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Abstract
Many companies provide neural network prediction services
to users for a wide range of applications. However, current
prediction systems compromise one party’s privacy: either
the user has to send sensitive inputs to the service provider for
classification, or the service provider must store its proprietary
neural networks on the user’s device. The former harms the
personal privacy of the user, while the latter reveals the service
provider’s proprietary model.

We design, implement, and evaluate DELPHI, a secure pre-
diction system that allows two parties to execute neural net-
work inference without revealing either party’s data. DELPHI
approaches the problem by simultaneously co-designing cryp-
tography and machine learning. We first design a hybrid cryp-
tographic protocol that improves upon the communication
and computation costs over prior work. Second, we develop a
planner that automatically generates neural network architec-
ture configurations that navigate the performance-accuracy
trade-offs of our hybrid protocol. Together, these techniques
allow us to achieve a 22× improvement in online prediction
latency compared to the state-of-the-art prior work.

1 Introduction
Recent advances in machine learning have driven increasing
deployment of neural network inference in popular applica-
tions like voice assistants [Bar18] and image classification
[Liu+17b]. However, the use of inference in many such ap-
plications raises privacy concerns. For example, home moni-
toring systems (HMS) such as Kuna [Kun] and Wyze [Wyz]
use proprietary neural networks to classify objects in video
streams of users’ homes such as cars parked near the user’s
house, or faces of visitors to the house. These models are core
to these companies’ business and are expensive to train.

To make use of these models, either the user has to upload
their streams to the servers of the HMS (which then evaluate
the model over the stream), or the HMS has to store its model
on the user’s monitoring device (which then performs the
classification). Both of these approaches are unsatisfactory:
the first requires users to upload video streams containing
sensitive information about their daily activities to another
party, while the second requires the HMS to store its model
on every device, thus allowing users and competitors to steal
the proprietary model.

To alleviate these privacy concerns, a number of recent
works have proposed protocols for cryptographic predic-
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Figure 1: Cryptographic neural network inference. The lock indi-
cates data provided in encrypted form.

tion over (convolutional) neural networks [Gil+16; Moh+17;
Liu+17a; Juv+18] by utilizing specialized secure multi-party
computation (MPC) [Yao86; Gol+87]. At a high level, these
protocols proceed by encrypting the user’s input and the ser-
vice provider’s neural network, and then tailor techniques for
computing over encrypted data (like homomorphic encryption
or secret sharing) to run inference over the user’s input. At the
end of the protocol execution, the intended party(-ies) learn
the inference result; neither party learns anything else about
the other’s input. Fig. 1 illustrates this protocol flow.

Unfortunately, these cryptographic prediction protocols
are still unsuitable for deployment in real world applications
as they require the use of heavy cryptographic tools during
the online execution. These tools are computationally inten-
sive and often require a large amount of communication be-
tween the user and the service provider. Furthermore, this
cost grows with the complexity of the model, making these
protocols unsuitable for use with state-of-the-art neural net-
work architectures used in practice today. For example, using
a state-of-the-art protocol like GAZELLE [Juv+18] to per-
form inference for state-of-the-art deep neural networks like
ResNet-32 [He+16] requires ∼ 82 seconds and results in over
560MB communication.
Our contribution. In this paper, we present DELPHI, a
cryptographic prediction system for realistic neural network
architectures. DELPHI achieves its performance via a careful
co-design of cryptography and machine learning. DELPHI
contributes a novel hybrid cryptographic prediction protocol,
as well as a planner that can adjust the machine learning algo-
rithm to take advantage of the performance-accuracy trade-
offs of our protocol. Our techniques enable us to perform cryp-
tographic prediction on more realistic network architectures
than those considered in prior work. For example, using DEL-
PHI for cryptographic prediction on ResNet-32 requires just
3.8 seconds and 60MB communication in the online phase,
improving upon GAZELLE by 22× and 9× respectively.



1.1 Techniques
We now describe at a high level the techniques underlying
DELPHI’s excellent performance.

Performance goals. Modern convolutional neural networks
consist of a number of layers, each of which contains one sub-
layer for linear operations, and one sub-layer for non-linear
operations. Common linear operations include convolutions,
matrix multiplication, and average pooling. Non-linear opera-
tions include activation functions such as the popular ReLU
(Rectified Linear Unit) function.

Achieving cryptographic prediction for realistic neural net-
works thus entails (a) constructing efficient subprotocols for
evaluating linear and non-linear layers, and (b) linking the
results of these subprotocols with each other.

Prior work. Almost all prior protocols for cryptographic
prediction utilize heavyweight cryptographic tools to imple-
ment these subprotocols, which results in computation and
communication costs that are much higher than the equiva-
lent plaintext costs. Even worse, many protocols utilize these
tools during the latency-sensitive online phase of the protocol,
i.e., when the user acquires their input and wishes to obtain
a classification for it. (This is opposed to the less latency-
sensitive preprocessing phase that occurs before the user’s
input becomes available).

For example, the online phase of the state-of-the-art
GAZELLE protocol uses heavy cryptography like linearly
homomorphic encryption and garbled circuits. As we show
in Section 7.4, this results in heavy preprocessing and on-
line costs: for the popular network architecture ResNet-32
trained over CIFAR-100, GAZELLE requires ∼ 158 seconds
and 8GB of communication during the preprocessing phase,
and ∼ 50 seconds and 5GB of communication during the
preprocessing phase, and ∼ 82 seconds and 600MB of com-
munication during the online phase.

1.1.1 DELPHI’s protocol
To achieve good performance on realistic neural networks,
DELPHI builds upon techniques from GAZELLE to develop
new protocols for evaluating linear and non-linear layers that
minimize the use of heavy cryptographic tools, and thus mini-
mizes communication and computation costs in the prepro-
cessing and online phases. We begin with a short overview of
GAZELLE’s protocol as it is the basis for DELPHI’s protocols.

Starting point: GAZELLE. GAZELLE [Juv+18] is a state-
of-the-art cryptographic prediction system for convolutional
neural networks. GAZELLE computes linear layers using an
optimized linearly-homomorphic encryption (LHE) scheme
[Elg85; Pai99; Reg09; Fan+12] that enables one to perform
linear operations directly on ciphertexts. To compute non-
linear layers, GAZELLE uses garbled circuits [Yao86] to com-
pute the bitwise operations required by ReLU. Finally, be-
cause each layer in a neural network consists of alternating
linear and non-linear layers, GAZELLE also describes how

to efficiently switch back-and-forth between the two afore-
mentioned primitives via a technique based on additive secret
sharing.

As noted above, GAZELLE’s use of heavy cryptography
in the online phase leads to efficiency and communication
overheads. To reduce these overheads, we proceed as follows.
Reducing the cost of linear operations. To reduce the
online cost of computing the linear operations, we adapt
GAZELLE to move the heavy cryptographic operations over
LHE ciphertexts to the preprocessing phase. Our key insight
is that the service provider’s input M to the linear layer (i.e.
the model weights for that layer) is known before user’s input
is available, and so we can use LHE to create secret shares
of M during preprocessing. Later, when the user’s input be-
comes available in the online phase, all linear operations can
be performed directly over secret-shared data without invok-
ing heavy cryptographic tools like LHE, and without requiring
interactions to perform matrix-vector multiplications.

The benefits of this technique are two-fold. First, the on-
line phase only requires transmitting secret shares instead of
ciphertexts, which immediately results in an 8× reduction
in online communication for linear layers. Second, since the
online phase only performs computations over elements of
prime fields, and since our system uses concretely small 32-
bit primes for this purpose, our system can take advantage of
state-of-the-art CPU and GPU libraries for computing linear
layers; see Section 7.2 and Remark 4.2 for details.
Reducing the cost of non-linear operations. While the
above technique already significantly reduces computation
time and communication cost, the primary bottleneck for both
remains the cost of evaluating garbled circuits for the ReLU
activation function. To minimize this cost, we use an alternate
approach [Gil+16; Liu+17a; Moh+17; Cho+18] that is better
suited to our setting of computing over finite field elements:
computing polynomials. In more detail, DELPHI replaces
ReLU activations with polynomial (specifically, quadratic)
approximations. These can be computed securely and effi-
ciently via standard protocols [Bea95].

