
ShadowMove: A Stealthy Lateral Movement Strategy

Amirreza Niakanlahiji∗

University of Illinois Springfield
aniak2@uis.edu

Jinpeng Wei
UNC Charlotte

jwei8@uncc.edu

Md Rabbi Alam
UNC Charlotte

malam5@uncc.edu

Qingyang Wang
Louisiana State University

qwang26@lsu.edu

Bei-Tseng Chu
UNC Charlotte

billchu@uncc.edu

Abstract
Advanced Persistence Threat (APT) attacks use various

strategies and techniques to move laterally within an enter-
prise environment; however, the existing strategies and tech-
niques have limitations such as requiring elevated permissions,
creating new connections, performing new authentications, or
requiring process injections. Based on these characteristics,
many host and network-based solutions have been proposed
to prevent or detect such lateral movement attempts. In this
paper, we present a novel stealthy lateral movement strategy,
ShadowMove, in which only established connections between
systems in an enterprise network are misused for lateral move-
ments. It has a set of unique features such as requiring no
elevated privilege, no new connection, no extra authentication,
and no process injection, which makes it stealthy against state-
of-the-art detection mechanisms. ShadowMove is enabled by
a novel socket duplication approach that allows a malicious
process to silently abuse TCP connections established by be-
nign processes. We design and implement ShadowMove for
current Windows and Linux operating systems. To validate
the feasibility of ShadowMove, we build several prototypes
that successfully hijack three kinds of enterprise protocols,
FTP, Microsoft SQL, and Window Remote Management, to
perform lateral movement actions such as copying malware to
the next target machine and launching malware on the target
machine. We also confirm that our prototypes cannot be de-
tected by existing host and network-based solutions, such as
five top-notch anti-virus products (McAfee, Norton, Webroot,
Bitdefender, and Windows Defender), four IDSes (Snort, OS-
SEC, Osquery, and Wazuh), and two Endpoint Detection and
Response systems (CrowdStrike Falcon Prevent and Cisco
AMP).

1 Introduction
Advanced Persistent Threats (APTs) are sophisticated, well-

planned, and multistep cyber attacks against high profile tar-
gets such as government agencies or large enterprises. Such
∗Part of this research was performed while being a Ph.D. student at UNC

Charlotte

attacks are conducted by groups of well-resourced knowledge-
able attackers (such as Lazarus or APT38) and cost companies
and government agencies billions of dollars in financial losses
per year [28].

APT attackers commonly use spearphishing or watering
hole attacks to find a foothold within target networks. Once
they entered the target networks, they cautiously use the com-
promised systems as stepping stones to reach other systems
until they get access to the critical systems, such as file server
containing confidential documents, buried deep inside the net-
works; this incremental movement toward the critical systems
is called lateral movement.

Lateral movement can be achieved in a number of ways.
Attackers can exploit vulnerabilities in network services, such
as SMB or RDP, to laterally move across networks. How-
ever, due to advances in defense mechanisms, finding such
vulnerabilities and successfully exploiting them without be-
ing detected has become increasingly difficult. Alternatively,
attackers can harvest user credentials from compromised sys-
tems and reuse such credentials to perform lateral movement
(e.g., credential dumping [43], pass-the-hash, or pass-the-
ticket [24–26, 37, 38]). However, this approach requires new
network connections to be created and thus can be detected
by network-level defenses if the new connection deviates
from the normal communication pattern among legitimate
systems [34, 35, 51]. Using another approach, adversaries can
employ hijacking attacks that modify a legitimate client in
order to reuse its connection for lateral movement (e.g., by
patching a SSH client to communicate with the SSH server
without knowing the password [19]). However, such attacks
are application- and protocol- specific and require process
injection; they are hard to implement and prone to detection
as existing host-based defensive solutions (e.g., Windows
Defender ATP [48]) recognize various process injection tech-
niques.

In this paper, we present a novel lateral movement strategy,
called ShadowMove, which enables APT attackers to move
stealthily among the systems in enterprise networks without
being discovered by existing host-level and network-level de-

fensive mechanisms as demonstrated in Section 5. We assume
that attackers want to avoid exploiting vulnerabilities in re-
mote services during their operation to reduce the chance of
being exposed by intrusion detection systems (IDSes). In this
attack scenario, attackers passively observe communication
dynamics of the compromised systems to gradually construct
their model of normal behaviors in the target network and uti-
lize this model to choose the next victim system. Moreover, to
make the attack even stealthier, attackers restrict themselves
to only reuse established connections. Many application pro-
tocols such as WinRM (Windows Remote Management) and
FTP allow users to perform some operations on the remote
server. Attackers inject their own commands in the command
streams of such protocols to achieve their goal. For exam-
ple, attackers can execute a program remotely by injecting
commands in an established WinRM session (Section 4.4),
or they can inspect the file system on the remote system by
injecting FTP commands in an established FTP connection
(Section 4.2).

ShadowMove does not use any code in benign client pro-
cesses to inject fabricated commands. Instead, it employs a
novel technique to secretly duplicate sockets owned by le-
gitimate clients and injects commands through such stolen
sockets (Section 3.4). By doing so, no new connection will be
created and no new authentication will be performed as the
injected commands are interpreted in the context of already
established sessions; this means that the attacker does not
need to pass any authentication.

In this work, we show how an attacker can implement such
an attack on a typical enterprise network. To this end, we de-
velop a prototype system that can hijack existing TCP connec-
tions established by an FTP client (Section 4.2), a Microsoft
SQL client (Section 4.3), and a WinRM client (Section 4.4)
running under the same user account as our prototype and
without any elevated privileges. We also present a Prolog-
based planner that an attacker can utilize to systematically
plan for lateral movement by hijacking available connections.
In this way, the attacker can reach the critical systems signifi-
cantly stealthier than existing attack scenarios. We discuss the
technical challenges on how attackers can inject their packets
that conform to the protocol running over an established TCP
connection and be acceptable to the server on the other end
of the connection.

We summarize our contributions as follows:
• We present a new class of lateral movements which is com-

pletely undetectable by existing network and host-based
defensive solutions including IDSes, Antivirus, and EDR
(Endpoint Detection and Response) systems.
• We propose a novel socket duplication technique that en-

ables attackers to reuse connections established by other
processes on a compromised system. We, then, develop a
lateral movement framework on top of this technique.

• We demonstrate the feasibility of our idea by building a
prototype system on Windows 10 that successfully hijacks

Figure 1: ShadowMove Lateral Movement

FTP, TDS (used by Microsoft SQL Server), and WinRM
connections for lateral movements. This Windows proto-
type demonstrates all features of ShadowMove, requiring
no elevated privilege, no new connection, no extra authenti-
cation, and no process injection. We also build a prototype
that successfully hijacks FTP on Ubuntu 18.04 without
requiring elevated privilege, new connections, or extra au-
thentication. However, the design is not as stealthy as its
Windows counterpart because it relies on process injec-
tion and requires stronger assumptions about the attacker
(Section 3.4.3).
• We experimentally confirm that our prototypes can evade

the detection of five top-notch anti-virus products (McAfee,
Norton, Webroot, Bitdefender, and Windows Defender),
four IDSes (Snort, OSSEC, Osquery, and Wazuh), and
two emerging Endpoint Detection and Response systems:
CrowdStrike Falcon Prevent and Cisco AMP. It is impor-
tant to point out that CrowdStrike Falcon Prevent is known
to detect lateral movements.
The result of our study calls for a revisit of enterprise pro-

tocols in terms of their susceptibility to hijacking attacks.

2 ShadowMove Approach
The basic idea of ShadowMove is to reuse established and

legitimate connections to laterally move within the compro-
mised network. As shown in Figure 1, ShadowMove works in
three main steps: first, it silently duplicates a socket used by
a legitimate client application to communicate with a server
application; second, it uses the duplicated socket to inject
packets in the existing TCP session between the client and
the server; third, the server handles the injected packets and
unintentionally saves and/or launches a new instance of Shad-
owMove. As a result of these steps, an attacker stealthily
moves from the client machine to the server machine.

Since ShadowMove restricts itself to reuse established con-
nections to neighboring systems, it can ensure intrusion de-
tection systems that raise alarms for unexpected connections
cannot detect its operation. Moreover, by doing so, the attack
can bypass the authentication phase required for establishing
a new connection. ShadowMove attack is noteworthy from
both a host security perspective and a network security per-
spective: at the host level, ShadowMove abuses resources
owned by a victim process (i.e., established and authenticated
network connections); on the other hand, because what Shad-

owMove abuses are sockets, its attack actions extend to the
network level, by blending malicious network traffic with
benign network traffic.

2.1 Fundamental Weaknesses Exploited by
ShadowMove

Two fundamental weaknesses in the existing computing
environment enable ShadowMove attacks. The first weakness
stems from the two conflicting but essential requirements,
namely process isolation and resource sharing, in commodity
operating systems such as GNU Linux and Microsoft Win-
dows. The next weakness arises from the fact that many of the
existing networking protocols lack proper built-in message
origin integrity validation mechanisms, which makes them
susceptible to message injection attacks.

Process isolation and process (resource) sharing are con-
flicting requirements. A process has a virtual address space,
open handles to system objects, and other attributes. All pro-
cesses in an operating system must be protected from each
other’s activities, for reliability and security reasons [52]. The
protection mechanism of a modern OS isolates the access
to different kinds of resources (e.g., CPU, memory, and I/O
devices) among processes. For example, memory isolation
puts each process into its own “address space”. On the other
hand, modern OSes support sharing among processes because
sharing of data/resources can be useful. Take socket sharing
for example, one process first creates sockets and establishes
connections, then it hands off those sockets to other processes
that will be in charge of information exchange through those
sockets. However, sharing among processes has risks, so it
has to be carefully controlled. Modern OSes assume that
processes that share resources trust each other by setting up
appropriate security policies to control the access to shared
objects, to ensure the safety of such sharing (e.g., [36]).

Unfortunately, the default access control policy of com-
modity OSes suffers from wrong assumptions about process
trust relationship. For example, the built-in Windows security
policy allows processes by the same user to share their open
handles to resources, and the built-in Linux policy allows a
parent process to access memory of a child process through
ptrace [3]. These default allow policies assume a trust relation-
ship among processes of the same user or between a parent
process and a child process, which is not realistic in today’s
computing environments. As a result, such default allow poli-
cies can be abused by an attacker. In this paper, we present a
concrete example, socket duplication attack, which enables a
malicious process to impersonate a legitimate process in the
interaction with an external entity over the network.

