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Abstract
The security of FPGAs is a crucial topic, as any vulnera-

bility within the hardware can have severe consequences, if
they are used in a secure design. Since FPGA designs are
encoded in a bitstream, securing the bitstream is of the utmost
importance. Adversaries have many motivations to recover
and manipulate the bitstream, including design cloning, IP
theft, manipulation of the design, or design subversions e.g.,
through hardware Trojans. Given that FPGAs are often part of
cyber-physical systems e.g., in aviation, medical, or industrial
devices, this can even lead to physical harm. Consequently,
vendors have introduced bitstream encryption, offering au-
thenticity and confidentiality. Even though attacks against
bitstream encryption have been proposed in the past, e.g.,
side-channel analysis and probing, these attacks require so-
phisticated equipment and considerable technical expertise.

In this paper, we introduce novel low-cost attacks against
the Xilinx 7-Series (and Virtex-6) bitstream encryption, re-
sulting in the total loss of authenticity and confidentiality. We
exploit a design flaw which piecewise leaks the decrypted bit-
stream. In the attack, the FPGA is used as a decryption oracle,
while only access to a configuration interface is needed. The
attack does not require any sophisticated tools and, depending
on the target system, can potentially be launched remotely. In
addition to the attacks, we discuss several countermeasures.

1 Introduction

Nowadays, Field Programmable Gate Arrays (FPGAs) are
common in consumer electronic devices, aerospace, financial
computing, and military applications. Additionally, given the
trend towards a connected world, data-driven practices, and ar-
tificial intelligence, FPGAs play a significant role as hardware
platforms deployed in the cloud and in end devices. Hence,
trust in the underlying platform for all these applications is
vital. Altera, who are (together with Xilinx) the FPGA market
leader, was acquired by Intel in 2015.

FPGAs are reprogrammable ICs, containing a repetitive
logic area with a few hundred up to millions of repro-

grammable gates. The bitstream configures this logic area;
in analogy to software, the bitstream can be considered the
‘binary code’ of the FPGA. On SRAM-based FPGAs, which
are the dominant type of FPGA in use today, the bitstream is
stored on an external non-volatile memory and loaded into
the FPGA during power-up.

In order to protect the bitstream against malicious actors, its
confidentiality and authenticity must be assured. If an attacker
has access to the bitstream and breaks its confidentiality, he
can reverse-engineer the design, clone intellectual property,
or gather information for subsequent attacks e.g., by finding
cryptographic keys or other design aspects of a system. If
the adversary succeeds in violating the bitstream authentic-
ity, he can then change the functionality, implant hardware
Trojans, or even physically destroy the system in which the
FPGA is embedded by using configuration outside the specifi-
cations. These problems are particularly relevant since access
to bitstream is often effortlessly possible due to the fact that,
for the vast majority of devices, it resides in the in external
non-volatile memory, e.g., flash chips. This memory can of-
ten either be read out directly, or the adversary wiretaps the
FPGA’s configuration bus during power-up. Alternatively, a
microcontroller can be used to configure the FPGA, and conse-
quently, the microcontroller’s firmware includes the bitstream.
When the adversary gains access to the microcontroller, he
also gains access to the configuration interface and the bit-
stream. Thus, if the microcontroller is connected to a network,
remotely attacking the FPGA becomes possible.

In order to protect the design, the major FPGA vendors
introduced bitstream encryption around the turn of the mil-
lennium, a technique which nowadays is available in most
mainstream devices [1,56]. In this paper, we investigate the se-
curity of the Xilinx 7-Series and Virtex-6 bitstream encryption.
On these devices, the bitstream encryption provides authen-
ticity by using an SHA-256 based HMAC and also provides
confidentiality by using CBC-AES-256 for encryption. By
our attack, we can circumvent the bitstream encryption and
decrypt an assumedly secure bitstream on all Xilinx 7-Series
devices completely and on the Virtex-6 devices partially. Ad-



ditionally, we are also able to manipulate the bitstream by
adjusting the HMAC. Out attack setting in general is the same
one as commonly encountered in mainstream practice: The
adversary only needs access to the configuration interface
of a fielded FPGA. In this setting, the secret decryption key
has already been loaded into the FPGA, e.g., after device
manufacturing, the key is stored in internal battery-backed
RAM (BBRAM) or eFUSEs. As will be shown later, the ad-
versary uses the FPGA with the stored key as an oracle to
decrypt the bitstream.

According to recent business reports, Xilinx shares 50% of
the FPGA market [16]. Also evident by Xilinx’s annual report
in 2018 [55], around 35% of their current revenue originates
from the 7-Series (meanwhile, Virtex-6 devices are not stated
independently in this report, but are veiled in the 50% revenue
of all old generations). Thus, the 7-Series and Virtex-6 devices
are a popular choice for a variety of FPGA designs, many of
which are mission- or safety-critical. Besides, we note that
similar to many other digital hardware devices, FPGAs have
a lifespan of decades. Replacing legacy systems or using
high-performance products therefore might turn out to be a
costly and cumbersome undertaking. However, Xilinx’s new
UltraScale and UltraScale+ devices, which are the new (high-
end) series and slowly replace the old ones, are not affected
by our attack.