Because these protocols only require communicating a
small constant number of field elements per multiplication,
using quadratic approximations significantly reduces the com-
munication overhead per activation, without introducing ad-
ditional rounds of communication. Similarly, since the un-
derlying multiplication protocol only requires a few cheap
finite field operations, the computation cost is also reduced by
several orders of magnitude. Concretely, the online communi-
cation and computation costs of securely computing quadratic
approximations are 192× and 10000× smaller (respectively)
than the corresponding costs for garbled circuits.

However, this performance improvement comes at the cost
of accuracy and trainability of the underlying neural network.
Prior work has already established that quadratic approxi-
mations provide good accuracy in some settings [Moh+17;
Liu+17a; Gho+17; Cho+18]. At the same time, both prior



work [Moh+17] and our own experiments indicate that
in many settings simply replacing ReLU activations with
quadratic approximations results in severely degraded accu-
racy, and can increase training time by orders of magnitude
(if training converges at all). To overcome this, we develop a
hybrid cryptographic protocol that uses ReLUs and quadratic
approximations to achieve good accuracy and good efficiency.

Planning an efficient usage of the hybrid cryptographic
protocol. It turns out that it is not straightforward to de-
termine which ReLU activations should be replaced with
quadratic approximations. Indeed, as we explain in Section 5,
simply replacing arbitrary ReLU activations with quadratic
approximations can degrade the accuracy of the resulting
network, and can even cause the network to fail to train.

So, to find an appropriate placement or network configura-
tion, we design a planner that automatically discovers which
ReLUs to replace with quadratic approximations so as to max-
imize the number of approximations used while still ensuring
that accuracy remains above a specified threshold.

The insight behind our planner is to adapt techniques for
neural architecture search (NAS) and hyperparameter opti-
mization (see [Els+19; Wis+19] for in-depth surveys of these
areas) to our setting. Namely, we adapt these techniques to
discover which layers to approximate within a given neural
network architecture, and to optimize the hyperparameters for
the discovered network. See Section 5 for details.

The overall system. DELPHI combines the above in-
sights into a cohesive system that service providers can use
to automatically generate cryptographic prediction proto-
cols meeting performance and accuracy criteria specified by
the provider. In more detail, the service provider invokes
DELPHI’s planner with acceptable accuracy and performance
thresholds. The planner outputs an optimized architecture
that meets this goal, which DELPHI then uses to instantiate a
concrete cryptographic prediction protocol that utilizes our
cryptographic techniques from above.

This co-design of cryptography and machine learning en-
ables DELPHI to efficiently provide cryptographic prediction
for networks deeper than any considered in prior work. For
example, in Section 7 we show that using DELPHI to provide
inference for the popular ResNet-32 architecture requires only
60MB communication and 3.8 seconds.

2 System overview
2.1 System setup
There are two parties in the system setup: the client and the
service provider (or server). In the plaintext version of our
system, the service provider provides prediction as a service
using its internal models via an API. The client uses this API
to run prediction on its own data by transferring its data to the
service provider. The service provider runs prediction using
the appropriate neural network, then sends the prediction
result back to the client. In DELPHI, the two parties execute
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Figure 2: DELPHI’s architecture. Orange layers represent quadratic
approximations while blue ones represent ReLUs.

a secure prediction together by providing their own inputs.
The service provider’s input is the neural network, while the
client’s input is its private input used for prediction.

2.2 Threat model
DELPHI’s threat model is similar to that of prior secure
prediction works such as GAZELLE [Juv+18] and Min-
iONN [Liu+17a]. More specifically, DELPHI is designed for
the two-party semi-honest setting, where only one of the par-
ties is corrupted by an adversary. Furthermore, this adversary
never deviates from the protocol, but it will try to learn in-
formation about the other parties’ private inputs from the
messages it receives.

2.3 Privacy goals
DELPHI’s goal is to enable the client to learn only two pieces
of information: the architecture of the neural network, and
the result of the inference; all other information about the
client’s private inputs and the parameters of the server’s neu-
ral network model should be hidden. Concretely, we aim to
achieve a strong simulation-based definition of security; see
Definition 4.1.

Like all prior work, DELPHI does not hide information
about the architecture of the network, such as the dimensions
and type of each layer in the network. For prior work, this is
usually not an issue because the architecture is independent
of the training data. However, because DELPHI’s planner uses
training data to optimally place quadratic approximations,
revealing the network architecture reveals some information
about the data. Concretely, in optimizing an `-layer network,
the planner makes ` binary choices, thus reveals at most `
bits of information about the training data. Because ` is con-
cretely small for actual networks (for example, ` = 32 for
ResNet32), this leakage is negligible. This leakage can be
further mitigated by using differentially private training algo-
rithms [Sho+15; Aba+16]

DELPHI, like most prior systems for cryptographic predic-
tion, does not hide information that is revealed by the result
of the prediction. In our opinion, protecting against attacks
that exploit this leakage is a complementary problem to that



solved by DELPHI. Indeed, such attacks have been success-
fully carried out even against systems that “perfectly” hide the
model parameters by requiring the client to upload its input
to the server [Fre+14; Ate+15; Fre+15; Wu+16b; Tra+16].
Furthermore, popular mitigations for these attacks, such as
differential privacy, can be combined with DELPHI’s protocol.
We discuss these attacks and possible mitigations in more
detail in Section 8.2.

2.4 System architecture and workflow
DELPHI’s architecture consists of two components: a hybrid
cryptographic protocol for evaluating neural networks, and a
neural network configuration planner that optimizes a given
neural network for use with our protocol. Below we provide
an overview of these components, and then demonstrate how
one would use these in practice by describing an end-to-end
workflow for cryptographic prediction in home monitoring
systems (HMS).

Hybrid cryptographic protocol. DELPHI’s protocol for
cryptographic prediction consists of two phases: an offline
preprocessing phase, and an online inference phase. The of-
fline preprocessing phase is independent of the client’s input
(which regularly changes), but assumes that the server’s model
is static; if this model changes, then both parties would have
to re-run the preprocessing phase. After preprocesing, during
the online inference phase, the client provides its input to our
specialized secure two-party computation protocol, and even-
tually learns the inference result. We note that our protocol
provides two different methods of evaluating non-linear lay-
ers: the first offers better accuracy at the cost of worse offline
and online efficiency, while the other degrades accuracy, but
offers much improved offline and online efficiency.

Planner. To help service providers navigate the trade off
between performance and accuracy offered by these two com-
plementary methods to evaluate non-linear layers, DELPHI
adopts a principled approach by designing a planner that
generates neural networks that mix these two methods to max-
imize efficiency while still achieving the accuracy desired by
the service provider. Our planner applies neural architecture
search (NAS) to the cryptographic setting in a novel way in
order to automatically discover the right architectures.

Example 2.1 (HMS workflow). As explained in Section 1,
a home monitoring system (HMS) enables users to surveil
activity inside and outside their houses. Recent HMSes [Kun;
Wyz] use neural networks to decide whether a given activity
is malicious or not. If it is, they alert the user. In this setting
privacy is important for both the user and the HMS provider,
which makes DELPHI an ideal fit. To use DELPHI to provide
strong privacy, the HMS provider proceeds as follows.

The HMS provider first invokes DELPHI’s planner to op-
timize its baseline all-ReLU neural network model. Then,
during the HMS device’s idle periods, the device and the
HMS server run the preprocessing phase for this model. If the

device detects suspicious activity locally, it can run the online
inference phase to obtain a classification. On the basis of this
result, it can decide whether to alert the user or not.

Remark 2.2 (applications suitable for use with DELPHI). Ex-
ample 2.1 indicates that DELPHI is best suited for applications
where there is ample computational power available for pre-
processing, and where inference is latency-sensitive, but is not
performed frequently enough to deplete the reserve of prepro-
cessed material. Other examples of such applications include
image classification in systems like Google Lens [Goo].