Another underlying problem that enables ShadowMove is
the lack of proper message origin integrity checks in many
application protocols such as FTP and TDS (for MS SQL). As
a result, endpoints cannot verify the origins of the messages
to ensure that the messages are not interleaved by malicious
actors. An attacker who duplicated a socket can interject a

request in between requests of a client and mislead the server
to think the original client sent it, thus processing the request.

We can divide application protocols into three categories
with regard to enforcing message origin integrity:

• No origin integrity enforcement. Such protocols do not
have any built-in mechanisms that enable the server to
check the origin integrity of the received messages, so any
proper message that conforms with the protocol is accepted
by the server. They are susceptible to ShadowMove attacks
and one representative protocol is FTP.

• Inadequate origin integrity enforcement. In these proto-
cols, the server generates a random nonce for the client to
use along with its requests, and the server uses this nonce
to validate the origin of received requests. Unfortunately,
these protocols are not safe against ShadowMove because
the attacker can wait for the client to create new connec-
tions and listen to the response from the server to learn the
nonce. One representative protocol is WinRM.

• Adequate origin integrity enforcement. In these proto-
cols, part of the information needed for validating origin
integrity is generated by the client and not by the server. In
this case, there is no way an attacker can learn that piece
of information by listening to server response. These proto-
cols are immune to ShadowMove and one representative
protocol is SSL.

2.2 Threat Model
We assume that attackers have established a foothold on a

victim system under a normal user’s privilege, and they want
to make a lateral movement towards the critical asset(s). The
attackers have to run malware to achieve this. We assume
that the victim process whose TCP connection is going to be
hijacked is not aware of the malware process.

Demonstration Scenario We use an Employee Self-
service Application of a company as an example. This is
a typical multi-tier enterprise application that can be accessed
from a browser. Below is the description of the components
of such a system:
• Employee desktop computers, which run the web client.

Some employees are IT personnel at the same time, and
they need to occasionally push content to the application
server, so their computers have file copying tools (such as
FTP) installed.

• Application server, which runs many applications such as
payroll, stock, health insurance, retirement plan, and travel.

• Database server, which stores personnel information such
as DOB, SSN, contact info, and salary, and is accessed by
the application server.
In this example, attackers landed on an employee desktop

(via spearphishing), and this employee happens to be an IT
personnel. The critical assets that the attackers go after is em-
ployee information stored on the database server. Therefore,
attackers need to move from the desktop to the application

Figure 2: ShadowMove Architecture

server then to the database server. Moreover, they need to
have some tool persist on the database server in order to get
daily reports about updates to employee records.

To move from the desktop to the application server,
the attacker can leverage the FTP connection (see Sec-
tion 4.2) to copy a piece of malware to the applica-
tion server and wait for the malware to be executed. For
example, it is common that an application server can
run an external program (e.g., data processing app im-
plemented in C) in a path specified in a configuration
file [4]. The configuration file may contain “commandname =
C : \users\alluser\appdata\updater\d panalyzer.exe” and
based on this the application server executes d panalyzer.exe
once some relevant event is triggered. To keep the application
server up to date, an IT personnel is authorized to copy files
to the application server in order to update d panalyzer.exe.
Under this circumstance, the attacker can leverage the FTP
connection to copy a piece of malware to the application
server to replace the legitimate d panalyzer.exe and then wait
for the malware to be executed by the application server. The
attacker can get the configuration file’s content via the same
FTP connection.

When the malware is launched on the application server
(e.g., as d panalyzer.exe), it can leverage the database con-
nection (such as Microsoft SQL discussed in Section 4.3)
between the application server and the database server to
copy and launch further malware on the database server.

3 ShadowMove Architecture and Design
Figure 2 depicts the overall architecture of ShadowMove,

which consists of six major modules: Connection Detector,
Socket Duplicator, Peer Handler, Network View Manager,
Lateral Movement Planner, and Plan Actuator.

Central to the ShadowMove design is the notion of Network
View, which represents a model of the normal network com-
munication pattern in the victim environment, collectively
maintained by ShadowMove instances running on different
victim systems. Figure 6 gives an example network view. Each
ShadowMove instance maintains two views: the local view
is based on the current connections in the local system, and
the global view is constructed by exchanging and propagating
information among ShadowMove instances.

The Connection Detector module (Section 3.1) is respon-
sible for detecting newly-established TCP connections that
can be exploited for lateral movement and requesting the
Socket Duplicator to duplicate the corresponding socket. It
also detects the teardown of TCP connections and notifies the
Network View Manager.

The Socket Duplicator (Section 3.4) duplicates sockets
owned by target processes and passes along such sockets to
its caller together with additional contextual information such
as the PIDs of the owner processes.

The Peer Handler (Section 3.2) communicates with neigh-
boring ShadowMove instances to synchronize their views of
the compromised network. On one hand, it updates the Net-
work View Manager with information learned from its peers
(e.g., newly discovered hosts); on the other hand, it sends the
network view of the local ShadowMove instance to its remote
peers.

The Network View Manager (Section 3.3) combines a few
methods to maintain a global view of the victim network,
based on notifications from the Connection Detector and the
Peer Handler. It also determines the service type supported
by each duplicated socket and maintains the liveness of the
duplicated sockets.

Periodically, the Lateral Movement Planner (Section 3.5)
creates a lateral movement plan based on the current network
view and the capabilities supported by the duplicated sockets.
The plan specifies the socket that must be used, the type of
action that must be carried out, and the payload.

Finally, the Plan Actuators (Section 3.6) execute individual
steps in a lateral movement plan, such as transferring a file
to the remote server, by sending packets to and/or receiving
packets from the given sockets.

3.1 ShadowMove Connection Detector
Two approaches exist for detecting and tracking TCP con-

nections. First, we can periodically poll TCP connection in-
formation and compare the returned information with the
result of the previous call. This approach is used by tools
such as TCPView on Windows. A second approach is event-
driven in which we register an event handler for the creation
or teardown of connections. In Windows OS, one can get in-
formation about connection state changes by creating a WMI
(Windows Management Instrumentation) filter and registering
a WMI event consumer [57]. However, registering a WMI
event consumer requires administrative privilege.

As a result, we choose the first approach. By calling
GetTcpTable2 and GetTcp6Table2 on Windows, or by run-
ning the command netstat -ntp on Linux, the Connec-
tion Detector can get basic information about TCP connec-
tions, such as connection state, local IP address, local port,
remote IP address, remote port, and the ID of the owner pro-
cess [42]. From the process ID it can further get the process
name. When the Connection Detector observes a connection
state change from non-ESTABLISHED to ESTABLISHED,

Figure 3: ShadowMove - Synchronization Signal

it invokes the Socket Duplicator about the new TCP connec-
tion and then notifies the Network View Manager to add the
duplicated socket into the pool. On the other hand, when it
observes a connection state change from ESTABLISHED to
non-ESTABLISHED, it notifies the Network View Manager
to remove a duplicated socket from the pool because the asso-
ciated TCP connection becomes unusable. The notification
message contains basic information of the TCP connection
and the owner process name.

On Windows, the Connection Detector does some simple
filtering of TCP connections before it notifies the Socket Du-
plicator or the Network View Manager. Specifically, it checks
whether the ShadowMove process has enough permission
to open the owner process of a TCP connection with PRO-
CESS_DUP_HANDLE access flag, and it skips those con-
nections for which the ShadowMove process does not have
enough permission.

3.2 Peer Handler
The Peer Handler module enables ShadowMove instances

to share their views of the compromised network with their
neighboring ShadowMove instances. Each instance I uses the
shared information to construct a global view of accessible
systems via already-compromised systems. The Peer Handler
module is executed in a separate worker thread.

Upon execution, the Peer Handler attempts to locate a con-
figuration file in the working directory of I. This file contains
information about the TCP connection that was used to move
I to the current system. ShadowMove then determines the
corresponding server process and the socket that were mis-
used by the predecessor ShadowMove instance. It duplicates
this socket by calling the Socket Duplicator module and then
continuously listens to the incoming traffic of the duplicated
socket.

As shown in Figure 3, on a regular basis, the predeces-
sor ShadowMove suspends the client process and then sends
a special request to the remote server. Upon receiving this
“signal” message, the successor ShadowMove suspends the
server process. Then these two ShadowMove instances can
synchronize their knowledge about the network using a proto-
col similar to the distance vector routing protocol [56].

3.3 Network View Manager
This module maintains a global view of the victim network

based on information received from the Connection Detector
and the Peer Handler.

It manages the Duplicated Socket Pool and keeps a tuple
<connection state, local IP address, local port, remote IP ad-
dress, remote port, service type, owner PID, owner process
name> for each socket in the pool. Most of these fields are
passed in by the Connection Detector, except for service type
(or protocol), which it determines in a sub-module called
Layer 7 Protocol Detector by combing a few methods. First,
it guesses from the destination port because many services
run behind well-known default ports [11], e.g., the default
port number for FTP is 21. Second, it guesses from the owner
processes if they are well-known client-side tools for some
services, e.g., ssms.exe or the Microsoft SQL Server Manage-
ment Studio is a client of SQL server. Finally, if the port num-
ber and the owner process information are not sufficient for a
reliable guess, it passively sniffs the network traffic by calling
the recv API on each socket and setting the MSG_PEEK
flag. Then it analyzes the received payload to recognize the
application-level protocol, leveraging existing protocol analy-
sis techniques such as automatic protocol detection feature in
Suricata [55].

Based on the Duplicated Socket Pool, the Network View
Manager computes a local view, which can be represented
by several predicates shown in Table 2: a system predicate
defines the IP address of a host, and a connected predicate
defines connections between two systems. When it receives
notifications from the Peer Handler, which are system and
connected predicates shared by the neighbors, it updates its
global view by merging the predicates into its local view.

