i.e., their features will be over-represented in the historical dis-
tribution. To mitigate this problem, when computing the set of
paths for each historical login Li, Hopper annotates each path
with a “Path Certainty” fraction, denoted as C, that equals 1 /
the total number of causal paths that Hopper inferred for Li.
When Hopper computes each sub-score for the current path
P, it uses C to down-weight the impact of each historical path
(Line 5 of the SUB-SCORE routine in Algorithm 1).

Alert Clustering: To avoid generating redundant alerts for
the same path, Hopper clusters its alerts each day. Hopper
maintains a list of every alert (path) it generates on the current
day. If a new alert path traverses the same exact edges as
any path on the day’s alert list, Hopper updates the existing
alert with information about this duplicate path and does not
generate a new alert.

6.3 Real-time Detection

Organizations can run Hopper as a real-time detector using a
design similar to the architecture described above. For real-
time detection, Hopper would maintain a “recent login” queue
of all logins over the past T hours, where T corresponds to
the causality threshold described in § 5. For each new login,
Hopper can run the path inference procedure described in
Section 5, and then apply its scoring algorithms to determine
whether any path produces an alert. Each night, Hopper can
prune the queue of recent logins to only retain those in the past
T hours, recompute the set of historical paths used for feature
extraction, and update the set of the historical alert paths that
Hopper uses when assessing a new path’s anomaly score
(Section 6.2). This real-time architecture retains the same
detection accuracy as running Hopper as a batch detector,
since it makes no difference whether Hopper classifies each
day’s logins individually or in one aggregate batch.

7 Evaluation

We evaluated Hopper on our 15-month data set, measuring
its detection rate (fraction of attacks detected) and the vol-
ume of false positives it generates. Our data does not contain
any known lateral movement attacks, but it does contain one
in-situ lateral movement attack conducted by Dropbox’s pro-
fessional red team. Additionally, we generated and injected
a realistic and diverse set of 326 simulated attacks into our
data for a more thorough evaluation (§ 7.2). Hopper success-

Path # of Paths with Potential
Length Credential Switch

2 3,357,353
3 829,044
4 128
5 6
6 4

Table 3: The volume of multi-hop paths, with a potential switch in
credentials, inferred by Hopper’s causality engine. The left column
reports the path length and the right column reports the total number
of paths with that length that Hopper generated, across our dataset.

fully detected 94.5% of the attacks in our data, including the
red team attack, while generating an average of 9 false posi-
tives per day (§ 7.3): an 8× reduction in the number of false
positives produced by prior state-of-the-art (§ 7.4).

7.1 Implementation

For our experiments, we implemented Hopper in Python 2.7
on a Linux server with 64GB of RAM and a 16-core proces-
sor. Table 3 shows the total number of multi-hop paths that
Hopper generated, based on the optimized implementation
described in our extended technical report [22]. In aggregate,
the full set of paths (containing the attributes described in
Table 2 and their feature values) consume a total of 2.5GB of
memory. Running Hopper’s path generation algorithm across
our entire data set took a total CPU time of 35 minutes and 13
seconds, and running Hopper’s feature extraction and detec-
tion algorithms on every day in our data set took a cumulative
CPU time of 83 minutes and 9 seconds.

The dramatic drop in long-length paths reflects the fairly
flat topology of Dropbox’s network, the filtering steps that
Hopper takes to remove noisy and spurious login activity
(§ 3.2), and the optimization Hopper uses of only tracking
paths with potential (or clear) credential switching. System
administrator activity predominates these multi-hop paths,
since most other users perform logins directly into their target
service (e.g., short one-hop paths).

7.2 Attack Data

Red Team Attack: Our data contains one lateral movement
attack generated by Dropbox’s professional red team. The red
team began their attack from a “compromised” employee’s
laptop (selected from a preexisting pool of volunteers).4 Their
attack simulated a common APT scenario [17, 51], where an