3 Cryptographic primitives
In this section, we provide a high-level description of the
cryptographic building blocks used in DELPHI; this high-level
description suffices to understand our protocols. We provide
formal definitions of security properties in Appendix A, and
only provide high level intuitions here.

Garbled circuits. Garbled circuits (GC), introduced in the
seminal work of Yao [Yao86], are a method of encoding a
boolean circuit C and its input x such that, given the encoded
circuit and the encoded input, an evaluator can use a special
evaluation procedure to obtain the output C(x) while ensuring
that the evaluator learns nothing else about C or x. We now
describe this notion in more detail.

A garbling scheme [Yao86; Bel+12] is a tuple of algorithms
GS= (Garble,Eval) with the following syntax:
• GS.Garble(C) → (C̃,{labeli,0, labeli,1}i∈[n]). On input a

boolean circuit C, Garble outputs a garbled circuit C̃ and a
set of labels {labeli,0, labeli,1}i∈[n]. Here labeli,b represents
assigning the value b ∈ {0,1} to the i-th input label.

• GS.Eval(C̃,{labeli,xi
})→ y. On input a garbled circuit C̃

and labels {labeli,xi
} corresponding to an input x ∈ {0,1}n,

Eval outputs a string y =C(x).
We provide a formal definition in Appendix A, and briefly
describe here the key properties satisfied by garbling schemes.
First, GS must be complete: the output of Eval must equal
C(x). Second, it must be private: given C̃ and {labeli,xi

}, the
evaluator should not learn anything about C or x except the
size of |C| (denoted by 1|C|) and the output C(x).

Linearly homomorphic public-key encryption. A lin-
early homomorphic encryption scheme [Elg85; Pai99] is a
public key encryption scheme that additionally supports (only)
linearly homomorphic operations on the ciphertexts. To give
more details, a linearly homomorphic encryption consists of a
tuple of algorithms HE= (KeyGen,Enc,Dec,Eval) with the
following syntax:
• HE.KeyGen→ (pk,sk). HE.KeyGen is a randomized algo-

rithm that outputs a public key pk and a secret key sk.
• HE.Enc(pk,m)→ c. On input the public key pk and a mes-

sage m, the encryption algorithm HE.Enc outputs a cipher-
text c. The message space is a finite ring R .



• HE.Dec(sk,c)→ m. On input the secret key sk and a ci-
phertext c, the decryption algorithm HE.Dec outputs the
message m contained in c.

• HE.Eval(pk,c1,c2,L)→ c′. On input the public key pk,
two ciphertexts c1,c2 encrypting messages m1 and m2, and
a linear function L,1 HE.Eval outputs a new ciphertext c′

encrypting L(m1,m2).
Informally, we require HE to satisfy the following properties:
• Correctness. HE.Dec, on input sk and a ciphertext c :=
HE.Enc(pk,m), outputs m.

• Homomorphism. HE.Dec, on input sk and a ciphertext c :=
HE.Eval(pk,HE.Enc(pk,m1),HE.Enc(pk,m2),L), outputs
L(m1,m2).

• Semantic security. Given a ciphertext c and two messages
of the same length, no attacker should be able to tell which
message was encrypted in c.

• Function privacy. Given a ciphertext c, no attacker can tell
what homomorphic operations led to c.

Oblivious transfer. An oblivious transfer protocol [Rab81;
Eve+82; Ish+03] is a protocol between two parties, a sender
who has as input two messages m0,m1, and a receiver who
has as input a bit b. At the end of the protocol, the receiver
learns mb. The security requirement states that the sender
does not learn anything about bit b and the receiver does not
learn anything about the string m1−b.
Additive secret sharing. Given a finite ring R and an el-
ement x ∈ R , a 2-of-2 additive secret sharing of x is a pair
([x]1, [x]2) = (x− r,r) ∈ R 2 (so that x = [x]1 +[x]2) where r
is a random element from the ring. Additive secret sharing is
perfectly hiding, i.e., given a share [x]1 or [x]2, the value x is
perfectly hidden.
Beaver’s multiplicative triples. Beaver’s multiplication
triples [Bea95] generation procedure is a two-party proto-
col that securely computes the following function. Sample
a,b ← R and return [a]1, [b]1, [ab]1 to the first party and
[a]2, [b]2, [ab]2 to the second party. In this work, we will gener-
ate Beaver’s triples using a linearly homomorphic encryption
scheme; we provide further details in Appendix A.
Beaver’s multiplication procedure. Let P1 and P2 be two
parties who hold [x]1, [y]1 and [x]2, [y]2 respectively where
x,y are some ring elements. Additionally, let us assume that
P1 and P2 also hold a Beaver’s multiplication triple, namely,
([a]1, [b]1, [ab]1) and ([a]2, [b]2, [ab]2) respectively. Beaver’s
multiplication procedure is a secure protocol such that at
the end of the protocol, parties P1 and P2 hold an additive
secret sharing of xy. We provide details of this protocol in
Appendix A but note here that this protocol can be used to
securely evaluate any polynomial.

4 Cryptographic protocols
In DELPHI, we introduce a hybrid cryptographic protocol for
cryptographic prediction (see Fig. 4). Our protocol makes two

1L maps (m1,m2) to am1 +m2 for some a ∈ R .

key improvements to protocols proposed in prior work like
MiniONN [Liu+17a] and GAZELLE [Juv+18]. First, DELPHI
splits the protocol into a preprocessing phase and an online
phase such that most of the heavy cryptographic computation
is performed in the preprocessing phase. Second, DELPHI
introduces two different methods of evaluating non-linear
functions that provide the users with trade offs between accu-
racy and performance. The first method uses garbled circuits
to evaluate the ReLU activation function, while the second
method uses securely evaluates polynomial approximations of
the ReLU. The former provides maximum accuracy but is in-
efficient, while the latter is computationally cheap but lowers
accuracy. (We note that below we describe a protocol for eval-
uating any polynomial approximation, but in the rest of the
paper, we restrict ourselves only to quadratic approximations
because these are maximally efficient.)

Notation. Let R be a finite ring. Let HE = (KeyGen,
Enc,Dec,Eval) be a linearly homomorphic encryption over
the plaintext space R . The server holds a model M consist-
ing of ` layers M1, . . . ,M`. The client holds an input vector
x ∈ R n.

We now give the formal definition of a cryptographic pre-
diction protocol. Intuitively, the definition guarantees that
after the protocol execution, a semi-honest client (i.e., one
that follows the specification of the protocol) only learns the
architecture of the neural network and the result of the in-
ference; all other information about the parameters of the
server’s neural network model are hidden. Similarly, a semi-
honest server does not learn any information about the client’s
input, not even the output of the inference.

Definition 4.1. A protocol Π between a server having as in-
put model parameters M = (M1, . . . ,M`) and a client having
as input a feature vector x is a cryptographic prediction
protocol if it satisfies the following guarantees.
• Correctness. On every set of model parameters M that

the server holds and every input vector x of the client, the
output of the client at the end of the protocol is the correct
prediction M(x).

• Security:
– Corrupted client. We require that a corrupted, semi-

honest client does not learn anything about the server’s
network parameters M. Formally, we require the exis-
tence of an efficient simulator SimC such that ViewΠ

C ≈c
SimC(x,out), where ViewΠ

C denotes the view of the client
in the execution of Π (the view includes the client’s input,
randomness, and the transcript of the protocol), and out
denotes the output of the inference.

– Corrupted server. We require that a corrupted, semi-
honest server does not learn anything about the pri-
vate input x of the client. Formally, we require the exis-
tence of an efficient simulator SimS such that ViewΠ

S ≈c
SimS(M), where ViewΠ

S denotes the view of the server
in the execution of Π.
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The DELPHI protocol proceeds in two phases: the prepro-
cessing phase and the online phase, and we give the details of
both these phases in the subsequent sections.

4.1 Preprocessing phase
During preprocessing, the client and the server pre-compute
data that can be used during the online execution. This phase
can be executed independent of the input values, i.e., DELPHI
can run this phase before either party’s input is known.