It is worth noting that, in Windows, closing a socket does
not always entail in TCP connection termination handshake.
The termination handshake occurs only when the last socket
descriptor is closed. As a result the connections will remain
open even if owner processes close their sockets. However, a
TCP connection may be not usable because of several reasons
such as network failure, remote process crash, or connection
inactivity timeout. To prevent connection inactivity timeout to
occur, the Network View Manager sets the SO_KEEPALIVE
flag for all duplicated sockets using setsockopt API func-
tion; by doing so, keep-alive packets will be sent through
these connections automatically.

3.4 ShadowMove Socket Duplicator
The Socket Duplicator duplicates sockets associated with

given TCP connections when it receives a request from the
Connection Detector or the Peer Handler. The underlying idea
of our approach is to duplicate the socket inside the target
process and to use the resulting socket to secretly access the
established TCP connection.

3.4.1 Socket Duplication on Windows
On Windows, one can call DuplicateHandle API to du-

plicate different types of handles from a remote process. How-
ever, as mentioned in DuplicateHandle documentation [40],
this function cannot be used to duplicate sockets.

Although Windows offers an API named
WSADuplicateSocket to duplicate a socket, we can-
not directly use this function as it requires cooperation
between the processes. As mentioned in [41], a typical sce-
nario of using this function goes as follows. A source process
creates a socket and wants to share it with a destination pro-
cess. First, the source process calls WSADuplicateSocket
to get a special WSAPROTOCOL_INFO structure. This info
structure is given to the destination process via inter-process
communication (IPC) mechanism. The destination process
passes the info structure to WSASocket to reconstruct the
socket on its side. The main challenge in this approach (i.e.,
using WSADuplicateSocket) is that both processes must
cooperate with each other to duplicate a socket, which is
not the case in our scenario where the attacker wants to
duplicate a socket from an unwary victim process. One way
to address this issue is to inject code into the victim process
to implement the missing steps due to a lack of cooperation.
However, existing defense mechanisms such as Windows
Defender ATP flag usages of common process injection
techniques [48], which makes the solution less attractive.

We devised a novel technique, by using Windows APIs in
an unconventional way, that enables an attacker process to
duplicate a socket from a target process without requiring
its cooperation. Table 1 depicts the steps that the attacker
process performs to duplicate a socket from a target process,
assuming it knows the process ID of the target, thanks to
real-time connection detection (Section 3.1). First, it opens
the target process by using OpenProcess to enumerate all
of the open handles in the target. The attacker process only
seeks for file handles with the name of \device\afd (steps
3-5, and afd stands for ancillary function driver). During this
operation, the attacker process duplicates all file handles as
it is required for reading the name of a handle. We discover
that the attacker process could treat these duplicated afd han-
dles as sockets. To locate the exact socket corresponding to a
TCP connection, the attacker process obtains the remote IP
address and remote port to which the afd handle of socket is
connected (by invoking getpeername) and compares them
with the information passed in by the Connection Detector. If
there is a match, the attacker process passes the afd handle to
WSADuplicateSocketW to obtain the information necessary
for duplication of the original socket. After obtaining the pro-
tocol info structure, the attacker process calls the WSASocketW
function to duplicate the socket. This socket is then saved in
the Duplicated Socket Pool together with context informa-
tion such as the owner PID, the owner process name, local IP
address, local port, remote IP address, and remote port.

It is also worth noting that on Windows, the TCP con-
nection tables for IPv4/6 only contain information about the
original socket descriptors not the duplicated ones and the
owner PID of a socket descriptor will never change even after
the termination of the owner process. This means that conven-
tional tools such as netstat, which rely on Windows APIs

to retrieve TCP connection tables, cannot be used to detect
whether a connection is duplicated and nor its duplicators.

3.4.2 Deep Dive into Socket Duplication on Windows
To understand why ShadowMove’s socket duplication

works, it is necessary to first understand socket context. The
winsock2 libraries maintain socket context for each socket
handle in a number of data structures at different layers
([58] and Figure 4). Inside WS2_32.dll, there is a hash table
called sm_context_table, which maps a socket handle to
a DSOCKET object that stores information about the socket
such as the process and service provider. At the next layer,
mswsock.dll (a service provider), there is another hash table
called SockContextTable, which maps a socket handle to a
SOCKET_INFORMATION object, which stores information such
as socket state, reference count, local address, and remote
address. Every user-level operation on the socket, such as
connect, send, and recv, has to refer to and may change
the socket context (e.g., the remote address and the refer-
ence count). Moreover, such context information including
the hash tables is maintained for each process. The kernel
side of socket functionality, which is the ancillary function
driver or AFD.sys, also maintains socket context information
(e.g., local address and remote address), which is necessary
for the kernel driver to eventually construct network packets.

What happens during normal socket sharing via
WSADuplicateSocket. The normal socket sharing on Win-
dows [40] involves three steps, as illustrated in Figure 4.
When the source process invokes WSASocket to create a new
socket, it does three things [58]: (1) calling NtCreateFile
to get a socket handle (e.g., Handle 1), (2) creating a
new SOCKET_INFORMATION object for Handle 1, and (3)
calling NtDeviceIoControlFile to set the kernel side
context information of Handle 1. Next, when the source
process invokes WSADuplicateSocket to share Handle 1
with the destination process, it first creates a duplicate
of Handle 1 (e.g., Handle 2), and then puts Handle 2 in
the dwProviderReserved field of a WSAPROTOCOL_INFO
structure to be shared with the destination process [59].
When the destination process invokes WSASocket with the
WSAPROTOCOL_INFO structure as one parameter, WSASocket
extracts Handle 2 from the dwProviderReserved field and
uses it to call NtDeviceIoControlFile to get the kernel side
context information; once this is done, it uses the obtained
information to construct an SOCKET_INFORMATION object for
Handle 2, which makes Handle 2 a functional socket handle.

What happens during ShadowMove’s socket hijack-
ing (Table 1). Using the same scenario above, our Shad-
owMove attack can secretly share the socket with handle
Handle 1 without the cooperation of the source process. Shad-
owMove also uses a combination of WSADuplicateSocket
and WSASocket, but it does one more step as prepara-
tion: it first creates a duplicate of Handle 1 by calling
NtDuplicateObject; this is necessary because Handle 1

Table 1: ShadowMove Socket Duplication Given Owner Process ID, Remote IP, and Remote Port Number

Step Description Kernel/ntdll Functions

1 Open the owner process with PROCESS_DUP_HANDLE OpenProcess(PROCESS_DUP_HANDLE, , pid)
2 Foreach handle with type 0x24 (file) NtQuerySystemInformation(SystemHandleInformation, ...)
3 Duplicate the handle NtDuplicateObject
4 Retrieve its names NtQueryObject(ObjectNameInformation)
5 Skip if the name is not \device\afd
6 Obtain remote IP and remote port number getpeername(handle, ...)
7 Skip if remote IP and port do not match the input parameters
8 Call WSADuplicateSocketW to get a special

WSAPROTOCOL_INFO structure
WSADuplicateSocketW(handle, ...)

9 Create a duplicate socket WSASocketW(WSAPROTOCOL_INFO, ...)
10 Use the socket recv(), send()

is in the address space of the source process so Shadow-
Move cannot directly operate on it, but ShadowMove can
directly use the duplicate handle (e.g., Handle 1’) because
it is created in the context of ShadowMove. Next, Shad-
owMove invokes WSADuplicateSocket to share Handle
1’ with itself. As a result, Handle 2 is created and put in
the dwProviderReserved field of the WSAPROTOCOL_INFO
structure. Finally, ShadowMove invokes WSASocket with
the WSAPROTOCOL_INFO structure as one parameter, in order
to make Handle 2 a functional socket handle. Here since
WSADuplicateSocket and WSASocket are invoked in the
same process (i.e., ShadowMove), there is no need to pass
WSAPROTOCOL_INFO structure across processes.

3.4.3 Socket Duplication on Linux
Our design of socket duplication on Linux (or *NIX in

general) is different from its Windows counterpart. Due to
a stricter process isolation, it is not possible to duplicate a
socket from another process directly, even if the other pro-
cess is owned by the same user. However, socket sharing is
supported on Linux, but it requires cooperation between the
two processes. Since ShadowMove assumes that the victim
application is not cooperative, our solution is to force the vic-
tim application to cooperate by injecting code into its address

space to set up the sharing of a socket with the ShadowMove
process. To inject code into the victim application, we create
a launcher that would run the victim application as a child
process and then leverage ptrace to inject code, in the form
of a shared library. Finally, we put the launcher version ahead
of the original victim application in the command search path,
such that the user would invoke our launcher when he/she
intends to run the victim application.

We should note that the use of process injection can jeopar-
dize the stealthiness of the ShadowMove attack on Linux,
compared with ShadowMove on Windows. However, our
Linux design still has a good chance of evading state-of-the-
art defenses. We defer a detailed discussion to the evaluation
(Section 5).

Socket sharing on Linux. To share a socket, two processes
first connect via a Unix domain socket, then the sender pro-
cess invokes sendmsg and passes the socket descriptor in the
input parameter, while the receiver invokes recvmsg and re-
trieves a (possibly different) socket descriptor from the output
parameter. When a socket descriptor is passed this way, the
underlying Linux kernel creates a new descriptor in the receiv-
ing process’ address space that refers to the same file table
entry within the kernel as the descriptor that was sent by the

Source Process

WS2_32.dll

K
er

n
el

DSOCKET

mswsock.dll

SOCKET_INF
ORMATION

U
se

r

AFD.syssocket handle context

WSASocket()

WSPSocket()

NtDeviceIoControlFile
(IOCTL_AFD_SET_CONTEXT)

Handle 1

Source Process

WS2_32.dll

DSOCKET

mswsock.dll

SOCKET_INF
ORMATION

WSADuplicateSocket()

NtDuplicateObject()

WSPDuplicateSocket()

Handle 1 Handle 2

Destination Process

WS2_32.dll

DSOCKET

mswsock.dll

SOCKET_INF
ORMATION

WSASocket()

WSPSocket()

NtDeviceIoControlFile
(IOCTL_AFD_GET_CONTEXT)

Handle 2

Handle 2

(through
protocol_

info
structure)

Step 1 Step 2 Step 3

Figure 4: Winsock Duplication
Figure 5: ShadowMove in Linux System

sending process [54].
More specifically, there are four components for a Shad-

owMove attack on Linux, which are target process, shared
library, launcher, and ShadowMove (Figure 5).