4The red team followed their standard safety protocols when conducting
this simulation, which included obtaining prior consent from all “compro-
mised users”, coordinating extensively with the security incident response
team, and conducting any necessary remediation that resulted from the simu-
lated attack (e.g., resetting any credentials that they accessed).
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attacker conducts lateral movement to access an organiza-
tion’s Domain Controllers (credential management servers).
From their initial foothold, the red team conducted a series
of reconnaissance and internal login (lateral movement) op-
erations. They identified and acquired a new, elevated set of
credentials, which they then used to access one of the organi-
zation’s Domain Controllers. Apart from requiring that their
movement occurred via logins (as opposed to exploiting a re-
mote access vulnerability), the red team performed this attack
under no constraints or input from us. We did not examine the
red team data until we had frozen the design and parameters
of our detector. The red team’s attack created an UNCLEAR
path, because the attack “stole” and used a sysadmin’s cre-
dentials from a server that had a recent inbound login by the
sysadmin. Hopper’s unclear causality detector successfully
identified this attack. Based on its anomaly score, Hopper
ranked this attack path as the most suspicious path on that day
and the 45th most suspicious path across all paths during the
month of the attack.

Realistic Attack Simulations: Dropbox employs multiple
sets of security controls and detection approaches, including
commercial security products, external security audits, and
custom tools developed by in-house security teams. Across
all of these sources, no incidents of real-world lateral move-
ment have been detected. Given the lack of real-world attack
instances, we developed an attack synthesis framework and
generated an additional 326 realistic lateral movement attacks.
Our attack framework covers a wide range of real-world at-
tacks described in public breach reports and academic sur-
veys [43], ranging from ransomware to targeted APT attacks.5

We randomly selected 50 employees in our data as starting
victims, whose machines served as “compromised” footholds
for attackers to launch their lateral movement. For each start-
ing victim, our framework synthesized twelve different attack
scenarios, corresponding to a pairing of one of three ATTACK
GOALS with one of four types of STEALTHINESS.

Given a starting victim and attack scenario, our framework
synthesizes a set of lateral movement login entries that begin
at a random date and time (when the starting victim was
still active in our data). Leveraging the global graph of all
logins in our data set, our framework simulates an attacker
who iteratively (1) accrues a set of “compromised” credentials
(the starting victim’s credentials, and after each new login, the
users who recently accessed the login’s destination machine),
and then (2) synthesizes login entries to new destinations that
the attack’s compromised credential set can access.

The three attack goals specify when an attack succeeds
(stops generating new logins) and the shape of the attack’s
movement. Modeling ransomware, an Aggressive Spread at-
tack generates new logins by iterating over its compromised
credential set and performs logins into every machine acces-

5Our simulation code is available at https://github.com/grantho/
lateral-movement-simulator

Exploratory Aggressive Targeted TP Rate

No stealth† 37 / 41 38 / 41 38 / 40 113 / 122
Prior Edge 13 / 14 14 / 14 10 / 13 37 / 41
Active Cred. 41 / 41 41 / 41 *39 / 41 121 / 123
Combined 12 / 14 14 / 14 12 / 13 38 / 41

Detection Rate 103 / 110 107 / 110 99 / 107 309 / 327

Table 4: Summary of Hopper’s detection (true positive) rate across
the different scenarios simulated by our attack framework and the red
team attack (§ 7.2). Rows correspond to the four different stealthiness
levels and columns correspond to the three attack goals that our
framework simulated for each user. The last column and last row
report Hopper’s overall detection (TP) rate. The scenario marked
with an asterisk (TARGETED and ACTIVE CRED) includes one red
team attack, which Hopper detected. †The false negatives in the “No
stealth” row stem from inaccurate attributes in the attack logins.

sible by each credential; this attack terminates after accessing
50 machines, or once it makes a login into every machine
available to its final credential set. An Exploratory Attack
stops generating new logins once it accesses a machine that
its initial victim did not have access to; this attack iteratively
generates new logins by randomly selecting a credential from
its compromised set and a new destination accessible to the
selected credentials. Targeted Attacks perform logins until
they access a high-value server (e.g., Domain Controllers).
These attacks generate logins by computing a shortest path to
elevated credentials that can access a high-value server, and
then compute a shortest path that uses these new credentials
to access the high-value server.

Additionally, our attack framework only produces logins
that follow the scenario’s specified stealthiness. An attack
with Prior Edge stealthiness only generates logins that tra-
verse edges that legitimate users have previously made. An
attack with Active Credential stealthiness only uses a set of
credentials in a login if the credential’s legitimate user was
recently logged into the source machine (i.e., creating lo-
gin paths with unclear causality). An attack with Combined
Stealthiness only generates logins with both of the properties
above (e.g., mimicry-style attacks). The fourth type corre-
sponds to an attacker without any stealthiness requirements.