1. The client runs HE.KeyGen to obtain a public key pk and
a secret key sk.

2. For every i ∈ [`], the client and the server choose random
masking vectors ri,si← R n respectively.

3. The client sends HE.Enc(pk,ri) to the server. The server
computes HE.Enc(pk,Mi · ri− si) using the HE.Eval pro-
cedure and sends this ciphertext to the client.

4. The client decrypts the above ciphertexts and to obtain
(Mi · ri− si) for each layer. The server holds si for each
layer and thus, the client and the server hold an additive
secret sharing of Miri.

5. This step depends on the activation type:

(a) ReLU: The server constructs C̃ by garbling the circuit
C described in Fig. 5. It sends C̃ to the client and
simultaneously, the server and the client exchange
labels for the input wires corresponding to ri+1 and
Mi · ri− si via an Oblivious Transfer (OT).

(b) Polynomial approximaitons: The client and the server
run the Beaver’s triples generation protocol to gener-
ate a number of Beaver’s multiplication triples.2

2The exact number of triples generated depends on the number of layers
that have to be approximated using a polynomial.

4.2 Online
The online phase is divided into a two stages: the setup and
the layer evaluation.

4.2.1 Setup
The client on input x, sends x− r1 to the server. The server
and the client now hold an additive secret sharing of x.

4.2.2 Layer evaluation
At the beginning of the i-th layer, the client holds ri and
the server holds xi− ri where xi is the vector obtained by
evaluating the first (i− 1) layers of the neural network on
input x (with x1 set to x). This invariant will be maintained
for each layer. We now describe the protocol for evaluating
the i-th layer, which consists of linear functions and activation
functions.

Linear layer. The server computes Mi(xi− ri)+ si, which
ensures that the client and the server an additive secret sharing
of Mixi.

Non-linear layer. After the linear functions, the server holds
Mi(xi− ri)+ si and the client holds Mi · ri− si. There are
two ways of evaluating non-linear layers: garbled circuits for
ReLU, or Beaver’s multiplication for polynomial approxima-
tion:
• Garbled circuits

1. The server sends the garbled labels corresponding to
Mi(xi− ri)+ si to the client.

2. The client evaluates the garbled circuit C̃ using the
above labels as well as the labels obtained via OT (in
the offline phase) to obtain a one-time pad ciphertext
OTP(xi+1−ri+1). It then sends this output to the server.



3. The server uses the one time pad key to obtain xi+1−
ri+1.

• Polynomial approximation
1. The client and the server run the Beaver’s multiplication

procedure to evaluate the polynomial approximating
this layer. At the end of the procedure, the client holds
[xi+1]1 and the server holds [xi+1]2.

2. The client computes [xi+1]1− ri+1 and sends them to
the server. The server adds [xi+1]2 to this value to obtain
xi+1− ri+1.

Output layer. The server sends x`− r` to the client who
adds this with r` to learn x`.

Hardwired: A random one time pad key.

Input: Mi(xi− ri)+ si, ri+1, Mi · ri− si.

1. Compute Mi ·xi = Mi(xi− ri)+ si +(Mi · ri− si).
2. Compute ReLU(Mi ·xi) to obtain xi+1.
3. Compute xi+1− ri+1 and output OTP(xi+1− ri+1).

Figure 5: A circuit that computes ReLU.

Remark 4.2 (fixed-point arithmetic in finite fields). The dis-
cussion so far assumes arithmetic over a finite ring. However,
popular implementations of neural network inference perform
arithmetic over floating-point numbers. We work around this
by using fixed-point representations of floating-point num-
bers, and embedding this fixed-point arithmetic in our ring
arithmetic.

Concretely, our implementation works over the 32-bit
prime finite field defined by the prime 2138816513, and uses
a 15-bit fixed-point representation. This choice of parameters
enables a single multiplication of two fixed-point numbers
before the result overflows capacity of the prime field. To
prevent values from growing exponentially with the number
of multiplications (and thus overflowing), we use a trick from
[Moh+17] that allows us to simply truncate the extra LSBs of
fixed-point values. This trick works even when the result is
secret-shared, albeit at the cost of a 1-bit error.

Similarly to Slalom [Tra+19], our choice of prime field also
enables us to losslessly embed our field arithmetic in 64-bit
floating point arithmetic. In more detail, 64-bit floating point
numbers can represent all integers in the range 2−53, . . . ,253.
Because the online phase of our protocol for linear layers
requires multiplication of a fixed-point matrix by a secret
shared vector, the result is a ∼ 45-bit integer, and hence can
be represented with full precision in a 64-bit floating point
number. This enables our implementation to use state-of-the-
art CPU and GPU libraries for linear algebra.

4.3 Security
Theorem 4.3. Assuming the existence of garbled circuits,
linearly homomorphic encryption and secure protocols for

Beaver’s triples generation and multiplication procedure, the
protocol described above is a cryptographic prediction proto-
col (see Definition 4.1).

Proof. Below we describe simulators first for the case where
the client is corrupted, and then for the case where the server
is corrupted. We provide a hybrid argument that relies on
these simulators in Appendix B.

4.3.1 Client is corrupted
The simulator Sim, when provided with the client’s input x,
proceeds as follows:

1. Sim chooses an uniform random tape for the client.
2. In the offline phase:

(a) Sim receives the public key and the ciphertext
HE.Enc(pk,ri) from the client. In return, it sends
HE.Enc(pk,−s′i) for a randomly chosen s′i from R n.

(b) Sim uses the simulator for garbled circuits SimGS and
runs it on 1λ,1|C| and sets the output of the circuit to
be a random value. SimGS outputs C̃,{labeli}. For the
i-th OT execution, Sim gives the labeli in both slots
as input. It sends C̃ to the client.

(c) For the secure protocol to generate the Beaver’s
triples, Sim runs the corresponding simulator for this
procedure.

3. Online phase. In the preamble phase, Sim receives x−r1.
It sends x to the ideal functionality (a semi-honest client
uses the same x as its input) and receives the output y. Sim
performs the layer evaluation as follows:

(a) Garbled circuits layer. Sim sends the simulated la-
bels.

(b) Polynomial approximation layer. Sim uses the sim-
ulator for the Beaver’s multiplication procedure to
evaluate the polynomial.

4. Output layer. Sim sends y− r` to the client.

In Appendix B, we show that the simulated distribution is com-
putationally indistinguishable to the real world distribution
using the security of the underlying cryptographic building
blocks.

4.3.2 Server is corrupted
The simulator Sim, when provided with the server’s input
M1, . . . ,M`−1, proceeds as follows.

1. Sim chooses an uniform random tape for the server.
2. In the offline phase:

(a) Sim chooses a public key pk for a linearly homomor-
phic encryption scheme. It then sends HE.Enc(pk,0)
to the server. In return, it receives the homomorphi-
cally evaluated ciphertext from the server.

(b) For every oblivious transfer execution where Sim acts
as the receiver, it uses junk input, say 0 as the re-
ceiver’s choice bit. It receives C̃ from the server.



(c) For the secure protocol for generating the Beaver’s
triples, Sim runs the corresponding simulator for this
procedure.

3. Online phase. In the preamble phase, Sim sends r1 for an
uniformly chosen r1. Sim performs the layer evaluation
step as follows:

(a) Garbled circuits layer. Sim sends a random value
back to the server.

(b) Polynomial approximation layer. Sim uses the sim-
ulator for the Beaver’s multiplication procedure to
evaluate the polynomial. At the last round of this step,
it sends a random value back to the server.

In Appendix B, we show that the simulated distribution is
indistinguishable from the real world distribution using the
security of the underlying cryptographic primitives.