The launcher injects a shared library into the target process
by using ptrace [32, 47], which has to attach to the target
process first. The current Linux systems impose strict control
over ptrace. Specifically, by default the Yama Linux Security
Module (LSM) [3] only allows ptrace from a process with
sudo privilege, or from a parent to a child process. We use
the second option because for this we don’t need privilege
escalation. Therefore, our launcher runs the target application
as a child process and then attaches to the target process
using ptrace. After that, it invokes __libc_dlopen_mode
for loading the shared library into the target process. Our
launcher is based on an open source project [30].

We developed a prototype of the shared library, whose
constructor function (executed automatically when the library
is loaded) enumerates open sockets in the target process. For
each open socket, it makes a copy of that socket using dup
method, connects to the ShadowMove process through a Unix
domain socket, and shares the duplicated socket using that
channel. If there is no open socket, it sleeps for a while and
tries to find open sockets again. To avoid blocking the main
thread of the target process, we create a new thread that is
dedicated to socket duplication.

To make the victim user run our launcher inadvertently
when he/she intends to run the target application, we give
the launcher the same name as the target application and
we ensure that our launcher is ahead of the target appli-
cation in the command search path, which can be done
by changing the PATH environment variable. To make the
attack stealthier, we can avoid changing the PATH envi-
ronment variable if any location on the current command
search path is (1) writable by the victim user and (2) be-
fore the location of the target application: in that case we
just need to copy our launcher in that writable location. Oth-
erwise, we would create a folder that appears benign (e.g.,
/home/alice/.npm-packages/bin that can be used by a be-
nign application called npm [8]), copy our launcher there, and
add the new folder location to the PATH environment variable
by adding export PATH=/path/of/the/launcher:$PATH
into the victim user’s .bashrc.

For example, if ftp is the target application then the
launcher will be named ftp. When the user tries to run FTP,
the launcher will be executed and it will run the original FTP
application as a child process.

3.4.4 The Race Between the Benign Application and the
Attack

We should note that in the proposed attack, the socket is
shared between the original client and the attacker, which can
cause a race condition in receiving and sending data from the
remote endpoint. The one who calls the recv function first

Table 2: ShadowMove Predicates to Model Target Networks

Predicate Definition
system system(ip_addr)
connected connected(src_ip, dst_ip, service)
committed comitted(src_ip, dst_ip, action)
capability capability(service, action).

will get the data from the input buffer and the one who calls
send function first will send the data to the server. This may
result in reading partial responses from the server or sending a
garbled request to the server. To prevent such a possibility, at-
tackers can simply pause the client process temporarily while
they are sending/receiving data from the server and resume the
client process afterwards. To suspend the client process, the
attacker can pause all its threads by calling SuspendThread,
and to resume the client process, the attacker can resume all
its threads using ResumeThread.

3.5 Lateral Movement Planner (LMP)
The Lateral Movement Planner (LMP) can empower the

adversary to coordinate attack actions on multiple victim
systems that can optimize the attack effectiveness and stealth-
iness. For example, suppose the attacker in Figure 6 has com-
promised hosts A and B, which both connect to host C, but
their individual connections are not sufficient for a lateral
movement (e.g., A’s connection can only copy malware, and
B’s connection can only execute malware). In this case, a
coordinated plan that involves both A and B (e.g., A copies
malware to C, then B remotely launches malware on C) would
allow a lateral movement to C, thus making the attack more
effective. For another example, if there exist multiple paths
to the target system, a coordinated plan would allow the at-
tacker to use the shortest path to send payload to / receive
data from the target, thus making the attack stealthier. We
assume that attackers look for a specific set of targets that can
be recognized when they are reached.

We formulate the attack planning problem in Prolog. We
uses the predicates in Table 2 to specify the current state of
the compromised network: system and connected specify the
reachable systems and their interconnections, and committed
defines the action that has been performed on a system by
a ShadowMove instance. For each protocol, we also use the
capability predicate to specify the actions that attackers can
do if they hijack the corresponding TCP connection.

Figure 6 illustrates an snapshot of system B’s (with IP
address 10.10.10.50) ShadowMove knowledge base, which
consists of a set of facts that represent a network with three
compromised systems and one target. This knowledge base is
constructed from the global view shared among all Shadow-
Move instances. LMP uses the following rules to determine
whether a specific operation can be carried out on a remote
system Y from a given system X.

r e m o t e O p e r a t i o n (X, Y, Act ion , Route):−

Figure 6: Example ShadowMove Network View and Knowl-
edge Base

c o n n e c t e d (X, Y, S) , c a p a b i l i t y (S , Ac t i on) ,
Route =[X | [Y]] .

r e m o t e O p e r a t i o n (X, Y, Act ion , Route):−
c o n n e c t e d (X, Z , S e r v i c e) ,
c a p a b i l i t y (S e r v i c e , Ac t i o n) ,
r e m o t e O p e r a t i o n (Z , Y, Act ion , R) ,
Route =[X | R] .

By using remoteOperation, a ShadowMove instance can
check whether there exists a path between two systems that
would allow them to perform a specific operation such as
execute or upload a file. For example, the attacker can execute
the following query:
r e m o t e O p e r a t i o n (’ 1 0 . 1 0 . 1 0 . 1 0 ’ , ’ 1 0 . 1 0 . 1 0 . 1 0 0 ’ ,

’ upload ’ , R) .

which returns [′10.10.10.10′,′ 10.10.10.30′,′ 10.10.10.100′].
This result means that an attacker who landed on 10.10.10.10
and has moved to 10.10.10.30 can copy malware from
10.10.10.30 to 10.10.10.100 via one of the ShadowMove
actuators.

We can use remoteOperation predicate to construct more
complex predicates such as commitExecuteOperation:
c o m m i t E x e c u t e O p e r a t i o n (X, Y) :−

c o n n e c t e d (X, Y, Z) ,
c a p a b i l i t y (Z , e x e c u t e) , o r i g i n (I) ,
r e m o t e O p e r a t i o n (I , Y, upload , _R) ,
commit ted (_K , Y, u p l oad) .

In order to run ShadowMove on a target system from a
compromised system, not only there must be a connection
between these two systems that allows the ShadowMove in-
stance to perform execute operation, but the file must has also
been uploaded to that target system by one of the Shadow-
Move instances prior to the execute operation. For example
in Figure 6, system B can launch ShadowMove on system
C (target) if and only if (1) there is a connection that allows
system B to execute a file on system C:

c o n n e c t e d (SystemB , SystemC , Z) ,
c a p a b i l i t y (Z , e x e c u t e)

and (2) the ShadowMove binary file has been uploaded on
system C:

o r i g i n (I) ,
r e m o t e O p e r a t i o n (I , systemC , upload , _R) ,
commit ted (_K , systemC , u p l oa d) .

If based on its current knowledge base, no ShadowMove in-
stance has uploaded the file on the target, then system B
must wait until the upload operation is committed by one
of the ShadowMove instances, such as the one on system A.
To obtain a list of target systems that system B can launch
ShadowMove on, the ShadowMove instance on system B can
execute the following query:
f i n d a l l (Ta rge t ,

c o m m i t E x e c u t e O p e r a t i o n (’ 1 0 . 1 0 . 1 0 . 5 0 ’ , T a r g e t) ,
E x e c u t e L i s t) .

If the returned ExecuteList is not empty (e.g.,
[’10.10.10.100’]), an instance of ShadowMove can be
started on a new target system (e.g., 10.10.10.100). This is an
illustration of lateral movement that requires coordination
among different paths, which is only possible when a global
view of the compromised network is available.

3.6 Lateral Movement Actuator
Lateral Movement Actuator (LMA) is a module manager

containing several actuation modules. Each of these mod-
ules is responsible for handling one protocol such as TDS
(Section 4.3). LMA can act both passively and actively. In
the passive mode, the module only reads from a socket by
passing MSG_PEEK flag to recv API call. In this way, the
input buffer is not emptied, so the original process can read
the content. In the active mode, the module reads from the
socket without passing the MSG_PEEK flag; hence the recv
call consumes the data in the input buffer. In this state, the
module also writes to the socket out buffer to send crafted
messages.

In some protocols, we need to learn a few secrets before
being able to craft valid messages (e.g., shellID for WinRM
in Section 4.4). In these scenarios, an actuator module starts
in the passive mode, sniffing the receiving messages to learn
such secret values. After learning all of such required data
elements, the actuator module can switch itself to active mode
and start communicating with the remote endpoint. It is worth
noting that LMA module can only read incoming messages;
it cannot read the outgoing messages as to the best of our
knowledge there is no such API that allows one to read from
the socket output buffer. In our current prototype, LMA has
three actuation modules for FTP, MS SQL, and WinRM pro-
tocols. However, one can add a new protocol to LMA by
implementing an interface called IPModule.

4 Prototypes for ShadowMove Actuators
We implement a prototype of the ShadowMove design on

Windows in 2,501 lines of C/C++ code. The lateral movement
planner is based on SWI-Prolog [14], a free implementation of
the programming language Prolog. The prototype [16] show-
cases common functionalities such as connection detection,

socket duplication, network view synchronization, and lateral
movement planning; it also overcomes the challenges of ac-
tuation, i.e., how to make the injected packets conformant to
the respective protocols and yet useful for lateral movement
(such as uploading malware and launching malware), which
is specific to individual application protocols.

In this section, we present three ShadowMove actuators
that leverage FTP, MS SQL, and WinRM. The criteria for
choosing these protocols is their lack of support for message
origin integrity, as we discuss in Section 2.1. Specifically,
FTP and Microsoft SQL have no origin integrity enforcement,
and WinRM has inadequate origin integrity enforcement.