In this paper, we introduce two novel attacks against this
Xilinx 7-Series bitstream encryption, which result in a total
loss of authenticity and confidentiality. Furthermore, we dis-
cuss the implications of these attacks and suggest potential
countermeasures. While our attacks chiefly target the Xilinx
7-Series, Virtex-6 devices are also vulnerable to our attack
with the limitation that the first two bits of every 32-bit word
are missing in the recovery process.

We communicated our findings to Xilinx in a vulnerability
disclosure on 24 September 2019 and started cooperating
on the issue: Xilinx quickly confirmed the vulnerability on
25 September and that there is no patch possible without
changing the silicon. Coinciding with the publication of this
paper, Xilinx plans to publish a design advisory that informs
their customers of this vulnerability.

The paper is structured as follows: First, we give an execu-
tive summary of the attack. Then, we introduce the necessary
background and related work in Section 2. In Section 3, we
introduce the attack with all details, whereupon we validate
the attack by a case study in Section 4. A discussion about
the findings and countermeasures is given in Section 5. We
conclude the paper in Section 6.

1.1 The Attack at a Glance

A small configuration engine loads the bitstream into the
FPGA and continuously reflects the FPGA’s state in status
registers. If the bitstream encryption is activated, the configu-
ration engine prohibits the readout of a bitstream. Usually, if

the bitstream encryption is disabled, this readout function is
legitimately used for debugging the FPGA and its design.

In our attack, we manipulate the encrypted bitstream to
redirect its (decrypted) content from the fabric to a configu-
ration register. We then read out this configuration register,
which holds the unencrypted bitstream data; the readout of the
configuration register is not prevented even in the presence of
an encrypted bitstream anyway.

For that purpose, we use the MultiBoot address register
WBSTAR. This MultiBoot feature enables the FPGA to boot
from a different memory address in order to update the FPGA
safely, boot with different functionality or boot from a fall-
back bitstream with a working design. The MultiBoot feature
uses the content of the WBSTAR register as the boot address
in the attached non-volatile memory. Hence, the register is
not cleared during a reset. We now manipulate the encrypted
bitstream to write a single 32-bit word which is part of the
encrypted bitstream to the WBSTAR register in decrypted
form. The bitstream’s manipulation exploits the malleability
of the CBC mode of operation to alter the command in the
bitstream which writes data to the WBSTAR configuration
register. After the configuration with the encrypted bitstream,
the FPGA resets, since it detects an invalid HMAC. We use
the WBSTAR configuration register for the readout, because
the reset procedure does not clear it. After the reset, we fi-
nally use a second bitstream to readout the WBSTAR register
to uncover the decrypted bitstream word by word. In sum-
mary, the FPGA, if loaded with the encryption key, decrypts
the encrypted bitstream and writes it for the attacker to the
readable configuration register. Hence, the FPGA is used as
a decryption oracle. The fact that only single 32-bit words
can be uncovered in each iteration determines the duration
of decrypting a whole bitstream: In our experiments, we are
able to uncover a complete Kintex-7 XC7K160T bitstream in
3 hours and 42 minutes, for instance.

For the second attack, we can break the authenticity of the
bitstream encryption. The attacker can use the decryption
oracle to encrypt arbitrary messages due to the underlying
CBC mode. They can build the CBC chain starting with the
last block. For that, they encrypt a random message, uses the
CBC malleability, and calculates the ciphertext block to turn
the plaintext into the intended value. The attacker repeats
this process until the whole bitstream is encrypted. Since the
HMAC key is stored in the encrypted bitstream and is not
verified, the attacker can manipulate the HMAC tag as well.
Thus, the attacker can craft legitimate encrypted bitstreams,
which are correctly validated.

2 Background

In this section, we introduce the background on FPGAs, give
an overview of attacks already mounted on bitstream encryp-
tion schemes, and lastly, introduce the bitstream format of the
Xilinx 7-Series.



2.1 FPGAs
Field Programmable Gate Arrays are reconfigurable devices.
They consist, in essence, of an array of configurable logic cells,
also known as fabric. The main elements of the fabric are
small configurable logic cells, flip-flops, and a configurable
routing. Only if the user programs the FPGA, it contains the
functional logic of the design. The most significant advantage
of FPGAs over ASICSs is their reprogrammability, i.e., the
ability to configure an FPGA arbitrarily.