5 Planner
DELPHI’s planner takes the service provider’s neural network
model (as well as other constraints) and produces a new neural
network architecture that meets the accuracy and efficiency
goals of the service provider. At the heart of this planner is an
algorithm for neural architecture search (NAS) that enables
the service provider to automatically find such network ar-
chitectures. Below we give a high level overview of this key
component and describe how our planner uses it.
Background: neural architecture search. Recently, ma-
chine learning research has seen rapid advancement in the area
of neural architecture search (NAS) [Els+19; Wis+19]. The
goal of NAS is to automatically discover neural network ar-
chitectures that best satisfy a set of user-specified constraints.
Most NAS algorithms do so by (partially) training a number
of different neural networks, evaluating their accuracy, and
picking the best-performing ones.
Overview of our planner. DELPHI’s planner, when given
as input the baseline all-ReLU neural network, operates in
two modes. When retraining is either not possible or unde-
sirable (for example if the training data is unavailable or if
the provider cannot afford the extra computation required
for NAS), the planner operates in the first mode and simply
outputs the baseline network. If retraining (and hence NAS)
is feasible, then the planner takes as additional inputs the
training data, and a constraint on the minimum acceptable
prediction accuracy t, and then uses NAS to discover a net-
work configuration that maximizes the number of quadratic
approximations while still achieving accuracy greater than t.
Our planner then further optimizes the hyperparameters of
this configuration. In more detail, in this second mode, our
planner uses NAS to optimize the following properties of
a candidate network configuration given t: (a) the number
of quadratic approximations, (b) the placement of these ap-
proximations (that is, the layers where ReLUs are replaced
with approximations), and (c) training hyperparameters like
learning rate and momentum.

The foregoing is a brief description that omits many details.
Below, we describe how we solved the challenges that re-
quired solving to adapt NAS to this setting (Section 5.1), our
concrete choice of NAS algorithm (Section 5.2), and detailed
pseudocode for the final algorithm (Fig. 6).

5.1 Adapting NAS for DELPHI’s planner
Challenge 1: Training candidate networks. Prior work
[Moh+17; Gil+16; Gho+17; Cho+18] and our own experi-
ments indicate that networks that use quadratic approxima-
tions are challenging to train and deploy: the quadratic acti-
vations cause the underlying gradient descent algorithm to
diverge, resulting in poor accuracy. Intuitively, we believe
that this behavior is caused by these functions’ large and
alternating gradients.

To solve this issue, we used the following techniques:
• Gradient and activation clipping: During training, we mod-

ify our optimizer to use gradient value clipping, which
helps prevent gradients from exploding [Ben+94]. In par-
ticular, we clip the values of all gradients to be less than
2. We furthermore modify our networks to use the ReLU6
activation function [Kri10] that ensures that post-activation
values have magnitude at most 6. This keeps errors from
compounding during both inference and training.

• Gradual activation exchange: Our experiments determined
that despite clipping, the gradients were still exploding
quickly, especially in deeper networks that contained a
higher fraction of approximations. To overcome this, we
made use of the following insight: intuitively, ReLU6 and
(clipped) quadratic approximations to ReLU should share
relatively similar gradients, and so it should be possible to
use ReLU6 to initially guide the descent towards a stable
region where gradients are smaller, and then to use the ap-
proximation’s gradients to make fine-grained adjustments
within this region.
We take advantage of this insight by modifying the train-
ing process to gradually transform an already-trained all-
ReLU6 network into a network with the required number
and placement of quadratic approximations. In more de-
tail, our training process expresses each activation as a
weighted average of quadratic and ReLU6 activations, i.e.,
act(x) := wq ·quad(x)+wrReLU(x) such that wq+wr = 1.
In the beginning, wq = 0 and wr = 1. Our training algo-
rithm then gradually increases wq and reduces wr, so that
eventually wq = 1 and wr = 0.
This technique also improves running times for the NAS
as it no longer has to train each candidate network configu-
ration from scratch.

Challenge 2: Efficiently optimizing configurations. Re-
call from above that our planner aims to optimize the number
of quadratic approximations, their placement in the network,
and the training hyperparameters. Attempting to optimize all
of these variables within a single NAS execution results in
a large search space, and finding efficient networks in this



search space takes a correspondingly long time.
To solve this problem, we divided up the monolithic NAS

execution into independent runs that are responsible for op-
timizing different variables. For instance, for an architecture
with n non-linear layers, for relevant choices of m < n, we
first perform NAS to find high-scoring architectures that have
m approximation layers, and then perform NAS again to opti-
mize training hyperparameters for these architectures. At the
end of this process, our planner outputs a variety of networks
with different performance-accuracy trade-offs.
Challenge 3: Prioritizing efficient configurations. Our
planner’s goal is to choose configurations containing the
largest number of approximations in order to maximize effi-
ciency. However, network configurations with large numbers
of approximations take longer to train and may be slightly
less accurate than networks with fewer approximations. Since
the traditional NAS literature focuses on simply maximizing
efficiency, using NAS in this default setting results in select-
ing slower networks over more efficient networks that are just
slightly less accurate than the slower ones. To overcome this,
we changed the way the NAS assigns “scores” to candidate
networks by designing a new scoring function score(·) which
balances prioritizing accuracy and performance. Our experi-
ments from Section 7 indicate that this function enables us to
select networks that are both efficient and accurate.

score(N) := acc(N)
(

1+ #quad. activations
#total activations

)
.

5.2 Choosing a NAS algorithm
The discussion so far has been agnostic to the choice of NAS
algorithm. In our implementation, we decided to use the pop-
ular population-based training algorithm [Jad+17] because
it was straightforward to customize it for our use case, and
because it enjoys a number of optimized implementations
(like the one in [Lia+18]).

Population-based training (PBT) [Jad+17] maintains a pop-
ulation of candidate neural networks that it trains over a series
of time steps. At the end of each time step, it measures the
performance of each candidate network via a user-specified
scoring function, and replaces the worst-performing candi-
dates with mutated versions of the best-performing ones (the
mutation function is specified by the user). At the end of
the optimization process, PBT outputs the best-performing
candidate network architectures it has found (along with the
hyperparameters for training them).

6 System implementation
DELPHI’s cryptographic protocols are implemented in Rust
and C++. We use the SEAL homomorphic encryption library
[Sea] to implement HE, and rely on the fancy-garbling
library3 for garbled circuits. To ensure an efficient preprocess-
ing phase, we reimplemented GAZELLE’s efficient algorithms

3https://github.com/GaloisInc/fancy-garbling/

Planner

 all-ReLU6 neural network N
training data D
accuracy threshold t


1. Let the number of non-linear layers in N be n.
2. Initialize set of output networks F .
3. For i in {n/2, . . . ,n}:

(a) Compute the set of best performing models
with i quadratic approximation layers: Si ←
PBT(N,D,score(·)).

(b) Optimize hyperparameters for these models:
S ′i ← PBT(Si,D,score(·)).

(c) If for any N j ∈ S ′i the accuracy of N j is less than t,
discard N j .

(d) Define Ni to be the network with the maximum score
among the remaining networks.

(e) Set F := F ∪{Ni}.
4. Output F .

Figure 6: Pseudocode for DELPHI’s planner.

for linear layers in SEAL; this may be of independent inter-
est. DELPHI’s planner is implemented in Python and uses the
scalable PBT [Jad+17] implementation in Tune [Lia+18].

Remark 6.1 (reimplementing GAZELLE’s algorithms). Riazi
et al. [Ria+19] note that GAZELLE’s implementation does not
provide circuit privacy for HE, which can result in leakage
of information about linear layers. To remedy this, they rec-
ommend using larger parameters that ensure circuit privacy.
(The caveat is that these parameters result in worse perfor-
mance than using GAZELLE’s highly optimized parameters.)
Because DELPHI uses GAZELLE’s algorithms in our prepro-
cessing phase, we attempted to modify GAZELLE’s implemen-
tation4 to use the circuit-private parameters. However, this
proved to be difficult, and so we decided to reimplement these
algorithms in SEAL, which does support these parameters.

7 Evaluation
We divide our evaluation into three sections that answer the
following questions.
• Section 7.2: How efficient are DELPHI’s building blocks?
• Section 7.3: Does DELPHI’s planner provide a good bal-

ance between efficiency and accuracy for realistic neural
networks, such as ResNet-32?

• Section 7.4: What is the latency and communication cost
of using DELPHI for serving predictions with such neural
networks?