4.1 ShadowMove Instantiation
For each experiment, we first prepare a target environment

that includes the victim applications, such as one machine
running a FTP client and another machine running a FTP
server. We configure the applications so that they run nor-
mally with their intended purposes. We launch ShadowMove
PoC in the victim client machine. We observe that the PoC
periodically detects candidate TCP connections to abuse once
they are established (the victim client application does not
have to start before the PoC), duplicates the corresponding
sockets, and determines the protocol running over the TCP
connections (e.g., FTP). The PoC periodically queries the
lateral movement planner module (by presenting its current
network view) and executes the actuator logic if the planner
returns the target of the next move (e.g., using the FTP con-
nection to copy the PoC to the FTP server). When the PoC
is started on the server machine, we see that it detects active
TCP connections (including the one with the client machine)
and duplicates the corresponding sockets. We further observe
that the PoC on the server exchanges “signal” messages with
the PoC on the client successfully, and then they exchange
their current network views. Upon doing that, the network
views on both machines are updated. Some time later, lateral
movement planner module is queried again to make the next
decision based on the new network view.

The scenario described above is common to all three actu-
ators presented in the rest of Section 4. Therefore, we omit
such details in the description of individual actuators. A demo
video of our ShadowMove PoC that leverages FTP and show-
cases the above scenario can be found at [16]. In this demo,
we start ShadowMove PoC manually after it moves to the FTP
server, but we can automatically start the PoC via WinRM, as
demonstrated in Section 4.4.

4.2 FTPShadowMove: Hijacking FTP Ses-
sions

We develop prototype systems that can hijack established
FTP connections on Windows 10 and Ubuntu 18.04. They
work under the default installation of ftp and do not require
any elevated privileges. They allow an attacker to download

and upload files to a remote FTP server without authentica-
tion.

In the FTP protocol, a client uses one TCP connection to
send commands to a server and receive the corresponding
responses from the server; this connection is called command
channel. The client also uses another TCP connection to send
or receive data such as file contents; this connection is called
data channel. A client can open multiple data channels for
a given command channel. Authentication is required only
for establishing the command channel, which means a client
does not need to re-authenticate itself for creating a new data
channel. Attackers who have hijacked the command channel
can send a request to the server to open a new data channel
for themselves, thus avoiding any collision with the client
contents that are being transferred on existing data channels.
However, attackers still should adopt a strategy to prevent a
race condition in the shared command channel. Note that one
cannot detect the attack simply by monitoring the creation
of new data channels because the legitimate client may open
new data channels as well.

A FTP client can request for creating a new data channel
in two ways: active FTP and passive FTP. In the active FTP,
the client sends Port command to the server specifying the
port that server needs to connect back to establish the con-
nection. In the passive FTP, the client send PASV command
to server, asking the server to listen to a port that client can
connect in order to create a new data channel. In a nutshell,
the difference between these two modes is with respect to
who initiates the new TCP connection: server in active mode,
and client in passive mode are supposed to connect to the port
specified by client and server, respectively. In our prototype,
we implemented the passive FTP for demonstration. However,
active FTP can also be implemented with negligible effort.

In passive FTP, the client sends PASV command to the
server, and the server responds back by giving the information
about the endpoint, including IP address and port, that the
client must connect to in order to create a new data channel.
The PASV is documented in RFC-959.

Experiment Setup We deployed a vsftpd server on a
Linux-based virtual private server hosted on the Internet. For
the legitimate client, we used the ftp command and Windows
Explorer to connect to the configured server. The anony-
mous login is blocked on the server so the client needs to send
a valid username and password to connect to it. As can be
seen in our demo video at [6] and the top half of Figure 7, the
client exchanges several messages with the server in order to
login to the server. After that, we launch FTPShadowMove
under the same user account as the ftp client.

Our FTPShadowMove PoC first hijacks the FTP connection
by duplicating the corresponding socket, and then it sends sev-
eral commands to upload a binary file to a specific directory
on the server. The specific commands (such as CWD /files/)
and the server responses are shown in the bottom half of Fig-
ure 7. Specifically, we can see that the server responded to the

Figure 7: ShadowMove Injects Commands to Duplicated FTP
Socket in Order to Open a New Data Channel Connection

PASV request and asked FTPShadowMove to connect back
to 54.36.162.222 on port 45307 (i.e., 176∗256+251). FTP-
ShadowMove then requests to upload a file named PoC2.txt
on the server. After receiving response code 150 from the
server, FTPShadowMove opened a TCP connection to the
specified remote endpoint and sent the content of the file
to the opened connection. The server interpreted the file as
binary content and stored it in / f iles/PoC2.txt on the server.

Our prototype on Ubuntu 18.04 uses the same FTP com-
mands mentioned above, and a video clip of how it works can
be found at [15].

In our prototype systems, we only used a few FTP com-
mands. However, there are many other FTP commands that
can be utilized by attackers. A complete list of all possible
FTP commands can be found at [5]. Specifically, The FTP
SITE command allows a user to execute a limited number of
commands via the FTP server on the host machine [53]. No
further authentication is required to execute the command.
The commands that may be executed vary from system to
system, and some useful ones include EXEC and CHMOD. The
EXEC command executes provided executable on the server,
which can be used to start malware. Fortunately, on many
systems the SITE command is not implemented, and it is also
recommended that the SITE command be disabled on FTP
servers if possible.

4.3 SQLShadowMove: Hijacking Microsoft
SQL Sessions

We have confirmed that it is possible to (1) hijack Microsoft
SQL connections to upload malware executables from a SQL
client machine to a SQL server, and (2) execute the malware
on the SQL server.

Experiment Setup. We use Microsoft SQL Server Man-
agement Studio 17 as the legitimate SQL client, and Microsoft
SQL Server version 14.0.1000.169 as the server. We configure
a user on the SQL server who can create databases and tables.

We first launch the SQL client and login to the server. Then
we run our proof-of-concept SQLShadowMove. We confirm
that our proof-of-concept works under the default installation
of Microsoft SQL and normal application settings.

Our SQL hijacking scheme requires several preconditions
to work successfully: (1) the traffic is not encrypted, (2) there
is a folder on the SQL server writable by the SQL server
process, (3) the SQL client has successfully authenticated to
the SQL server, and (4) the SQL client assumes a role that is
allowed to create a table on the SQL server.

The above preconditions can often be satisfied. By de-
fault the Microsoft SQL traffic is not encrypted, and the
%TEMP% folder is always writable by any process on the SQL
server [33]. Moreover, the SQL server is almost stateless. The
client and the server uses the TDS (Tabular Data Stream)
Protocol [44] to communicate. Although several fields in the
TDS header are designed for maintaining some states, they
are optional or are not used by the current implementation.
For example, the SPID field in the TDS packet header is the
process ID on the server corresponding to the current connec-
tion. If this ID is strictly checked, the attacker has to somehow
learn it before fabricating a rogue packet. Unfortunately, this
field is not required, and a value of 0x0000 is acceptable by
the server. Similarly, two more fields are defined but ignored:
PacketID and Window.

There are several types of TDS packets. The most relevant
type to our attack is the Batch Client Request type [45], whose
payload can be a Unicode encoding of any SQL statement,
and there is no checksum in the packet header. This makes it
straightforward to capture a real Batch Client Request packet
and then use it as a template to create new rogue requests by
replacing the payload with new Unicode strings; in our case,
such strings correspond to a series of SQL statements.

SQLShadowMove first detects a TCP connection created
by the SQL client process and duplicates the corresponding
socket. Then it uses the duplicated socket to send a series of
Batch Client Request packets to the SQL server, and receives
any response packets from the server. The payload of these
Batch Client Request packets consists of SQL scripts that
upload an executable file to the SQL server and execute it.

Specifically, the SQL scripts first create a table on the SQL
server, then they insert chunks of bytes from the executable
file into the table. Finally, they invoke the bcp command to
export content of the table to a regular file on the server, thus
restoring the original executable file. The pseudo code of the
SQL scripts is shown in Figure 8.

With the executable on the SQL server, our prototype can
further run it through a SQL statement.

To experimentally confirm the feasibility of SQLShadow-
Move, we develop a simple Windows application (named
notepad.exe) to represent a piece of “malware”. This applica-
tion creates a file (named notepad.txt) in the same folder as
the application executable and writes the current date and time
into that file. Then we generate SQL scripts to upload the sim-

Figure 8: SQL Scripts Used by SQLShadowMove

ple “malware” to %T EMP%\notepad.exe on the SQL server
and run it. After we run the proof-of-concept of SQLShadow-
Move, we can visually confirm that first notepad.exe appears
on the SQL server, and then notepad.txt appears and its con-
tent matches the time and date on the SQL server. A video
clip of how SQLShadowMove works is available at [17].

Note that in order to run the bcp command or the executable
file, xp_cmdshell has to be enabled on the SQL server. How-
ever, this is not a hurdle for our prototype because our SQL
scripts enable xp_cmdshell before using it.

4.4 WinRMShadowMove: Remote Execution
Based on WinRM

Windows Remote Management (WinRM) is a feature of
Windows that allows administrators to remotely run manage-
ment scripts [39]. We have confirmed that it is possible to
hijack WinRM sessions to run malware on a remote machine.
We assume that the remote machine is running the WinRM
service and the malware has been uploaded to the remote
machine and it just needs to be launched.

4.4.1 Brief Introduction to the WinRM protocol
WinRM protocol [39, 49, 60] uses HTTP to communicate

with the remote server. To authenticate with remote machine
WinRM has six authentication mechanisms: Basic, Digest,
Kerberos, Negotiate, Certificate and CredSSP. By default,
it uses Negotiate. A WinRM client first authenticates with
the WinRM server. After authentication the WinRM client
receives a shellID from the server, which is used in later com-
munication. Besides shellID there are a few other IDs in every
request message. The messageID is used to pair a response
message with the corresponding request message, and in the
response message, the request messageID is present as the
“RelatesTo” field. Figure 9 illustrate the message exchanges
during a WinRM session.

4.4.2 Experiment Setup
To prepare the environment for WinRM hijacking, we first

set up WinRM for a normal application scenario on Windows
10, which includes enabling WinRM on both the server and
the client, and adding the server as a trusted host on the client
machine. Then we can use the commandline tool winrs on
the client machine to run commands on the server.

Figure 9: ShadowMove Injects Attack Payload to Execute a
Binary in the Remote System.

However, ShadowMove does not work under the above
default setting because WinRM traffic is encrypted by de-
fault. In order for our WinRMShadowMove PoC to work,
an administrator has to configure the WinRM server to al-
low basic authentication and to allow transfer of unencrypted
data. We should note that this kind of configuration is not rare
because it can get WinRM to work quickly, and some third
party WinRM client and libraries [1] require unencrypted
payload to communicate with the WinRM server. We use
this configuration in our experiement, and more details of the
configuration can be found in the Appendix (Section A).