All configuration information is contained in the bitstream,
which specifies all details of the digital design. In SRAM-
based FPGAs, it has to be stored on an external non-volatile
memory chip. For programming the bitstream, the FPGA has
different interfaces, e.g., SelectMAP, JTAG, ICAP2, Serial, or
SPI/BPI. The difference between these interfaces are mostly
their protocol, bus width, and direction of programming, i.e.,
the SPI interface independently reads from non-volatile mem-
ory, while the SelectMAP or JTAG can be triggered from
another device and the ICAP2 is an internal port inside the
fabric. Additionally, the SelectMAP, JTAG, and ICAP2 in-
terfaces have a back-channel, i.e., they can read out debug
information from the FPGA. This readout enables the user
to download the configured design, e.g., extract the bitstream
from the FPGA and check if anything was configured cor-
rectly or use the flip-flop content for advanced design debug-
ging. Similarly, the user can read out the configuration and
status registers from the FPGA.

The bitstream encryption feature protects the bitstream by
providing confidentiality and authenticity. The encryption key
is stored in either a BBRAM or eFUSEs and is programmed
via JTAG only. When the bitstream encryption is enabled, the
readout of the bitstream described above is blocked on all
external ports. Otherwise, an attacker would be able to read
out the decrypted design information. Hence, a readout from
the external ports returns null values when the bitstream
encryption is used. Only via the internal ICAP2 interface, it
is possible to read out the encrypted bitstream. However, the
ICAP2 interface is usually not connected to the outside world
or should be protected. An additional security mechanism is
that the entire FPGA must be reset to load a new design when
the bitstream encryption has been enabled.

2.2 Bitstream-Based Attacks
The consequence of our attack is the total loss of the bit-
stream’s authenticity and confidentiality. Even when losing
one of them, attacks against the system become possible [53].
A recent example is the Thrangrycat attack of Kataria et
al., which targets the FPGA-based root of trust in Cisco
routers [23]. In this section, we elaborate the following at-
tacks and their implications: cloning, reverse engineering,
tampering, spoofing, and physically harming of FPGAs and
their design. Besides that, the general security of FPGAs is
a well-studied topic in the literature [17, 28, 29, 45, 46, 53],

which will be discussed mainly in the next chapter.
Without bitstream confidentiality, the design can easily be

cloned and counterfeit products can be built. Thus, overpro-
duction is considered a considerably higher threat in the case
of FPGAs compared to ASIC-based products. A bitstream
without confidentiality also allows that the design can be re-
verse engineered to gain knowledge about the Intellectual
Property (IP) used, mount attacks on the application, or pre-
pare the injection of hardware Trojans. Hardware Trojans
and other manipulation attacks are based on tampering with
the bitstream. Thus, an adversary has also to circumvent the
bitstream’s authenticity. We note that manipulations allow the
attacker also to circumvent other security mechanisms in the
design or leak data within the design, e.g., cryptographic keys.
Moreover, an attacker might be able to physically destroy the
system in which it is embedded by changing parameters, akin
to the Stuxnet attack (which was allegedly software-based,
however) [25].

When spoofing the bitstream, the attacker replaces the bit-
stream rather than changing the already existing one, i.e., the
attacker creates his own bitstream. Thus, no reverse engineer-
ing of the existing bitstream is needed.

Another bitstream-based attack vector is to physically de-
stroy the FPGA by configuration outside the specifications,
i.e., by implementing short circuits on the FPGA. Physical
harming the FPGA through its fabric might not be necessary
for an attacker with access to the hardware, as they can any-
how destroy it. However, an attacker with only remote access
to the bitstream will be capable of physically harming the
inside of the FPGA. Such physical attacks can be viewed as
severe denial of service attacks.

Thus, almost all vendors realized means to secure the bit-
stream of an FPGA. First, they block the readback of the
bitstream from debugging interfaces. Second, they have de-
veloped bitstream encryption schemes. The bitstream encryp-
tion should provide authenticity and confidentiality, as the
confidentiality protects the bitstream against cloning, reverse
engineering, and tampering [53], while the authenticity is
needed to avoid loading an untrusted bitstream and prevent
tampering, spoofing, and physical harm attacks. As otherwise,
the attacker could run a modified bitstream on the device.
Thus, the authenticity of the bitstream is as essential as its
confidentiality [8].

2.3 Related Works
Several attacks against bitstream encryption have been pro-
posed in the literature. In 2012, Skorobogatov and Woods
found a bug (which might be a backdoor) to circumvent
the bitstream encryption of an Actel/Microsemi ProA-SIC3
A3P250 FPGA [46]. They found a bug in the JTAG instruc-
tion set to read out the bitstream even when the bitstream
encryption is enabled.