7.1 Evaluation setup
All cryptographic experiments were carried out on AWS
c5.2xlarge instances possessing an Intel Xeon 8000 series
machine CPU at 3.0GHz with 16GB of RAM. The client and
server were executed on two such instances located in the
us-west-1 (Northern California) and us-west-2 (Oregon)

4https://github.com/chiraag/gazelle_mpc

https://github.com/GaloisInc/fancy-garbling/
https://github.com/chiraag/gazelle_mpc


regions respectively. The client and server executions used 4
threads each. Machine learning experiments were carried out
on various machines with NVIDIA Tesla V100 GPUs. Our
machine learning and cryptographic protocol experiments
rely on the following datasets and architectures:
1. CIFAR-10 is a standardized dataset consisting of (32×

32) RGB images separated into 10 classes. The training
set contains 50,000 images, while the test set has 10,000
images. Our experiments use the 7-layer CNN architecture
specified in MiniONN [Liu+17a]. Doing so allows us to
compare our protocol with prior work.

2. CIFAR-100 contains the same number of training and test
images as CIFAR-10, but divides them up into 100 classes
instead of 10. This increased complexity requires a deeper
network with more parameters, and so our experiments use
the popular ResNet-32 architecture introduced in [He+16].
We note that no prior work on secure inference attempts to
evaluate their protocols on difficult datasets like CIFAR-
100 or on deep network architectures like ResNet-32.

Whenever we compare DELPHI with GAZELLE, we estimate
the cost of GAZELLE’s protocols by summing the costs of
our re-implementation of the relevant subprotocols for linear
and non-linear layers. We do this as there is no end-to-end
implementation of GAZELLE’s protocol; only the individual
subprotocols are implemented.

7.2 Microbenchmarks
We provide microbenchmarks of DELPHI’s performance on
linear and non-linear layers, comparing both with GAZELLE.

7.2.1 Linear operations
Below we focus on the performance of convolution operations
because these comprise the majority of the cost of neural
networks’ linear operations. The complexity of a convolution
is determined by the dimensions of the input and the size
and number of convolution kernels, as well as the padding
and stride (the latter parameter decides how often the kernel
is applied to the input). In Table 1, we evaluate the cost of
convolutions used in ResNet-32. The key takeaway is that
our online time is over 80× smaller than GAZELLE’s, and our
online communication is over 150× lower. On the other hand,
our preprocessing time and communication are higher than
GAZELLE’s, but are at most equal to GAZELLE’s online time
and communication.
Optimized GPU operations. As explained in Remark 4.2,
DELPHI’s choice of prime field enables DELPHI to use stan-
dard GPU libraries for evaluating convolutional layers in the
online phase. However, doing so requires copying the layer
weights and input into GPU memory, and copying the output
back into CPU memory for every linear layer. This copying
can have substantial overhead. To amortize it, one can batch
convolutions over different inputs together. In Table 2, we
report the cost of doing so for a batch sizes of 1, 5, and 10. The
key takeaway is that, for single convolutions these costs are
over 50–100× lower than the equivalent ones in Table 1, and

for batched convolutions, the cost seems to scale sub-linearly
with the batch size.

7.2.2 ReLU and quadratic activations
Recall that our protocol for evaluating ReLU activations uses
garbled circuits. Our circuit for ReLU follows the design laid
out in [Juv+18] with minor additional optimizations. To eval-
uate quadratic activations, our protocol uses Beaver’s mul-
tiplication procedure [Bea95], which requires sending one
field element from the server to the client and vice versa, and
then requires some cheap local field operations from each
party. The communication and computation costs for both
activations are presented in Table 3.

7.3 DELPHI’s planner
To demonstrate the effectiveness of our planner we need to
show that (a) quadratic activations are an effective replace-
ment for ReLU activations, and that (b) the networks found by
the planner offer better performance than all-ReLU networks.
In our experiments below, we use 80% of the training data
to train networks in the planner, and the remaining 20% as a
validation set. The planner scores candidate networks based
on their validation accuracy, but the final reported accuracy is
the test set accuracy.
Quadratic activations are effective. We need to show that
not only do networks output by our planner achieve good
accuracy, but also that the quadratic activations are not redun-
dant. That is, we need to show that the network is not learning
to “ignore” quadratic activations. This is a concern because
prior work [Mol+17; Liu+18] has shown that modern neural
network architectures can be “pruned” to remove extraneous
parameters and activations while still maintaining almost the
same accuracy.

We show this point by running our planner in two modes.
In the first mode, our planner was configured to find perfor-
mant networks that used quadratic activations, while in the
second mode it was configured to find networks that used
the identity function instead of quadratic activations, with the
intuition that if the quadratic activations were ineffective, then
networks that used the identity function instead would per-
form just as well. The results of these runs for varying number
of non-ReLU layers are displayed in Fig. 7 (for CIFAR-10)
and in Fig. 8 (for CIFAR-100). Together, these results indicate
that the networks output by our planner achieve performance
that is comparable to that of the all-ReLU baselines. Fur-
thermore, as the number of non-ReLU layers increase, the
best-performing networks that use the identity activation func-
tion have much worse accuracy than the equivalent networks
that use quadratic activations.
Planned networks perform better. To evaluate the ability
of our planner to find networks that offer good performance,
we run the planner to produce networks with a varying num-
ber (say k) of quadratic layers. We then compare the number
of ReLU activations in these networks to that in all-ReLU net-
works (like those supported by GAZELLE). Fig. 9 illustrates



conv. parameters
system

time (ms) comm. (MB)
input

C×H×W
kernel

N×K×K
stride &
padding preproc. online preproc. online

16×32×32 16×3×3 (1, 1) DELPHI 1236 15.9 10.48 0.065
GAZELLE — 1236 — 10.48

32×16×16 32×3×3 (1, 1) DELPHI 1262.5 15.64 5.24 0.020
GAZELLE — 1262.5 — 5.24

64×8×8 64×3×3 (1, 1) DELPHI 2662 15.6 5.24 0.036
GAZELLE — 2662 — 5.24

Table 1: Running time and communication cost of ResNet-32 convolutions in DELPHI.
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Figure 7: CIFAR-10 accuracy of 7-layer Min-
iONN networks found by our planner.
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Figure 8: CIFAR-100 accuracy of ResNet32
networks found by our planner.
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Figure 9: Number of ReLU activations in
ResNet32 networks found by our planner.

conv. parameters time (ms)
input

C×H×W
kernel

N×K×K
stride &
padding b = 1 b = 5 b = 10

16×32×32 16×3×3 (1, 1) 0.34 1.07 2.75

32×16×16 32×3×3 (1, 1) 0.24 0.61 1.10

64×8×8 64×3×3 (1, 1) 0.24 0.37 0.616

Table 2: Running time and communication cost of ResNet-32 con-
volutions in DELPHI when run on the GPU across different batch
sizes b.

activation
function

time (µs) comm. (kB)
preproc. online preproc. online

Quad 6 0.03 0.152 0.008

ReLU 154.9 85.3 17.5 2.048

Table 3: Amortized running time and communication cost of indi-
vidual ReLU and quadratic activations in DELPHI.
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Figure 10: Total execution time on the best planned network
(DELPHI) and the all-ReLU baseline (GAZELLE).

this comparison for ResNet32 on CIFAR-100. We observe
that the networks found by our planner consistently have fewer
activations than the all-ReLU baseline.