4.4.3 Hijacking WinRM
To demonstrate how WinRMShadowMove works, on

the client machine, we run the commandline winrs -un
-r:http://host_ip:5985 -u:user -p:pass cmd, which
will create a new winrs process and open a command shell
to the remote machine. The -un flag specifies that the request
and response messages will not be encrypted. Concurrently
in another terminal, we run WinRMShadowMove.

As the winrs process starts execution, it establishes a TCP
connection to the WinRM server, which is captured by the
Connection Detector. As a result, the Connection Detector
notifies the Socket Duplicator, which finds and duplicates
the socket inside the winrs process. WinRMShadowMove
first runs in the passive mode (i.e., peeking into the incoming
network packets through the duplicated socket) in order to
learn the shellID from the server; then it switches to the active
mode. Here we use the idea discussed in Section 3.6.

Because the WinRM server supports unencrypted payload,
we can construct a plain text HTTP payload and send it to
the server through the TCP socket. For this scheme to work,
the constructed payload must appear legitimate to the server.
After analyzing the HTTP request and response packets us-
ing Wireshark, we found that MessageID is unique for every
payload and it is actually a UUID. Therefore, we use a UUID
generator to generate messageID. Furthermore, we get the
shellID from the authentication response message. Using
these two IDs we can construct a payload to execute an exe-
cutable file on the remote WinRM server.

To learn how to construct the payload, we leveraged an
open source WinRM client called winrm4j [2] to communi-
cate with a remote WinRM server, and we use the request
packets generated by winrm4j as the template for our payload.
Figure 10 shows the payload of an example WinRM request.

Figure 10: A WinRM Request for Running malware.exe on a
WinRM Server Whose IP Address is 192.168.56.101

Before sending the payload to remote machine using the
hijacked TCP socket, WinRMShadowMove suspends the le-
gitimate process to prevent it from getting the response mes-
sage from the WinRM server. After getting the response from
the WinRM server it resumes the legitimate client. The time
interval between the suspension and resumption is very short,
so the legitimate client may not notice it.

Figure 9 shows the interleaving of the attack messages with
the legitimate WinRM messages.

5 Evaluation of ShadowMove Proof-of-
concepts

5.1 Theoretical Evaluation
As we demonstrate in Section 5.2, ShadowMove cannot

be detected by the current state-of-the-art lateral movement
detectors. In this section, we discuss the underlying reasons
that make such existing solutions ineffective in the detection
of ShadowMove lateral movements.

At the host level, to perform lateral movements, our design
of ShadowMove on Windows relies on a few API functions
that are also commonly used by other benign processes. For
example, as mentioned in [18], many processes on Windows
call OpenProcess with PROCESS_ALL_ACCESS access flag,
which is essentially asking for all possible permissions on the
target process, including permission for duplicating its han-
dles. Moreover, ShadowMove calls WSADuplicateSocket
that also has legitimate use cases such as offloading sockets to
child processes. Second, it is hard to trace back from a socket
descriptor to all processes that have access to it, because only
the process ID of the owner is recorded in a socket descriptor.

Our current design of ShadowMove on Linux requires
stronger assumptions about the attacker because it relies on
process injection to force victim applications to cooperate,

which makes it less stealthy than its Windows counterpart
(e.g., by monitoring the runtime integrity of the code sec-
tions of benign applications, one can detect the effect of code
injection [31]). Moreover, since our design may modify con-
figuration of the system (e.g., the PATH environment variable
and .bashrc), one could detect it by monitoring such changes.
However, despite these constraints, ShadowMove on Linux is
still a viable attack.

Specifically, there are practical challenges to detect Shad-
owMove attacks on Linux. To the best of our knowledge,
runtime code integrity monitoring for applications are not
supported in current Linux distributions, and known moni-
toring tools require a hypervisor (e.g., [31]) or special hard-
ware (e.g. [61]). Monitoring configuration changes to detect
ShadowMove is also non-trivial because many benign ap-
plications (such as npm [8]) also make changes to both the
PATH environment variable and .bashrc; a monitoring tool
thus has to check precise conditions (most likely application
specific) in order to avoid false alarms. As we mention in
Section 3.4.3, we hide our launcher under seemingly benign
paths (such as /home/alice/.npm-packages/bin), which
further raises the bar for detection. This is corroborated by our
experience with several popular host-based IDSes on Linux
today: OSSEC [10], Osquery [12], and Wazuh [7], which fail
to detect ShadowMove using their existing rules. Of course,
one can add new rules to detect specific instances of Shadow-
Move, but the effort will be non-trivial.

At the network level, ShadowMove tunnels its messages
through existing connections established by benign processes
on both ends. In other words, it injects its messages within
the streams of benign messages send by a benign client to
a remote service. Hence, anomaly-based solutions that de-
tect unusual new connections are oblivious to ShadowMove.
Moreover, ShadowMove begins the lateral movements after
the required authentication steps are performed by the client
and the remote server. This means that ShadowMove oper-
ations do not entail any additional authentication attempts.
As a result, those anomaly detection solutions that correlate
user login activities with network connection activities such
as [51] are ineffective.

5.2 Experimental Evaluation
In this section, we extensively evaluate ShadowMove in

the presence of host and network-based defensive mecha-
nisms that are typically found in enterprise environments.
To be more specific, we test ShadowMove against emerging
Endpoint Detection and Response (EDR) systems, top-notch
antivirus products, host-based IDSes, and network-based ID-
Ses.

We evaluate ShadowMove in the presence of emerging
Endpoint Detection and Response (EDR) systems, namely
CrowdStrike Falcon Prevent and Cisco AMP. EDRs are rele-
vant to our evaluation because some EDRs (such as Crowd-
Strike Falcon [34]) are designed to detect lateral movements.

Table 3: Effectiveness of Antivirus, IDS, and EDR Products
against FTPShadowMove (F), SQLShadowMove (S), and
WinRMShadowMove (W) PoCs. N means "not detected"
and – means "not applicable".

Type Name/Version Update F/S/W
AV McAfee/16.0 2/3/2019 N/N/N
AV Norton/22.16.2.22 2/3/2019 N/N/N
AV Webroot/9.0.24.37 2/3/2019 N/N/N
AV Bitdefender/6.6.7.106 2/3/2019 N/N/N

AV
Windows
Defender/4.18.1901.7 2/3/2019 N/N/N

NIDS
Snort/2.9.12 (Windows
and Linux) 2/7/2019 N/N/N

HIDS OSSEC/3.4.0 (Linux) 10/12/2019 N/–/–
HIDS Osquery/4.0.2 (Linux) 10/24/2019 N/–/–
HIDS Wazuh/3.10.2 (Linux) 10/24/2019 N/–/–
EDR Cisco AMP/6.1.5.10729 6/14/2018 N/N/N

EDR
CrowdStrike Falcon
Prevent/4.20.8305.0 2/11/2019 N/N/N

We also evaluate ShadowMove in presence of host-based an-
tivirus products: we choose the top four antivirus products
ranked by [50] for our evaluation (McAfee, Norton, Web-
root, and Bitdefender); we also choose Windows Defender
because it is the default AV on Windows systems. Moreover,
we choose the Snort IDS to evaluate ShadowMove against
network-based solutions (Snort rules V2.9.12 is used). Fi-
nally, for our ShadowMove design on Linux, we use three
popular host-based IDSes (OSSEC [10], Osquery [12], and
Wazuh [7]) to evaluate it.

Stealthiness against EDR and IDS solutions. We exper-
imentally confirmed that ShadowMove PoCs can evade the
detection of Strike Falcon Prevent, Cisco AMP, OSSEC, Os-
query, Wazuh, and Snort (Windows and Linux). The detailed
result is shown in Table 3. During the evaluation, we used
the default detection rules provided by such tools. We also
manually inspect these default rules to understand why they
cannot detect ShadowMove. For example, the default Osquery
rules do not mention ptrace or process injection at all.

Stealthiness against host-based antivirus products. We
also experimentally confirmed that ShadowMove PoCs can
evade the detection of the latest version of the above five AVs
on Windows 10 (These AVs do not have Linux versions). The
overall result is shown in Table 3.

Vendor feedback. We contacted Microsoft Security Re-
sponse Center (MSRC) and a case (number 46036) was
opened for our reported issue. On June 21, 2018, MSRC dis-
missed our reported issue as a vulnerability, stating that “this
behavior is by-design ... because from a system security stand-
point, one cannot duplicate a handle from a process without
already having full control over it and at that point there are
many other attacks possible.” This feedback from Microsoft

engineering team confirmed that our attack is non-trivial to
deal with because fully addressing it will require a re-design
of the access control mechanism of handles in Windows. This
also implies that techniques like ShadowMove will continue
to help attackers on Windows in the foreseeable future.

6 Discussions and Future Work
Possible mitigation of ShadowMove. ShadowMove at-

tacks can be mitigated by addressing the two fundamental
weaknesses in existing computing environments (Section 2.1).
One idea is to better isolate legitimate processes from poten-
tial attacker processes to prevent socket stealing. For example,
we can make the legitimate processes as Protected (introduced
in Vista) or Protected Process Light (introduced in Windows
8.1) processes, such that an unprotected process cannot open
legitimate processes with PROCESS_DUP_HANDLE. However,
this approach has limitations such as processes that have GUI
cannot be protected [21] and the program file must be signed
by Microsoft [27]. Another idea is to introduce strong origin
integrity mechanisms in common enterprise computing pro-
tocols, like what SSL does. However, this may break many
legacy applications.

Limitations of the current ShadowMove prototype.
First, it has to find an unencrypted TCP channel because
it is a user-level attack that cannot obtain secrets inside the
victim process. Due to this limitation, ShadowMove cannot
hijack connections for which user-level encryption is applied
to the payload. One known way to hijack encrypted connec-
tions is to inject code into victim processes, which will be
able to access plaintext messages [19]. Unfortunately, process
injection would make ShadowMove more visible to existing
detection tools (e.g., Windows Defender ATP [48]). Besides,
presence of encryption may not always be a hurdle for Shad-
owMove: there are proposals to implement encryption service
(such as TLS) in the kernel space [46], which will make the
TLS session vulnerable to ShadowMove because unencrypted
payload is sent to or received from the socket interface in
systems that deploy such kernel-level services. Second, Shad-
owmMove may not be able to get information such as the
shellID in Section 4.4 from the receiving buffer if the legiti-
mate client consumes the buffer first. However, attackers can
simply retry and they need to succeed only once to achieve lat-
eral movement. Third, our design of ShadowMove on Linux
injects code into the target process’ address space in order
to hijack its control flow, which jeopardizes ShadowMove’s
stealthiness compared with its Windows counterpart.