Already in 2011, Moradi et al. attacked the Xilinx bit-



stream encryption with power side-channel attacks [29]. Sub-
sequently, in 2014, Altera FPGAs have been targeted using
side-channels [49] as well. After measuring the power con-
sumption of the device, the attacker uses statistical methods
and a power-model of the cipher to compute the key. Often
GPUs are used to compute the key from an ample search
space in a reasonable time frame. Furthermore, the PCB host-
ing the FPGA often needs to be modified to allow monitoring
the power side-channel. This requirement is relaxed by mea-
suring the electro-magnetic side channel instead of the power
side channel [30] but comes at an increase in the measure-
ment cost and complexity. For example, Moradi et al. used
an oscilloscope at a sampling rate of 5 GS/s and bandwidth
of 1.5 GHz to capture EM signals. Since its introduction,
these side-channel attacks have become a general thread to
bitstream encryption schemes, which led to improved coun-
termeasures in recent FPGA series. Nevertheless, the general
knowledge on side-channel attacks has improved during the
last decades, and the number of companies and research insti-
tutes active in the field has grown. Although this increases the
feasibility of such attacks, the adversary requires a minimum
set of equipment to be able to measure side-channel leakages
with adequate quality.

Tajik et al. introduced an attack using optical contactless
probing in 2017 [51]. In a nutshell, a near-infrared light source
is focused on the backside of the silicon, i.e., directly on the
transistors. The hereby used near-infrared light source is trans-
parent to the substrate. Thus, it directly reaches the transistors.
The transistors then reflect the emitted light depending on
their load. Consequently, a detector can distinguish between
a transistor in an opened or closed state. The authors used
this technique to attack the bitstream encryption of a Xilinx
Kintex-7 FPGA successfully. They observed the bitstream
configuration engine and identified the bus transmitting the
plaintext bits after the encryption. Hence, they used the FPGA
as an oracle, as well. Nevertheless, this attack requires expen-
sive electro-optical probing equipment.

Similarly, thermal laser stimulation attacks [28] uses laser
beams to introduce localized heating, which changes the used
current. The current changes can then be linked to the stored
key in the BBRAM to extract the encryption key.

Lately, security researchers at F-Secure points out two de-
sign flaws in the encrypt-only boot mode of Zynq UltraScale+
MPSoC devices [11], which compromise the processing unit
(ARM core) in the SoC design. The researchers shows that the
header of the first stage boot loader is not checked, which en-
codes the boot start address of the processing unit (ARM core).
Changing the address can lead to arbitrary code execution
using a return-oriented programming attack. Nevertheless,
the attack is mountable in the encrypt only boot mode solely.
Hence, it can be mitigated, as recommended by Xilinx before,
by using system level protections or the Hardware Root of
Trust boot mode, which uses RSA signatures to authenticate
the boot header.

SYNC
configuration header

HMAC header
configuration header

fabric data

(configuration) footer
HMAC footer

configuration footer

FIGURE 1: Bitstream structure overview (shaded parts are en-
crypted) [53, 56].

In summary, the known attacks to the Xilinx bitstream
encryption on 7-Series devices are all physical in nature (side-
channel analysis, optical contactless probing), and are mostly
costly in terms of equipment, time, and technical expertise.
Plus, they need physical access to the FPGA. In contrast, our
attack requires only access to a JTAG or SelectMAP interface,
which is often available through the debugging nature of the
JTAG interface or may be even available via a remote channel.

2.4 Bitstream Format
The Xilinx 7-Series bitstream format contains a header and
the configuration for the fabric. While most of the header
is documented in [56], the fabric configuration is not made
public by the vendor. However, several papers show strategies
to document the bitstream format [7, 9, 15, 31–33, 50], as the
fabric configuration data is the netlist, in a different format, of
the loaded design. Hence, the fabric data format is essential
for reverse engineering of the design, to find Trojan horses,
to build open-source tool-chains, or to formally verify the
bitstream coming from the vendors’ tools.

Figure 1 shows an overview of the 7-Series encrypted bit-
stream structure. Later in Figure 2, we discuss the bitstream
format in detail. The bitstream starts with a SYNC word,
which is followed by a configuration header. In the header,
the CBC IV is configured and the length of the following
encrypted part is given. After the header, the encrypted part
follows, which is shaded in Figure 1. First, in the HMAC
header, the HMAC key (ipad) is set, which immediately starts
the HMAC calculation. Then, a secondary header configures
the remaining settings. A large blob is followed to configure
the fabric. A footer concludes the configuration, which is also
used for alignment. The encrypted part ends with the HMAC
footer, which contains the HMAC opad, and the HMAC tag,
with which the encrypted part can be validated. A global
footer concludes the bitstream as well as starting the FPGA’s
fabric.

In detail, the bitstream of 7-Series devices is organized in
packages of 32-bit words. There are two types of packages,



while the type 1 package is displayed in Table 1. Type 1 pack-
ages contain an opcode (nop, read, write), a register address,
and the word count of the read or written data. If a package
writes any content to a register, the data (in multiples of 32-
bit words) is attached directly after the package. The type 2
package is an extension of the type 1 with a larger address
field to write a large amount of data, e.g., the fabric data.