We generated 326 successful attacks, with 205 attacks
across the three stealthier levels (Table 4); users did not al-
ways have viable attack paths, leading to less than 50 attacks
per scenario (e.g., users with limited access or who lacked
stealthy paths for a targeted attack). The red team attack cor-
responded to a Targeted Attack with Active Credential stealth-
iness; our framework can produce the same attack path if we
run it from the same starting victim with these parameters.

7.3 Results

Evaluation Procedure: We divided our data into a 2-month
training window (Jan 1 – Mar 1, 2019), which we used to
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bootstrap the feature extraction and scoring components of
Hopper that require historical data, and a 13-month evalua-
tion window (Mar 1, 2019 to Apr 1, 2020). Our evaluation
data contained 713,617,425 successful logins, and 2,941,173
logins after applying Hopper’s data filtering steps (§ 3.1). We
ran Hopper over this evaluation data to compute its false posi-
tive rate and detection (true positive) rate. For any detection
component that required historical training data, we used a
rolling window of the preceding 30 days. For our anomaly
scoring algorithm (§ 6.2), we used a budget of 5 alerts / day,
and explore the sensitivity of this parameter below.

Attack Detection Rate (True Positives): For each of the 326
attacks synthesized by our framework, we injected the attack’s
logins into our evaluation data and ran Hopper on the day(s)
when the attack occurred. For the red team exercise, we exam-
ined the alerts that Hopper generated on the day of the attack.
We deemed Hopper successful if it generated an alert for any
attack path made by the simulated attacker or red team.

Table 4 shows that Hopper successfully detected a total
of 309 attacks (94.5%), which includes the attack performed
by Dropbox’s expert red team. Hopper detected 138 attacks
through its rule set for paths with clear credential switching
(§ 6.1). In all of these attacks, the simulated attacker either
used a new set of credentials in a login from their initial
foothold machine or from a server that the legitimate user
(of the new credentials) had not recently accessed, enabling
Hopper to identify a movement path where the attacker clearly
switched to using new credentials.

However, most (180) attacks created paths with UNCLEAR
causality, either because the attack quickly capitalized on new
credentials that were recently used on a server, or because the
attack simulated a stealthy adversary who only used new cre-
dentials from machines where the legitimate user was recently
or currently active. Detecting these paths falls to Hopper’s
anomaly scoring detector (§ 6.2). With a budget of 5 alerts
per day, Hopper successfully identified 171 of these attacks
(95%), including the red team attack.

False Negatives: Of the 18 false negatives, Hopper missed
9 attacks because of attribute errors in the login data. For
each of these 9 false negatives, the attack logins had an in-
correct client vs. server label for a machine, and/or contained
incorrect information about a machine’s owner. If we replaced
this inaccurate login information with the correct attributes
(acquired from additional, up-to-date data sources at Drop-
box), Hopper could successfully detect all 9 of these false
negatives with its clear credential switch detector. Nonethe-
less, we count these attacks as false negatives since real data
inevitably contains imprecise information. Additionally, Hop-
per failed to detect 9 stealthy attacks using a daily budget of
5 alerts. For all of these false negatives, every attack login
traversed an edge with at least three prior days where the
legitimate user had performed a login along the edge.
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Figure 5: ROC Curve for Hopper’s unclear causality detector (§ 6.2)
at different budgets (1–11 daily alerts). The True Positive Rate re-
ports the fraction of (180) attacks with unclear causality that Hopper
detects. The FP Rate reports the number of false alarms divided by
the number of logins in our evaluation data (2.94M).
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Figure 6: The ranking of attack paths with UNCLEAR causality,
relative to all of the login paths that occurred on the day of an attack.

Budget Sensitivity and Attack Rankings: Including the red
team attack, 180 attacks produced paths with unclear causality.
Figure 5 shows the detection performance of Hopper for these
attacks, using different daily budgets for its anomaly scoring
detector. Hopper uses this budget to build a set of the historical
alerts over the past month, and then alerts on a new path (with
unclear causality) if its score is greater than or equal to any
scores of the historical alerts (§ 6.2). If Hopper used a daily
budget of 11 alerts, it could eliminate 9 false negatives and
detect all 180 attacks with a false positive rate of 0.00076.