Other attacks enabled by socket duplication. As discov-
ered by Bui et al. [20], TCP communication among applica-
tions inside a machine (such as a browser and a backend pass-
word manager) is not totally secured. Therefore, our socket
duplication technique can be used to intercept and steal sen-
sitive data from such applications. Moreover, in this study
we try to abuse mostly client-side sockets (although we also
abuse server-side sockets to synchronize the network view,

as described in Section 3.2). However, we can use the same
technique to exploit server applications. For example, by du-
plicating sockets used by a server application, we can inject
malicious data to mount a phishing attack against a client
machine, hence providing an alternative implementation for
the attack described in [23].

7 Related Work
Traditionally, attackers exploit vulnerabilities in network

services, such as SMB or RDP, to laterally move across net-
works. However, due to the advances in defense mechanisms,
finding such vulnerabilities and exploiting them successfully
without being detected has become increasingly hard. As a
result, attackers have shifted their attention to more fruitful
approaches such as harvesting credentials from compromised
systems and reusing them to do the lateral movement. In cre-
dential dumping approach [43], attackers retrieve plaintext
account information including passwords from memory of
processes such as LSASS. Several open source frameworks
such as Mimikatz exist that can carve passwords from var-
ious locations in a system. Similarly, attacker can leverage
SSH Agent Forwarding [29] for lateral movement, in which
the attacker reuses saved SSH private keys in the memory to
log into SSH server(s). However, this technique requires a
number of special conditions, such as client and server(s) are
configured to use public/private key pairs, the client runs a
SSH key agent, the victim user has added private keys to the
key agent, and the attacker knows the usernames associated
with the private keys. Instead of retrieving the credentials, it
is also possible to harvest and reuse security tokens, such as
Kerberos TGT, Kerberos service ticket, and NTLM hash, to
get access to other systems in a network. Many APT groups,
including APT 19 and ATP 32, use such techniques to expand
their access across the target networks.

Several approaches aim to detect credential reuse attacks.
Siadati et al. [51] propose a machine learning framework
that extracts normal users’ login patterns and identifies login
attempts that deviate from such patterns as attacks that try
to reuse learned credentials in a greedy way (i.e., testing all
credentials on all reachable systems). Kent et al. [35] suggest
that user authentication graphs be used to detect credential
misuse in large-scale, enterprise networks.

The hijacking approach presented in this paper is differ-
ent from traditional hijacking such as session hijacking in
web applications and network-level TCP hijacking. Instead,
what we propose is a host-level TCP hijacking by performing
socket duplication. SSH-Jack [19] is a technique that injects
code into the memory of a legitimate SSH client in order to
establish a rogue SSH session via the SSH client, which is
trusted by the SSH server. Unlike SSH-Jack, ShadowMove is
application-agnostic in the sense that it does not need to know
the internal implementation of clients in order to inject com-
mands. ShadowMove is also protocol-agnostic and can be
extended to support other protocols. In the current prototype,

ShadowMove can handle FTP, WinRM, and TDS protocols.
SSH connection persistence (with options such as

ControlMaster, ControlPath, and ControlPersist) [9,
13] is a SSH feature that can be abused for lateral movement.
With SSH connection persistence, a master SSH client pro-
cess goes through the normal authentication steps to establish
a connection to a SSH server; then slave SSH clients can
reuse this connection to access the server without repeating
the authentication steps. Therefore, if the victim environment
has a master SSH client running, an attacker can make a lat-
eral movement to the SSH server by acting as a slave SSH
client. However, this attack requires process cooperation: a
SSH client must be configured to run as a master client, which
is not common. Unfortunately, SSH master mode configura-
tion does not require elevated privileges so an attacker can
silently change the configuration and prepare a malicious bi-
nary that launches the original SSH client in the master mode,
in a way similar to our design of ShadowMove on Linux
(Section 3.4.3). We note that this lateral movement technique
can overcome some limitations of ShadowMove because it
can abuse SSH that employs payload encryption. Therefore,
it is complementary to ShadowMove. Having said that, it is
a specific technique that only works for SSH in a particular
scenario, while ShadowMove is a general lateral movement
technique.

ShadowMove can sniff traffic, but it is different from other
traditional sniffing techniques: instead of eavesdropping on
the network, ShadowMove sniffs traffic on the host; instead
of capturing packets at the kernel level (like what WireShark
does), ShadowMove sniffs traffic at the user level. Lateral
movement usually involves privilege escalation or harvesting
of additional credentials [22]. ShadowMove does not rely on
either privilege escalation or credential harvesting, so it is a
new type of lateral movement.

8 Conclusion
We propose the ShadowMove strategy that allows APT

attackers to make stealthy lateral movements within an en-
terprise network. Built upon a novel socket duplication tech-
nique, ShadowMove leverages existing benign network con-
nections and does not require any elevated privilege, new con-
nections, extra authentication, or process injection. Therefore,
it is capable of evading the detection of host- and network-
level defensive mechanisms. To confirm the feasibility of our
approach, we have developed a prototype of ShadowMove
for modern versions of Windows and Linux OSes, which suc-
cessfully abuses three common enterprise protocols (i.e., FTP,
Microsoft SQL, and WinRM) for lateral movement, such as
uploading malware to the next target machine and starting
the malware execution on the next target. We describe the
technical challenges in ShadowMove, such as how to gen-
erate network packets that fit in the context of an existing
network connection. We also experimentally confirm that our
prototype implementation is undetectable by state-of-the-art

antivirus products, IDSes (such as Snort), and Endpoint De-
tection and Response systems. Our experience raises the bar
for lateral movement detection in an enterprise environment
and calls for innovative solutions.

9 Acknowledgement
We thank our shepherd Giancarlo Pellegrino and the anony-

mous USENIX Security reviewers for their insightful com-
ments and suggestions that help improve the quality of this
paper. This research has been partially funded by National Sci-
ence Foundation by CISE’s CNS-1566443 and gifts or grants
from Fujitsu. Special thanks also go to Dr. Qiong Cheng at
UNC Charlotte who shared her expertise in SQL scripting.

References
[1] winrm for go library. https://github.com/masterzen/

winrm. Accessed November 2018.

[2] winrm4j. https://github.com/cloudsoft/winrm4j. Ac-
cessed November 2018.

[3] Yama linux security module. https://www.kernel.org
/doc/Documentation/security/Yama.txt. Accessed June
2019.

[4] Calling external program on application server.
https://answers.sap.com/questions/7641883/calling-
external-program-on-application-server.html, 2010.
Accessed August 2019.

[5] List of ftp commands. https://en.wikipedia.org /wik-
i/List_of_FTP_commands, 2018. Accessed February
2019.

[6] Video Clip for the FTPShadowMove. http://54.36.162.
222/ShadowMoveDemo/FTPShadowMove.gif, 2018.

[7] A Comprehensive Open Source Security Platform.
https://wazuh.com/product/, 2019. Accessed October
2019.

[8] Install npm packages globally with-
out sudo on macOS and Linux.
https://github.com/sindresorhus/guides/blob/master/npm-
global-without-sudo.md, 2019. Accessed October
2019.

[9] OpenSSH/Cookbook/Multiplexing.
https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multi
plexing, 2019. Accessed October 2019.

[10] OSSEC: The World’s Most Widely Used
Host-based Intrusion Detection System.
https://github.com/ossec/ossec-hids, 2019. Accessed
October 2019.

[11] Service name and transport protocol port number reg-
istry. https://www.iana.org/assignments/service-names-
port-numbers/service-names-port-numbers.xhtml, 2019.

[12] SQL powered operating system instru-
mentation, monitoring, and analytics.
https://github.com/osquery/osquery, 2019. Accessed
October 2019.

[13] ssh_config — OpenSSH SSH client configuration files.
http://manpages.ubuntu.com/manpages/bionic/man5/ssh_
config.5.html, 2019. Accessed October 2019.

[14] SWI Prolog. https://www.swi-prolog.org/, 2019. Ac-
cessed October 2019.

[15] Video Clip for the FTPShadowMove Demo on Ubuntu.
http://54.36.162.222/ShadowMoveDemo/LinuxShadow
Move.gif, 2019.

[16] Video Clip for the ShadowMove Demo.
http://54.36.162.222/ShadowMoveDemo/Shadowmove
PrototypeDemo.mp4, 2019.

[17] Video Clip for the SQLShadowMove Demo. http://
54.36.162.222/ShadowMoveDemo/SQLShadow
Move.gif, 2019.

[18] Adam Blaszczyk. Can we stop detecting mimikatz
please? http://www.hexacorn.com/blog/2019/02/03/can-
we-stop-detecting-mimikatz-please/, 2019. Accessed
Feb 2019.

[19] Adam Boileau. Trust Transience: Post Intrusion SSH
Hijacking. In BlackHat Briefings, August 2005.

[20] Thanh Bui, Siddharth Prakash Rao, Markku Antikainen,
Viswanathan Manihatty Bojan, and Tuomas Aura. Man-
in-the-machine: Exploiting ill-secured communication
inside the computer. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 1511–1525, Balti-
more, MD, 2018. USENIX Association.

[21] Microsoft Windows Dev Center. Protecting Anti-
Malware Services. https://docs.microsoft.com/en-
us/windows/desktop/services/protecting-anti-malware-
services-, 2018. Accessed August 2019.

[22] Ping Chen, Lieven Desmet, and Christophe Huygens. A
study on advanced persistent threats. In Bart De Decker
and André Zúquete, editors, Communications and Mul-
timedia Security, pages 63–72, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[23] Weiteng Chen and Zhiyun Qian. Off-path TCP exploit:
How wireless routers can jeopardize your secrets. In
27th USENIX Security Symposium (USENIX Security
18), pages 1581–1598, Baltimore, MD, 2018. USENIX
Association.