There are 20 documented registers, which organize the
configuration of the FPGA. For example, there is a CRC
register verifying the checksum of the bitstream or multiple
status registers to monitor the boot process. The interested
reader is referred to the documentation of the bitstream header
format [56].

In more detail, Figure 2 shows the structure of an encrypted
bitstream. The configuration logic ignores the beginning of
the bitstream until the sync word 0xAA995566 is transmitted.
The following unencrypted header configures only the decryp-
tion engine, i.e., turns it on and sets the CBC IV. With writing
the length of the encrypted part in the configuration regis-
ter 1, the bitstream encryption engine is turned on, and only
encrypted data follows. Note that we show all bytes in the
encrypted part in plaintext as the FPGA configuration logic
would see it after the decryption. However, the attacker would
observe arbitrary encrypted data only. The first 4 AES blocks,
i.e., 4×128 bits = 512 bits, correspond to the HMAC header.
It includes the HMAC key xored with the ipad (256-bits) and
the ipad value itself [40]. Following the HMAC header, the
already started configuration header is completed by issu-
ing commands to prepare the configuration engine, e.g., the
WBSTAR register is configured. The word following the com-
mand to write to the WBSTAR register is the content written
to the register, i.e., 0x00000000. The configuration header
completes with a command to write the fabric’s data, which
follows afterwards and is the longest part of the bitstream.

At the end of the encrypted part, the (configuration) footer
and the HMAC footer is attached. The configuration footer
can contain commands to configure the engine and an uninter-
preted part, which is used to align the plaintext to a multiple
of 512-bits since the HMAC operates on multiples of 512-bits.
The HMAC footer contains the HMAC’s key XORed with
the opad, the opad itself, and the HMAC tag. The HMAC
authenticates all encrypted content since the HMAC compu-
tation starts directly after the first HMAC header and ends
right before the HMAC footer. Since the configuration engine
processes all HMAC related calculations on the decrypted
bitstream, the MAC-then-encrypt scheme is used. Lastly, the
general footer (in plain) ends the whole bitstream. Since we
can ignore it for the attack, it is not shown in Figure 2.

10x30034001 is the command (type 1 package), where 0x3 is a write
command, 0x34 determine the written register, and 0x1 the length of data
written to the register. The following word 0x00002250 is the data written to
that register 0x34 (see Table 1).

3 Attacking Xilinx Bitstream Encryption

This section presents the adversary model, the malleability of
the bitstream encryption, and gives an introduction on how to
forge arbitrary bitstreams. We use the following notation: A
word is 32-bit long, a block is 128-bit long (AES-256 opera-
tion) and a chunk is 512-bit long (one SHA-256 input).

3.1 Adversary Model
Generally, the adversary can be anyone who has access to the
JTAG or SelectMAP configuration interface, even remotely,
and to the encrypted bitstream of the device under attack. In
contrast to side-channel and probing attacks against bitstream
encryption, no adequate equipment nor expertise in electronic
measurements is needed. The requirements for our adversary
model are as follows:

Configuration Interfaces The attacker needs to have access
to the SelectMAP or JTAG interface which allows a debug
readout as well as the configuration of encrypted bitstreams.
For example, the attacker can gain access to a configuration
interface locally, if they have physical access. Note that only
the JTAG interface can be used to load the AES key. Thus, a
JTAG interface must be present on the PCB, if the BBRAM
key storage is used. If the BBRAM is not used, the eFUSEs
can be burned during provisioning on a different PCB, then
used on the production PCB. Hence, the JTAG interface might
not be present on the production PCB, if eFUSEs are used, so
that another configuration interface is used, like SelectMAP.

A microcontroller is often used in addition to the FPGA and
configures it. Thus, the attack can be conducted from the
connected microcontroller, if it is connected to the FPGA’s
SelectMAP or JTAG interface. It is even possible to conduct
the attack remotely if the microcontroller is connected to a
network, and because of that the adversary can gain access to
the microcontroller via the remote channel, e.g., by installing
a rootkit, as demonstrated by the latest Thrangrycat attack on
Cisco routers [24].

Bitstream Access The adversary also needs to have access
to the attacked encrypted bitstream, which they can through
several methods. In the case of physical access, they can
wiretap the configuration bus during power-up or directly read
out the non-volatile memory in which the encrypted bitstream
is stored. Without physical access, however, they can extract
it from the (microcontroller) firmware which configures the
FPGA or download the firmware from a remote update service
e.g., via a website.

Access Level A remote attack is possible only if the attacker
has remote access to a configuration interface and the en-
crypted bitstream.

A local attack is possible otherwise, e.g., if the attacker has
local access to a configuration interface and can obtain the
encrypted bitstream.
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Header Type Opcode Register Address Reserved Word Count
[31:29] [28:27] [26:13] [12:11] [10:0]

001 xx RRRRRRRRRxxxxx RR xxxxxxxxxxx

TABLE 1: Type 1 package header format. “R” are reserved bits and “x” are the actually used bits [56].