We also assessed the ranking of these UNCLEAR PATH
attacks relative to the benign paths in our data, based on
their anomaly scores. Figure 6 shows that Hopper ranks these
attacks as highly suspicious, with over 66% of attacks ranked
as the most suspicious path on the day each attack occurred.

False Positives: To compute Hopper’s false positive rate, we
ran Hopper on all non-synthesized logins for each day in our
evaluation data. We conservatively labeled all of the alerts
Hopper produced as false positives if they did not relate to
the red team attack.

With a daily budget of 5 alerts for its anomaly scoring
detector, Hopper’s two detection algorithms generated a total
of 3,560 false positives (FP) across the 396-day evaluation
window: an average of 9 alerts / day and a false positive rate
of 0.0012 across the 2.94M filtered logins in our evaluation
data. Hopper’s rule-based detector for CLEAR paths produced
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Detector Detection Rate False Positives

SAL (equal FP) 156 / 327 (47.7%) 3,556 (0.12%)
SAL (equal TP) 309 / 327 (94.5%) 27,927 (0.94%)

Hopper 309 / 327 (94.5%) 3,560 (0.12%)

Table 5: Prior state-of-the-art, SAL [44], produces 8× as many FP
as Hopper to detect the same number of attacks. At a similar number
of FP’s as Hopper, SAL detects roughly half as many attacks (§ 7.4).

2,216 FP’s, and the remaining 1,344 FP’s come from Hopper’s
anomaly scoring detector. On some days, Hopper’s anomaly
scoring detector generated less than 5 alerts because (1) not
every day had 5 suspicious paths with unclear causality (e.g.,
weekends and holidays), and (2) our alert clustering resulted
in some days with fewer alerts (§ 6.2).

We identified several common reasons for many of these
false positives. Across the 2,216 false positives generated by
our CLEAR path detector, approximately 10% of these false
positives correspond to logins where a user’s laptop accesses
a particular service using a special service account. Another
41.5% correspond to machine imaging and provisioning ac-
tivity, where a sysadmin runs a script that uses their elevated
set of credentials to configure a laptop for a new owner (these
logins occurred at a remote office that Hopper’s data clean-
ing steps did not filter out). Finally imprecision in Hopper’s
causality engine contributed to 19% of Hopper’s CLEAR path
false positives and over 49% of Hopper’s UNCLEAR-causality
false positives. Many of these false positives are paths, ini-
tiated by one system administrator, that purportedly make
a login that switches to another system administrator’s cre-
dentials. These alerts often involve a handful of “gateway”
machines that sysadmins use to access important internal
servers (e.g., Domain Controllers). Hopper generates these
false alerts when multiple sysadmins have recently logged
into a gateway machine, and one sysadmin launches a lo-
gin from the gateway machine to a rarely-accessed or niche
server. Because these paths involve only administrator cre-
dentials, Hopper could reduce its false positives by filtering
them out; any credential switch between two administrators
likely provides limited additional access.

7.4 Comparison with Prior State-of-the-Art

We compared Hopper’s performance against the best per-
forming prior work, the Structurally Anomalous Login (SAL)
detector proposed by Siadati and Memon [44]. SAL detects
lateral movement by generating a set of logins that traverse a
rare edge in the login graph (based on a user-specified thresh-
old). Next, SAL learns and uses a set of “benign login patterns”
to identify which rare edges to alert on. Each login pattern
corresponds to a triplet of (source machine attributes, desti-
nation machine attributes, and user attributes). For example,
given the login (src = Machine A, dest = Machine B, user =

Alice), (src = New York, dest = San Francisco, user = Engi-
neering) would be one login pattern, if Machine A resides
within New York, Machine B resides within San Francisco,
and Alice works on the Engineering team. SAL learns a set of
benign patterns by using a historical set of logins to identify
patterns where a sufficiently large fraction of source machines,
destination machines, and/or users have at least one historical
login that matches a pattern. SAL then produces an alert for
every rare-edge login that does not match a benign pattern.