7.4 DELPHI’s cryptographic protocols
We demonstrate the effectiveness of DELPHI’s cryptographic
protocol by showing that DELPHI’s preprocessing phase and
online phase offer significant savings in latency and commu-
nication cost over prior work (GAZELLE). Figs. 10 and 11
summarizes this improvement for networks found by our plan-
ner; we provide a detailed evaluation next.
Preprocessing phase. Figs. 12a and 13a compare the time
required to execute the preprocessing phases of DELPHI
and GAZELLE on ResNet32 on CIFAR-100 and the Min-
iONN architecture on CIFAR-10, respectively. In both cases,
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Figure 11: Total communication on the best planned network
(DELPHI) and the all-ReLU baseline (GAZELLE).
we observe that, on networks that have a large number of
ReLU activations, DELPHI’s preprocessing time is larger than
GAZELLE’s. This is because DELPHI needs to additionally
perform preprocessing for each linear layer. However, as the
number of approximate activations increases, DELPHI’s pre-
processing time quickly decreases below that of GAZELLE,
because garbling circuits for ReLUs is far more expensive
than the preprocessing phase for the approximate activations.
A similar trend can be observed for communication costs in
Figs. 12c and 13c. Overall, for the most efficient networks
output by our planner, DELPHI requires 1.5–2 × less prepro-
cessing time, and 6–40 × less communication.
Online phase. Figs. 12b and 13b compare the time re-
quired to execute the online phases of DELPHI and GAZELLE
on ResNet32 on CIFAR-100 and the MiniONN architecture
on CIFAR-10, respectively. In both cases, we observe that
GAZELLE’s use of HE for processing linear layers imposes a
significant computational cost. Furthermore, as the number of
approximate activations increases, the gap between DELPHI
and GAZELLE grows larger. A similar trend can be observed
for communication costs in Figs. 12d and 13d. Overall, for
the most efficient networks output by our planner, DELPHI
requires 22–100 × less time to execute its online phase, and
9–40 × less communication.

8 Related work
We first discuss cryptographic techniques for for secure exe-
cution of machine learning algorithms in Section 8.1. Then,
in Section 8.2, we discuss model inference attacks that re-
cover information about the model from predictions, as well
as countermeasures for these attacks. Finally, in Section 8.3,
we discuss prior work on neural architecture search.

8.1 Secure machine learning
The problem of secure inference can be solved via generic
secure computation techniques like secure two-party (2PC)
computation [Yao86; Gol+87], fully homomorphic encryp-
tion (FHE) [Gen09], or homomorphic secret sharing (HSS)
[Boy+16]. However, the resulting protocols would suffer from
terrible communication and computation complexity. For in-
stance, the cost of using 2PC to compute a function grows

with the size of the (arithmetic or boolean) circuit for that func-
tion. In our setting, the function being computed is the neural
network itself. Evaluating the network requires matrix-vector
multiplication, and circuits for this operation grow quadrat-
ically with the size of the input. Thus using a generic 2PC
protocol for secure inference would result in an immediate
quadratic blow up in both computation and communication.

Similarly, despite a series of efforts to improve the effi-
ciency of FHE [Bra+11; Gen+11; Fan+12; Hal+18; Hal+19]
and HSS [Boy+17], their computational overhead is still large,
making them unsuitable for use in our scenario.

Hence, it seems that it is necessary to design specialized
protocols for secure machine learning, and indeed there is a
long line of prior work [Du+04; Lau+06; Bar+09; Nik+13a;
Nik+13b; Sam+15; Bos+15; Wu+16a; Aon+16; Sch+19] that
does exactly this. These works generally fall into two cat-
egories: those that focus on secure training, and those that
focus on secure inference. Since secure training is not our
focus in this paper, we omit discussing it, and instead focus
on prior work on secure inference. Most of these early works
focus on simpler machine learning algorithms such as SVMs
and linear regression. Designing cryptographic protocols for
these simpler algorithms is often more tractable than our set-
ting of inference for neural networks.

Hence, in the rest of this section we discuss prior work that
focus on secure inference over neural networks. This work
generally falls into the following categories: (a) 2PC-based
protocols; (b) FHE-based protocols; (c) TEE-based protocols;
and (d) protocols working in a multi-party model.

2PC-based protocols. SecureML [Moh+17] is one of the
first systems to focus on the problem of learning and predict-
ing with neural networks securely. However, it relies entirely
on generic 2PC protocols to do this, resulting in poor perfor-
mance on realistic networks. MiniONN [Liu+17a] uses the
SPDZ protocol to compute linear layers and polynomial ap-
proximation activations. Unlike DELPHI, MiniONN generates
multiplicative triples for each multiplication in a linear layer;
for a layer with input size n, MiniONN requires n2 offline and
online communication, compared to n for DELPHI.

GAZELLE [Juv+18] is the system most similar to ours: it
uses an efficient HE-based protocol for linear layers, while
using garbled circuits to compute non-linear activations. How-
ever, its reliance on heavy cryptographic operations in the
online phase results in a protocol that is more expensive than
DELPHI’s protocol with respect to both computation and com-
munication (see Section 7 for a thorough comparison).

DeepSecure [Rou+18] and XONN [Ria+19] use garbled
circuits to provide secure inference for the restricted class of
binarized neural networks [Cou+15] whose weights are all
boolean. This restriction enables these protocols to construct
a protocol that uses only a constant number of round trips.
DeepSecure additionally prunes the input neural network to
reduce the number of activations. Ball et al. [Bal+19] have
also recently constructed a protocol for secure inference that
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Figure 12: Comparison of DELPHI with GAZELLE on the ResNet-32 architecture.
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Figure 13: Comparison of DELPHI with GAZELLE on the architecture from MiniONN [Liu+17a].

relies on the garbling schemes of [Bal+16]. Unlike XONN
and DeepSecure, the protocol of [Bal+19] supports general
neural networks. Despite optimizations, each of these works
suffers from large concrete costs because each work performs
matrix-vector multiplications inside the garbled circuit.

EzPC [Cha+17], on input a high-level description of a pro-
gram, synthesizes a cryptographic protocol implementing that
program. The compiled protocol intelligently uses a mix of
arithmetic and boolean 2PC protocols to increase efficiency.

FHE-based protocols. CryptoNets [Gil+16] is the first work
that attempts to optimize and tailor FHE schemes for secure
inference. Despite optimizations, the limitations of FHE mean
that CryptoNets is limited to networks only a few layers deep,
and even for these networks it only becomes efficient when
processing a batch of inputs. Recent papers [Hes+17; Bru+18;
Bou+18; Cho+18; San+18] develop different approaches to
optimize the CryptoNets paradigm, but the resulting proto-
cols still require tens of minutes to provide predictions over
networks much smaller than the ones we consider here.

CHET [Dat+19] compiles high-level specifications of neu-
ral network to FHE-based inference protocols. To efficiently
use FHE, CHET must replace all ReLUs with polynomial
approximations, which harms accuracy for large networks.

TEE-based protocols. There are two approaches for infer-
ence using trusted execution enclaves (TEEs): (a) inference
via server-side enclaves, where the client uploads their input
to the server’s enclave, and (b) inference in client-side en-
claves, where the client submits queries to a model stored in
the client-side enclave.

Slalom and Privado are examples of protocols that rely on
server-side enclaves. Slalom [Tra+19], like DELPHI, splits
inference into an offline and online phase, and uses additive
secret sharing for the online phase. Unlike DELPHI, Slalom
uses the Intel SGX hardware enclave [McK+13] to securely
compute both the offline and online phases. Privado [Top+18]
compiles neural networks into oblivious neural networks,
meaning that computing the transformed network does not re-
quire branching on secret data. They use the oblivious network
to perform inference inside Intel SGX enclaves. Slalom’s im-
plementation indicates that it does not implement linear or
non-linear layers obliviously.

MLCapsule [Han+18] describes a system for performing
inference via client-side enclaves. Apple uses a client-side
secure enclave to perform fingerprint and face matching to
authorize users [App19].

In general, most TEE-based cryptographic inference pro-
tocols offer better efficiency than protocols that rely on cryp-
tographic (like DELPHI). This improved efficiency comes at
the cost of a weaker threat model that requires trust in hard-
ware vendors and the implementation of the enclave. Further-
more, because the protocol execution occurs in an adversarial
environment, any side-channel leakage is more dangerous
(since the adversary can carefully manipulate the execution
to force this leakage). Indeed, the past few years have seen a
number of powerful side-channel attacks [Bra+17; Häh+17;
Göt+17; Mog+17; Sch+17; Wan+17; Van+18] against popu-
lar enclaves like Intel SGX and ARM TrustZone.

Protocols with more parties. The discussion above focuses



on two-party protocols, because in our opinion secure infer-
ence maps naturally to this setting. Nevertheless, a number of
works [Ria+18; Wag+18; Tfe; Bar+19] have instead targeted
the three-party setting where shares of the model are divided
amongst two non-colluding servers, and a client must interact
with these servers to obtain their prediction.