Key Loaded The AES key must already be loaded onto the
FPGA, which is always the case for a system already in use
and may be the case after the provisioning by the system
manufacturer.

Known-plaintext The attacker needs only limited knowl-
edge about the plaintext of the encrypted bitstream. Specif-
ically, they need to know about a single 32-bit word in the
encrypted bitstream header, since a single word is altered in
the attack only. The bitstream generation in Vivado is deter-
ministic, i.e., the commands in the encrypted header are the
same among different bitstreams and change only in their
configuration content. Thus, the adversary can predict the
plaintext in the encrypted header, e.g., they know the position
of the write WBSTAR command. Note that any other com-
mand can be used as long as the attacker knows the plaintext.
If a defender would change the encrypted bitstream header,
e.g., randomize it, an attacker can make assumptions, as there
is a limited set of valid packages e.g., package construction
(Table 1), valid commands, and meaningful content. There-
fore, the attacker could brute-force the encrypted bitstream
to gain knowledge over the plaintext; however, only a single
package in the header needs to be brute-forced for this attack,
so it would become more difficult, but not infeasible.

Used Devices The design under attack is any Xilinx 7-Series
device or a Vertix-6 device with slight limitations (see Sec-
tion 4).

3.2 CBC Malleability
Xilinx uses the Cipher Block Chaining (CBC) mode with
AES as the underlying cipher for bitstream encryption. Hence,
the blocks are 128 bits wide. In CBC mode, each ciphertext
block Ci is XORed with the next plaintext block Pi+1 prior to
encryption. An advantage of the CBC mode is that it encrypts
probabilistically if a nonce is used as an initialization vector
(IV), which is a desirable security feature. However, the CBC
mode is also malleable during decryption:

Flipping a bit in the ciphertext creates a random plaintext
in the same block, but, as the ciphertext is XORed with the
next plaintext block, bits at the same position in the next
plaintext block are flipped accordingly. Figure 3 illustrates
this malleability, using AES as the underlying cipher, where k
is the key of the cipher, Ci is a ciphertext block (128 bits), Pi
the plaintext block (128 bits), and IV the initialization vector
of 128 bits. Hence, XORing a ∆ to the ciphertext C1 leads to
a random P′1 instead of the correct plaintext P1. The plaintext

in the next block P2 is XORed with the ∆ as well: P2⊕∆. So
by changing Ci, the attacker can flip arbitrary bits in Pi+1.

3.3 Attack 1: Breaking Confidentiality
The attack is essentially mounted in five steps:

1. Create a malicious bitstream and a readout bitstream
2. Configure the FPGA with the malicious bitstream
3. Reset the FPGA (automatically)
4. Read out the WBSTAR register using the readout bit-

stream
5. Reset the FPGA (manually)

Using these five steps, the attacker can decrypt one word (32-
bit) of the encrypted bitstream. They can repeat these five
steps for every word of the encrypted bitstream in order to
recover it entirely.

The malicious bitstream created in Step 1 is shown in Fig-
ure 4, while a circled number corresponds to the block next to
it; h0 for instance corresponds to the last HMAC header block.
After the HMAC header, the previously initiated configuration
header is completed as well, so boot configurations are written
to the FPGA. In the first block h1 (the last two words) already,
the command (0x30020001) writes one word to the WBSTAR
register. In a default configuration, the content written to this
register is zero, but it is irrelevant for the attack. In more detail,
the first bits of the command 0x3 issues a type 1 package with
a write operation, while the 0x020 points to the WBSTAR
register. The 0x01 at the end states the written length in words,
here a single word. Thus, the following word, 0x00000000,
is written to the WBSTAR register. The bitstream generation
in Vivado is deterministic, meaning that the commands in the
encrypted header are the same among different bitstreams and
change only in their configuration content, i.e., the words after
the commands. Thus, the adversary can assume the plaintext
in the encrypted header, so they can, for instance, know the
position of the write WBSTAR command. We here chose the
WBSTAR command, because it is the last command in the
first block after the HMAC header, but any other command in
the first block could be chosen.

During a reset, the whole fabric and the configuration regis-
ters are set to their default values (mostly zero), but crucially,
the WBSTAR (warm boot start address) and BOOTSTS (boot
status) registers are not reset. These registers are used for
the MultiBoot and fallback feature, which enables the FPGA
to boot from a different SPI/BPI memory address to safely
update the FPGA or boot designs with different functionality.
This MultiBoot feature uses the content of the WBSTAR reg-
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ister as the boot address for the attached non-volatile memory.
Hence, the WBSTAR register cannot be cleared during a reset,
as its address might be needed for the boot process.