Based on the data available to us, we use the following set
of login attributes from the SAL paper: each user has two
attributes: (the user’s team, and the user’s type: system admin-
istrator, regular user, or service account) and each machine
has two attributes: (the machine’s type: client or server, and
the machine’s geographic location). We applied SAL with
a rolling two-month training window on all of the filtered
logins in our evaluation window (i.e., the same data used for
Hopper’s evaluation; we also applied both the data filtering
and benign scenario pruning outlined in § 3.1 and § 6). SAL
takes two user-provided thresholds for training and classifica-
tion, respectively.6 Table 5 reports the results for SAL using
the parameters that produced the minimum volume of FP’s to
detect (1) the same number of attacks as Hopper and (2) (ap-
proximately) half as many attacks as Hopper. We report the
number of FP’s SAL produces after de-duplicating the alerts
to only include one edge (source, destination, and target user)
per day, and we considered SAL successful if it produced an
alert for any malicious login in an attack.

SAL produces nearly 8× as many false positives as Hopper
to detect the same number of attacks. Whereas Hopper selec-
tively chooses when to apply anomaly detection (to resolve
uncertainty in paths that might have the two key attack proper-
ties), SAL follows a traditional machine learning approach by
simply applying anomaly detection to every login, resulting
in significantly more false positives.

7.5 Attack Case Studies

Below, we describe two attacks created by our synthesis
framework, and examine how Hopper and traditional anomaly
detection approaches, such as SAL, handle them.

Example Attack 1: Targeted Compromise: One attack sim-
ulated an adversary who began their lateral movement from
an engineer’s laptop and then attempted to access one of
several high-value machines within an organization (e.g., a
Domain Controller). After three logins, the attacker arrived
on a machine where a system administrator, Bob, had recently
logged into the machine via ssh. Simulating an attacker com-
promising and using Bob’s ssh credentials (e.g., by abusing a
forwarded SSH agent), our framework created a fourth attack

6Our extended technical report shows SAL’s performance under the range
of parameters we explored [22].
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login that leveraged Bob’s credentials to access a server that
manages user permissions and SSH keys.

The last two logins involved in this attack path rarely occur,
enabling SAL to detect this attack with a low volume of false
positives. Similarly, Hopper successfully detects this attack,
even though it involves an attack path with unclear causality
(since the sysadmin had an active ssh session that could have
launched the final login into the ssh management server);
the rareness of the attack path’s edges led Hopper to rank it
among the top 10 most suspicious paths that month.

Example Attack 2: Stealthy, Short Paths: For each user,
our framework also simulated attacks that modeled a stealthy
adversary who only accesses machines via previously tra-
versed graph edges. In one such attack, starting from a com-
promised user (Alice)’s machine, our framework first syn-
thesized a login to a server (Y ) that Alice had previously
accessed (4 out of the past 60 days). After moving to Server
Y , the attacker observed that Server Y still had the credentials
of a sysadmin, Bob, cached from a login during the past week,
enabling the attacker to acquire them. The attacker (our frame-
work) also observed that Bob had previously logged into a
powerful remote management machine from Server Y (3 out
of the past 60 days). Accordingly, our framework synthesized
a final, second attack login using Bob’s credentials to access
this high-value server. Although seemingly simple, this attack
reflects a realistic path for a stealthy attacker, since shorter
paths provide fewer opportunities for detection.

Hopper detected this attack with its CLEAR path detector:
the second login switched to a new target username, but over
24 hours elapsed since Bob accessed Server Y . Even if Bob
had logged into Server Y more recently, Hopper would still
have caught this attack under its anomaly scoring detector
(which ranks the attack path among the top 20 most suspi-
cious in the past month). In contrast, because this attack only
traverses edges with prior history, SAL would produce at least
14,000 alerts across our 13-month evaluation data to detect it.

8 Discussion

Hopper achieves good results on the real-world data set we
used. However, a number of interesting future directions re-
main, including overcoming potential evasion strategies, un-
derstanding how Hopper generalizes across different enter-
prise network architectures, and extending Hopper’s detection
approach to achieve better performance.

8.1 Evasion and Limitations

An attacker might evade detection if they can access their tar-
get machines by piggybacking on a series of logins made by
legitimate users [35], or if the attacker finds a frequently trav-
eled login path that provides access to their target. Our eval-
uation explicitly generated attacks that pursued this stealthy

strategy, and Hopper could detect many of these attacks. The
attacks that Hopper failed to detect had UNCLEAR causality,
followed paths with frequently traveled edges, and occurred
on days with other UNCLEAR paths whose edges occurred
more infrequently. However, we note that attackers might
not always be able to make such stealthy movement: when
synthesizing attacks across our sample of 50 random starting
users, 37 users could not stealthily access a high-value server;
i.e., attackers who compromised these users’ machines had
no path to our set of sensitive machines, or would need to
make at least one rare-edge login to access them.