[24] B. Deply. Mimikatz. https://github.com/gentilkiwi/
mimikatz, 2014. Accessed February 2019.

[25] S. Duckwall and C. Campbell. Hello, my name
is microsoft and i have a credential problem.
In Blackhat USA 2013 White Papers, 2013.
https://media.blackhat.com/us-13/US-13-Duckwall-
Pass-the-Hash-WP.pdf.

[26] John Dunagan, Alice X. Zheng, and Daniel R. Simon.
Heat-ray: Combating identity snowball attacks using
machine learning, combinatorial optimization and attack
graphs. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09,
pages 305–320, New York, NY, USA, 2009. ACM.

[27] James Forshaw. Injecting Code into Win-
dows Protected Processes using COM - Part 1.
https://googleprojectzero.blogspot.com/2018/10/injecting-
code-into-windows-protected.html, October 2018.
Accessed August 2019.

[28] Nalani Fraser, Jacqueline O’Leary, Vincent
Cannon, and Fred Plan. Apt38: Details
on new north korean regime-backed threat
group. https://www.fireeye.com/blog/threat-
research/2018/10/apt38-details-on-new-north-korean-
regime-backed-threat-group.html, 2017.

[29] Steve Friedl. An Illustrated Guide to SSH Agent For-
warding. http://www.unixwiz.net/techtips/ssh-agent-
forwarding.html, 2006. Accessed October 2019.

[30] gaffe23. Linux inject. https://github.com/gaffe23/linux-
inject, 2016. Accessed July 2019.

[31] Tal Garfinkel and Mendel Rosenblum. A virtual ma-
chine introspection based architecture for intrusion de-
tection. In Proceedings of Network and Distributed
Systems Security Symposium (NDSS), February 2003.

[32] M. Haardt and M. Coleman. ptrace(2) Linux
Programmer’s Manual. http://man7.org/linux/man-
pages/man2/ptrace.2.html, 1999. Accessed August
2019.

[33] Support Home. Clearing the Windows Temp Folders.
http://lexisnexis.custhelp.com/app/answers/answer_view/
a_id/1084415/. Accessed August 2019.

[34] CrowdStrike Inc. CrowdStrike Compromise Assess-
ment Data Sheet. https://www.crowdstrike.com/wp-
content/brochures/CrowdStrike_CompromiseAssessment
_DataSheet.pdf, 2019. Accessed February 2019.

[35] A. D. Kent and L. M. Liebrock. Differentiating user au-
thentication graphs. In 2013 IEEE Security and Privacy
Workshops, pages 72–75, May 2013.

[36] Linux. Linux ACL on shared memory objects.
http://man7.org/linux/man-pages/man2/shmget.2.html.
Accessed August 2019.

[37] Strategic Cyber LLC. Cobalt strike: Ad-
vanced threat tactics for penetration testers.
https://cobaltstrike.com/downloads/csmanual38.pdf,
2017. Accessed February 2019.

[38] S. Metcalf. Unofficial guide to mimikatz & command
reference. https://adsecurity.org/?page_id=1821, 2018.
Accessed February 2019.

[39] Microsoft. Windows Remote Manage-
ment. https://docs.microsoft.com/en-
us/windows/desktop/WinRM/portal. Accessed
November 2018.

[40] Microsoft. Duplicatehandle func-
tion. https://msdn.microsoft.com/en-
us/library/windows/desktop/ms724251(v=vs.85).aspx,
2017. [Online; accessed 10-May-2018].

[41] Microsoft. Wsaduplicatesocket func-
tion. https://msdn.microsoft.com/en-
us/library/windows/desktop/ms741565(v=vs.85).aspx,
2017. [Online; accessed 10-May-2018].

[42] Microsoft. Mib_tcprow2 struc-
ture. https://docs.microsoft.com/en-
us/windows/desktop/api/tcpmib/ns-tcpmib-
_mib_tcprow2, 2018. Accessed February 2019.

[43] Doug Miller, Ron Alford, Andy Applebaum, Henry Fos-
ter, Caleb Little, and Blake Strom. Automated adver-
sary emulation: A case for planning and acting with
unknowns. 2018.

[44] MSDN. [MS-TDS]: Tabular Data Stream
Protocol. https://msdn.microsoft.com/en-
us/library/dd304523.aspx, 2018. Accessed November
2018.

[45] MSDN. [MS-TDS]: SQL Batch Client
Request. https://msdn.microsoft.com/en-
us/library/dd304416.aspx, 2019. Accessed November
2018.

[46] Mark O’Neill, Scott Heidbrink, Jordan Whitehead, Tan-
ner Perdue, Luke Dickinson, Torstein Collett, Nick Bon-
ner, Kent Seamons, and Daniel Zappala. The secure
socket API: TLS as an operating system service. In
27th USENIX Security Symposium (USENIX Security
18), pages 799–816, Baltimore, MD, 2018. USENIX
Association.

[47] Pradeep Padala. Playing with ptrace, part i. Linux
Journal, 2002(103):5–, November 2002.

[48] Windows Defender Research. Detecting stealthier cross-
process injection techniques with windows defender atp.
https://cloudblogs.microsoft.com/microsoftsecure/2017/
07/12/detecting-stealthier-cross-process-injection-
techniques-with-windows-defender-atp-process-
hollowing-and-atom-bombing/, 2019. Accessed Feb
2019.

[49] Ryan Ries. Monitoring with Windows Remote
Management (WinRM) and Powershell Part I.
https://www.myotherpcisacloud.com/post/Monitoring-
with-Windows-Remote-Management-(WinRM)-and-
Powershell-Part-I. Accessed November 2018.

[50] Neil J. Rubenking. The Best
Antivirus Protection for 2019.
https://www.pcmag.com/article2/0,2817,2372364,00.asp,
2019. [Online; accessed 04-February-2019].

[51] Hossein Siadati and Nasir Memon. Detecting struc-
turally anomalous logins within enterprise networks. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1273–
1284. ACM, 2017.

[52] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.
Operating System Concepts. Wiley Publishing, 9th edi-
tion, 2012.

[53] SolarWinds. SITE FTP command.
https://support.solarwinds.com/SuccessCenter/s/article/
SITE-FTP-command, 2017. Accessed August 2019.

[54] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff.
UNIX Network Programming, Vol. 1. Pearson Education,
3 edition, 2003.

[55] Suricata. Suricata features. https://suricata-
ids.org/features/, 2018. Accessed November 2018.

[56] Andrew S Tanenbaum and DJ Wetherall. Computer
Networks, Fifth Edition. In Pearson Education, Inc.
Prentice Hall, 2011.

[57] FireEye FLARE Team. Windows management
instrumentation (wmi) offense, defense, and foren-
sics. https://www.fireeye.com/content/dam/fireeye-
www/global/en/current-threats/pdfs/wp-windows-
management-instrumentation.pdf, 2015. Accessed
February 2019.

[58] David Treadwell. socket.c.
http://icerote.net/doc/library/programming/source/
SOURCE.CODE.MICROSOFT.WINDOWS.2000.AND.
NT4-BTDE/win2k/private/net/sockets/winsock2/wsp/
msafd/socket.c, 1992. Accessed January 2019.

[59] David Treadwell. wspmisc.c.
http://icerote.net/doc/library/programming/source/
SOURCE.CODE.MICROSOFT.WINDOWS.2000.AND.

NT4-BTDE/win2k/private/net/sockets/winsock2/wsp/
msafd/wspmisc.c, 1992. Accessed January 2019.

[60] VMware. Configure WinRM to Use
HTTP. https://docs.vmware.com/en/vRealize-
Automation/7.5/com.vmware.vrealize.orchestrator-
use-plugins.doc/GUID-D4ACA4EF-D018-448A-
866A-DECDDA5CC3C1.html. Accessed November
2018.

[61] Taimour Wehbe, Vincent Mooney, and David Keezer.
Hardware-Based Run-Time Code Integrity in Embedded
Devices. Cryptography, 2(3), 2018.

A Prepare the Environment for WinRM Hi-
jacking

A.1 Server Configuration
First, we configure the WinRM server on the remote ma-

chine by following these steps.
Set the default WinRM configuration

winrm quickconfig

Run the following command to check whether a listener is
running, and verify the default ports

winrm e winrm/config/listener

Run the following command to enable basic authentication

winrm set winrm/config/service/auth
’@{Basic="true"}’

Run the following command to allow transfer of unen-
crypted data by the WinRM server

winrm set winrm/config/service
’@{AllowUnencrypted="true"}’

A.2 Client Configuration
Next, we configure the WinRM client by following these

steps.
Run the following command to enable basic authentication

winrm set winrm/config/client/auth
’@{Basic="true"}’

Run the following command to allow transfer of unen-
crypted data by the WinRM client

winrm set winrm/config/client
’@{AllowUnencrypted="true"}’

If the WinRM host machine is in an external domain, run
the following command to specify the trusted hosts

winrm set winrm/config/client
’@{TrustedHosts="host1, host2, host3"}’

	Introduction
	ShadowMove Approach
	Fundamental Weaknesses Exploited by ShadowMove
	Threat Model

	ShadowMove Architecture and Design
	ShadowMove Connection Detector
	Peer Handler
	Network View Manager
	ShadowMove Socket Duplicator
	Socket Duplication on Windows
	Deep Dive into Socket Duplication on Windows
	Socket Duplication on Linux
	The Race Between the Benign Application and the Attack

	Lateral Movement Planner (LMP)
	Lateral Movement Actuator

	Prototypes for ShadowMove Actuators
	ShadowMove Instantiation
	FTPShadowMove: Hijacking FTP Sessions
	SQLShadowMove: Hijacking Microsoft SQL Sessions
	WinRMShadowMove: Remote Execution Based on WinRM
	Brief Introduction to the WinRM protocol
	Experiment Setup
	Hijacking WinRM

	Evaluation of ShadowMove Proof-of-concepts
	Theoretical Evaluation
	Experimental Evaluation

	Discussions and Future Work
	Related Work
	Conclusion
	Acknowledgement
	Prepare the Environment for WinRM Hijacking
	Server Configuration
	Client Configuration