The attack is also based on the fact that when writing more
than one word to a single word register, only the last writ-
ten word is stored in that register. For example, if the bit-
stream in Figure 2 is changed such that the length of the
WBSTAR write operation is 4 (not 1), then the four words
after the command would be written to the WBSTAR register,
but only the last word is finally stored there, i.e., the NOP
command 0x20000000. The number of written words can
even extend further, so that configuration data from the fabric,
which comes later in the bitstream, is written to the WBSTAR
register.

Now the attacker can change this length field in the en-
crypted bitstream by adding a ∆ to the corresponding word
of the write WBSTAR instruction of the former block h0 ,
thereby exploiting the CBC malleability. Consequently, the
manipulated block (the HMAC header) becomes random data
(marked with X in Figure 4). However, this change is irrel-
evant for the bitstream, as the other changes will result in
a faulty HMAC validation anyway and the bitstream is still
valid for the configuration logic, since only the HMAC ipad
is changed.

The length of the encrypted data, without the HMAC header
and footer, must be a multiple of 512 bits as the SHA-2 oper-
ates on 512-bit chunks [29]. Hence, the encrypted data must
be at least four AES blocks long, so we set the length of the
write WBSTAR operation to 0xD= 13 (∆= 0xC), i.e., all data
until the end of the, first and only, 512-bit chunk of encrypted
data are written to the WBSTAR register. At this position,
i.e., at the end of the 512-bit chunk, we place the “to be de-
crypted” block h4 . This block can be any AES block from
the encrypted bitstream, which includes the encrypted fabric
data. Since the bitstream encryption uses the CBC mode, the
former block before h3 must be the block from the CBC chain,
i.e., it is the IV for the decrypted block. An additional block h2
is needed to fill the 512-bit chunk (which can be random). It
is placed between the block of the WBSTAR write operation
and the two decryption blocks. Note that this random blockh2 and the IV block h3 are decrypted to random data. Since
the WBSTAR write operation writes 13 words, all random
data is interpreted as data which are stored in the WBSTAR
register, but only the desired decrypted word is stored in the
WBSTAR register.

To readout the other words in the last blocks h4 , the ∆

should be changed accordingly, i.e., the write length is set to
10, 11, or 12. However, the configuration logic will interpret
the last (next to last, ...) words as a standard package, which
might be data from the fabric. Thus, they are not correct in-
structions, and they might cause unwanted random commands.
Hence, a second ∆ is added to the IV block to change the 13th
(and 12th, 11th) word to a NOP command, which is possible
as the attacker first decrypts the last block and uses the CBC

malleability again. This prevents the configuration logic from
falsely interpreting the last words.

Next, in Step 2, the FPGA is configured with the malicious
bitstream. Due to the changes made to the bitstream before,
the HMAC is invalid. The configuration logic correctly de-
tects this and resets the FPGA in Step 3 automatically. Nev-
ertheless, the HMAC is only checked at the end. Thus, the
WBSTAR register has already been written before the check
failed.

In Step 4, a (not encrypted) readout bitstream is sent to the
FPGA to obtain the content of the WBSTAR register. This
bitstream is not encrypted as no interaction with the fabric is
made. It reveals the one word written to the register. The full
readout bitstream can be obtained from Appendix A.

Lastly, in Step 5, the FPGA is reset manually to repeat
the steps. Otherwise, multiple readouts would fail. On the
JTAG interface, the JPROGRAM command is sent, and on
the SelectMAP interface, the PROGRAM_B pin is pulsed
low to issue the reset. This clears the fabric memory and is
sufficient to reset the configuration logic as well.

3.4 Attack 2: Breaking Authenticity
With the first attack, the FPGA can be used to decrypt arbitrary
blocks. Hence, it can also be seen as a decryption oracle. Thus,
we can also use this oracle to encrypt a bitstream, as shown
by Rizzo and Duong in [41], and generate a valid HMAC
tag. Let decKAES(·) be the decryption function of the target
FPGA configured with the AES key KAES, Ci a ciphertext
block, and Pi the corresponding plaintext block following the
underlying CBC mode. Therefore, it holds (CBC function),

Pi = decKAES(Ci)⊕Ci−1. (1)

Suppose, Ci and Ci−1 are arbitrarily selected. We can use the
FPGA as the decryption oracle and find out Pi, with using the
introduced attack in Section 3.3,

The goal is to find C′i , which generates the desired P′i inside
the FPGA. To this end, we just need to set (CBC malleability)

C′i−1 = Pi⊕Ci−1⊕P′i . (2)

For the previous block P′i−1 we can find (for an arbitrary
selected Ci−2),

Pi−1 = decKAES(C′i−1)⊕Ci−2 (3)

while using the FPGA as the decryption oracle again. Simi-
larly, we can set

C′i−2 = Pi−1⊕C′i−2⊕P′i−1 (4)

which leads to generate the desired plaintext block P′i−1. This
process is repeated toward the first block P′1, and the IV is set
to C′0 in the unencrypted header.