Although our threat model focuses on interactive attackers
who manually perform their movement, attackers could evade
detection by installing stealthy malware on a shared server
that lies on the path to their final target machine. Such mal-
ware could wait until the maximum session duration (time
threshold for causally linking two logins together) has elapsed.
Once this time has elapsed, the malware could then oppor-
tunistically launch the subsequent logins in its attack path
whenever a legitimate user (e.g., Bob) performs an inbound
login into the shared server. This strategy will cause Hopper
to causally link the second half of the attack path, that abuses
Bob’s credentials, to Bob’s earlier legitimate logins, creating
a BENIGN path that appears to consistently use one set of
credentials. Because this approach increases attacker dwell
time and their host footprint, complimentary techniques such
as binary allow-listing, anti-virus, and additional detection
signals (§ 8.3) can help increase the chance of detection.

Missing or inaccurate logging information can also create
false negatives, a problem common to any detection strategy.
Future work can explore ways to alleviate this challenge by
using multiple sources of information to determine the correct
attributes of login data. Additionally, organizations can deploy
commercial log-hygiene solutions to continuously monitor
and collate their logging data.

8.2 Generalizability

Although we evaluate Hopper on a large real-world data set,
Hopper’s performance could change at enterprises with sig-
nificantly different network architectures and security poli-
cies. For example, Dropbox makes a dedicated effort to scope
employee access based on the least privileges principle; at or-
ganizations where many users have highly privileged access,
an attacker may not need to acquire additional credentials to
achieve their desired goal. As a result, lateral movement at-
tack paths might not exhibit a switch in credentials, allowing
adversaries to evade detection. For such organizations, imple-
menting better permissions hygiene will likely yield greater
security benefits than any detection strategy. We view Hop-
per as a promising direction for securing enterprises against
attacks that could succeed in spite of the adoption of such
security best practices.
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Figure 7: The in-degree and out-degree distribution across hosts at
Dropbox. The in-degree for a host equals the number of machines
that it has received logins from; the out-degree counts how many
unique machines each source machine makes at least 1 login into.

With respect to the impact of a network’s architecture on
Hopper’s performance, we observe that two properties con-
tribute to Hopper ’s success: a relatively flat network topology
and consistent workflows across most users that only access
a small subset of machines. Below, we characterize the graph
topology at Dropbox, and explain why we believe many or-
ganizations will also exhibit these two properties, allowing
Hopper to generalize to other networks.

Network Topology of Dropbox: If we aggregate all of the
logins across our dataset, the unified graph has a diameter of
length 7 and an average shortest path length of 2.12 hops. The
graph contains 10,434 unique edges, where each edge con-
sists of a (source machine, destination machine) tuple; when
edges also include the username involved in a login, the graph
contains 27,718 unique edges. Figure 7 shows the in-degree
and out-degree distribution for all machines in our data: i.e.,
the number of distinct machines that a node receives logins
from and makes logins to. The servers with in-degrees of
over 100 inbound machines correspond to common enterprise
services, such as Windows Domain Controllers that handle
Kerberos-based authentication, printers, telemetry and log-
ging machines, and servers involved in provisioning new ma-
chines. Clients (e.g., laptops) represent 65% of the machines
in our data, resulting in many machines with an in-degree of 0.
Machines with high out-degrees (logins to over 100 different
destinations) correspond to system administrator machines,
as well as internal scanning and monitoring servers.

Impact of Different Network Configurations: One of the
biggest challenges that Hopper faces is the risk of path explo-
sion and an overwhelming number of suspicious paths with
unclear causality. This situation can occur if many servers
have large numbers of users that access them, who then launch

outbound logins from the common servers to other machines.
If this behavior occurs multiple times along a path, it risks an
exponential increase in the number of paths that Hopper will
infer. This path explosion might lead not only to unsuitable
run-time performance (e.g., consuming too much memory),
but could also lead to a large number of false positives. If
many of these incorrectly inferred movement paths have a
suspicious set of features, then Hopper may generate a sub-
stantial number of false alerts related to these paths. Two
factors mitigated the problem of path explosion in our data
set: a relatively flat network topology and the natural cluster-
ing of user access patterns to a few work-related machines.