8.2 Model leakage from predictions
Prediction API attacks [Ate+15; Fre+15; Wu+16b; Tra+16;
Sho+17; Jag+19] aim to learn private information about the
server’s model or training data given access only to the results
of predictions on arbitrary queries.

There is no general defense against prediction API attacks
beyond rate limiting and query auditing [Jag+19]. However,
there are defenses against specific classes of attacks. For
example, one can use differentially private training [Sho+15;
Aba+16] to train neural networks that that do not leak sensitive
information about the underlying training data.

The guarantees of DELPHI are complementary to those pro-
vided by any such mitigations. Indeed, with sufficient effort,
these techniques can be integrated into DELPHI to provide
even stronger privacy guarantees; we leave this to future work.

8.3 Neural architecture search
Recently, machine learning research has seen rapid advance-
ment in the area of neural architecture search (NAS) (see
[Els+19; Wis+19] for surveys). The aim of this field is to
develop methods to automatically optimize properties of a
neural network like accuracy and efficiency by optimizing
the hyperparameters of the network. Examples of commonly
optimized hyperparameters include the size of convolutional
kernels, the number of layers, and parameters of the gradient
descent algorithm like learning rate and momentum. In this
work, we rely on NAS algorithms only for optimizing the
placement of quadratic approximation layers within a net-
work, as ReLU activations were the bottleneck in our system.

Common approaches to neural architecture search include
those based on reinforcement-learning [Zop+17], evolution-
ary algorithms [Yao99; Ber+13], and random search [Ber+12;
Jad+17]. DELPHI’s planner uses the Population-Based Train-
ing algorithm [Jad+17] to perform NAS. PBT can be seen
as a hybrid of the evolutionary algorithm and random search
approaches.
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A Security properties of our building blocks
Security for garbled circuits requires the existence of a
simulator SimGS that, given input 1λ,1|C|, and C(x), outputs
C̃,{labeli}i∈[n] such that this output is computationally indis-
tinguishable to (C̃,{labeli,xi

}) generated by GS.Garble.

Security for linearly homomorphic encryption schemes re-
quires the scheme to satisfy the following properties:
• Semantic security. For any two messages m,m′, we require
{pk,HE.Enc(pk,m)} ≈c {pk,HE.Enc(pk,m

′)}, where the
two distributions are over the random choice of pk and the
random coins of the encryption algorithm.

• Function privacy. There exists a simulator SimFP such that
for every efficient adversary A , every linear function L, and
every pair of messages m1,m2, we have that the following
distributions are computationally indistinguishable:(r,r1,r2,c

′) :

(r,r1,r2)←{0,1}
λ

(pk,sk)← HE.KeyGen(1λ;r)
c1← HE.Enc(pk,m1;r1)
c2← HE.Enc(pk,m2;r2)

c′← HE.Eval(pk,c1,c2,L)


≈c

SimFP(1
λ,m1,m2,L(m1,m2))

B Security proofs
Proof of indistinguishability with corrupted client. We
show that the real world distribution is computationally indis-
tinguishable to the simulated distribution via a hybrid argu-
ment. In the final simulated distribution, the simulator does
not use the weights for the server’s model, and so a corrupted
client learns nothing beyond the output prediction and the
model architecture in the real world.
• Hyb0: This corresponds to the real world distribution where

the server uses its input matrices M1, . . . ,M`−1.

• Hyb1: This hybrid involves only a syntactic change. In
the output phase, the simulator sends y− r` to the client,
where y is the output of the neural network on input x. Ad-
ditionally, the simulator uses the knowledge of the client’s
random tape to begin the evaluation of the i-th layer with
xi− ri. Since this is a syntactic change, Hyb1 is distributed
identically to Hyb0.

• Hyb2: We change the inputs that the server provides to
each OT execution where it acts as the sender. Instead of
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https://github.com/mortendahl/tf-encrypted
https://www.wyze.com/


providing the labels corresponding to 0 and 1 in each OT
execution, the server provides labeli,b where b is the input
used by the client in that OT execution. Note that in the
semi-honest setting, we know b as a result of setting the
random tape as well learning the input of the corrupted
client. It follows from the sender security of OT that Hyb2
is indistinguishable from Hyb1.

• Hyb3: In this hybrid, for every layer of the neural network
that uses garbled circuits, we generate C̃ using SimGS on
input 1λ,1|C| and C(z) where z is the input that the client
uses to evaluate this circuit (this is again known in the semi-
honest setting as a result of setting the random tape and
knowing the input). Note that C(z) is an OTP encryption
and hence is distributed identically to a random string. It
follows from the security of the garbled circuits that Hyb3
is indistinguishable from Hyb2.

• Hyb4: In this hybrid, we generate the multiplication triples
in the offline phase using the corresponding simulator for
Beaver’s protocol. It follows from the simulation security
of this protocol that Hyb4 is indistinguishable from Hyb3.

• Hyb5: In this hybrid, for every quadratic approximation
layer, we use the simulator for Beaver’s multiplication
procedure. It again follows from the simulation security
that this hybrid is indistinguishable to the previous hybrid.
Notice that in this hybrid, the server is no longer using
xi− ri,si as well as the matrix Mi to evaluate the i-th layer.

• Hyb6: For every homomorphic evaluation in the offline
phase, we use the simulator SimFP for the function privacy
of HE. Note that SimFP only requires the output Mi · ri−
si to generate the homomorphically evaluated ciphertext.
It follows from the function privacy of HE that Hyb6 is
computationally indistinguishable from Hyb5.

• Hyb7: In this hybrid, we replace the input −s′i given to
SimFP with randomly sampled s′i from R n (instead of the
true value Mi · ri− si). Thus Hyb7 is distributed identically
to Hyb6 as si is chosen uniformly at random. Finally, we
note that Hyb7 is identically distributed to the simulator’s
output, completing the proof.

Proof of indistinguishability with corrupted server. We
show that the real world distribution is computationally indis-
tinguishable to the simulated distribution via a hybrid argu-
ment. In the final simulated distribution, the simulator does

not use the user’s input, and so a corrupted server learns noth-
ing in the real world.

• Hyb0: This corresponds to the real world distribution where
the client uses its actual input x.

• Hyb1: This hybrid involves only a syntactic change. For
every layer that is evaluated by garbled circuits, instead of
evaluating the circuits, we instead send OT P(xi+1− ri+1)
by using our knowledge of x, the matrices Mi, and the
random tape of the server. Similarly, in every quadratic
approximation layer, we send a share in the final round
such that when the server adds it with its own share it gets
xi+1− ri+1. Because this change is only syntactic, Hyb1 is
identical to Hyb0.

• Hyb2: In this hybrid, we change the inputs that the client
provides to each OT execution where it is acting as the
receiver. Instead of providing the actual inputs, it provides
some junk inputs, say 0. It follows from the receiver secu-
rity of the underlying oblivious transfer protocol that Hyb2
is computationally indistinguishable from Hyb1.

• Hyb3: In this hybrid, we generate the multiplication triples
in the offline phase using the simulator for Beaver’s multi-
plication protocol. It follows from the simulation security
of this protocol that Hyb4 is indistinguishable from Hyb2.

• Hyb4: In this hybrid, for every quadratic approximation
layer of the neural network, we use the simulator for the
Beaver’s multiplication procedure. It follows from simula-
tion security that Hyb4 is indistinguishable from Hyb3.

• Hyb5: In this hybrid, we change the ciphertexts sent by the
client in the offline phase. Instead of sending encryptions
of ri, the client sends HE.Enc(pk,0). It follows from the
semantic security of the encryption scheme that Hyb5 is
computationally indistinguishable from Hyb4.

• Hyb6: In this hybrid, we make the following changes. For
every layer that is evaluated by garbled circuits, we send
OT P(ri+1) for a randomly chosen ri+1. Similarly, in every
quadratic approximation layer, we send a share in the final
round that is chosen uniformly at random. Additionally, in
the preamble phase, we send an uniformly chosen value r1.
Hyb6 is distributed identically to Hyb5. Finally, note that
Hyb6 is identically distributed to the simulator’s output,
completing the proof.
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