Flat networks arise because most (non-sysadmin) user ac-
tivity consists of direct logins from their client machines to
the server that hosts their desired functionality or data. More-
over, because many servers provide a limited UI and set of
functionality, they often do not provide an easy way to launch
outbound logins. This property means that even when a server
has many inbound logins from users, it often does not risk
path explosion because subsequent outbound logins do not
occur. We expect that even as the number of users and servers
increases, these natural habits will keep access patterns rel-
atively flat; this behavior will increase the number of short
login paths, but continue to limit the number of long paths.
At Dropbox, we did observe processes that generated long
paths, such as when users need to access a server by tunneling
through a gateway (bastion) machine, automated activity (e.g.,
domain controllers iteratively synchronizing data amongst
each other), and system administrator activity. However, most
of the paths from these activities either do not contain both
attack properties (e.g., no switch in credentials or no new ac-
cess for the path’s potential causal users), or they get removed
by Hopper’s filtering procedure since they do not pose a large
risk for lateral movement (§ 3.1).

Second, users tend to access machines for a specific job
function, creating a sparse graph where different subsets of
logins naturally cluster around a small group of machines (e.g.,
at Dropbox over 90% of machines have an in-degree≤ 10 and
an out-degree ≤ 10). Implementing least privileges, where
users have access to only a small set of machines relevant
to their work, also reinforces this common behavior. As a
result, most machines only get accessed by a limited set of
users, which reduces path explosion and the number of paths
with unclear causality. Furthermore, because users accessing a
shared server typically work on the same team or have similar
job roles, their credentials often have similar privileges and
they tend to access the same broader set of machines. Thus,
even when Hopper produces paths with unclear causality,
these paths often do not provide access to an unauthorized
machine for their causal user (the second attack property),
and get marked as benign. Since this property arises from
common user behavior and security policies, and has been
observed at different organizations [44], we expect many other
networks exhibit similar partitioning.
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Hopper’s Causality Time Threshold: Hopper uses a time-
based threshold, equal to the maximum remote session du-
ration at an organization, to help infer when logins form a
movement path (§ 5). We discussed this session duration with
the security teams of multiple companies, and all of them im-
plement a similar length policy for remote login sessions (e.g.,
ssh and RDP), based on commonly-adopted, best-practice
recommendations [14], and in some cases compliance and
cyber-insurance guidelines [7,21,26]. Additionally, even if we
doubled the 24-hour threshold that Hopper used in our evalu-
ation, Hopper achieves an 89.9% detection (true positive) rate
while generating an average of 9 false alarms / day.

8.3 Extending Hopper
To further improve Hopper’s performance, future work could
explore prioritizing paths that involve particularly sensitive
credentials or machines. For example, Hopper could assign a
higher anomaly score to any path that accesses a sensitive ma-
chine (specified by an organization). Similarly, Hopper could
prioritize paths where the causal user elevates themselves to
an administrator account over the course of the path’s logins.

Complementary work uses system logs to detect suspicious
host activity that aligns with attacker behavior enumerated in
the MITRE ATT&CK framework [18, 24, 25, 38]. Organiza-
tions could combine these approaches with Hopper to gain
insight into both malicious host activity as well as suspicious
(lateral) movement between hosts.

Finally, Hopper would generate fewer false positives if it
more precisely inferred causally-linked logins. Future work
could explore how drawing upon additional data sets, such as
network traffic or host logs, could enable more accurate causal
inference. For example, to determine which inbound login
caused an outbound login, Hopper could analyze the inbound
versus outbound network flows across the candidate logins to
pinpoint pairs with overlapping timing and flow sizes.

9 Conclusion

This paper presented Hopper, a system that develops a graphi-
cal model of enterprise logins to detect lateral movement. On
a 15-month enterprise data set, Hopper detected 94.5% of re-
alistic attack scenarios at a false positive rate of 0.0012. These
results illustrate the power of a causal understanding of the
movement paths that users make between internal enterprise
machines. By identifying which logins belong to the same
logical movement path and the user responsible for initiat-
ing each path, Hopper can identify a diverse range of attacks
while generating 8× fewer false positives than prior state-of-
the-art. Although common authentication logs make inferring
precise causality difficult, Hopper’s use of specification-based
anomaly detection — selectively applying anomaly detection
only in cases of high uncertainty — enables our approach to
achieve good detection performance.
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