Therefore the attacker can encrypt an arbitrary bitstream by
means of the FPGA as a decryption oracle. The valid HMAC



tag can also be created by the attacker, as the HMAC key is
part of the encrypted bitstream. Hence, the attacker can set his
own HMAC key inside the encrypted bitstream and calculate
the corresponding valid tag. Thus, the attacker is capable of
creating a valid encrypted bitstream, meaning the authenticity
of the bitstream is broken as well.

3.5 Wrap-Up: What Went Wrong?
These two attacks show again that nowadays, cryptographic
primitives hold their security assumptions, but their embed-
ding in a real-world protocol is often a pitfall. Two issues
lead to the success of our attacks: First, the decrypted data
are interpreted by the configuration logic before the HMAC
validates them. Generally, a malicious bitstream crafted by the
attacker is checked at the end of the bitstream, which would
prevent an altered bitstream content from running on the fab-
ric. Nevertheless, the attack runs only inside the configuration
logic, where the command execution is not secured by the
HMAC.

Second, the HMAC key KHMAC is stored inside the en-
crypted bitstream. Hence, an attacker who can circumvent the
encryption mechanism can read KHMAC and thus calculate the
HMAC tag for a modified bitstream. Further, they can change
KHMAC, as the security of the key depends solely on the confi-
dentiality of the bitstream. The HMAC key is not secured by
other means. Therefore, an attacker who can circumvent the
encryption mechanism can also bypass the HMAC validation.

4 Case Studies

We conducted several experiments to validated the attacks.
We tested the attacks on the Xilinx Kintex-7 (XC7K160T),
mounted on a SAKURA-X Board [43], on a Xilinx Artix-7
(XC7A35T), mounted on a Basys3 board [6], and on a Xilinx
Virtex-6 (XC6VLX240T), mounted on the ML605 evalua-
tion kit. Since the Xilinx user guid [56] states no difference
between the 7-Series configurations engines, we conclude
that our attack is applicable to all 7-Series devices. We first
attacked the SelectMAP interface on the Kintex-7. For this,
we implemented a controller on the Spartan-6 FPGA, which
is mounted aside the Kintex-7 on the SAKURA-X board.
The Spartan-6 can configure the Kintex-7 via the SelectMAP
interface. The controller on the Spartan-6 and a controlling
computer are connected via UART. The computer sends the
bitstream to the controller, where it is saved in a BRAM and
is transmitted to the Kintex-7 under attack.

After the first successful attack, we also implemented
the attack on the Basys3 board. Here, we used the open-
source xc3sprog [42] to configure the Artix-7 via the onboard
USB programmer. In order to validate that an adversary can
use the JTAG interface, we implemented the attack for the
JTAG interface with a SEGGER J-Link EDU [44]. We used
OpenOCD [35] to utilize the J-Link and used the scripting
engine of OpenOCD to pass the individual bitstream’s bytes

FPGA Bitstream Size (Bits) Time (HH:MM)
7S6 4310752 00:18
7S50 17536096 01:12
7S100 29494496 02:01
7A12T 9934432 00:41
7A35T 17536096 01:12
7A200T 77845216 05:20
7K70T 24090592 01:39
7K160T* 53540576 03:42
7K480T 149880032 10:17
7VX1140T 385127680 26:25

TABLE 2: Expected runtime of the attack on various Xilinx FPGAs,
(*) extrapolated from the XC7K160T

to the JTAG interface. Since there is a lot of static data, i.e.,
only two fabric blocks change per 32-bit readout, and the USB
interface to the J-Link is slow, we implemented the attack on
a microcontroller.

We used the STM32F407G-DISC1 discovery kit [47]
equipped with an STM32 microcontroller. It emulates a JTAG
controller and is connected via a UART to a controlling PC.
The microcontroller retrieves the encrypted header only once,
while it gets large chunks of the bitstream and sends it to the
FPGA. It individually adds ∆ to the encrypted header to in-
crease the performance as no roundtrip from and to the PC is
needed. The microcontroller itself generates the JTAG clock.
Inbetween the JTAG clock tick, a single bit is put on an I/O pin.
Thus, there are multiple instructions on the microcontroller to
transmit a single bit, i.e., at least set a data bit, reset the clock
pin, set the clock pin. Hence, there might be performance
improvement possible. Note that every readout needs two
small bitstreams to be loaded. First, the malicious bitstream
to write the WBSTAR register is transmitted. This bitstream
is 211 words long. Second, the readout bitstream is sent to the
FPGA, which is 22 words long. Additionally, the FPGA resets
two times. Using the implementation of the microcontroller
over the JTAG interface, a readout of a single 32-bit word is
done in 7.9 milliseconds. Since the XC7K160T’s bitstream
has a size of 53,540,576 bits, the readout of the bitstream
completes in 3 hours and 42 minutes. Even with the largest
7K480T with a bitstream size of 149,880,032 bits, the attack
can run in approximately 10 hours. In Table 2, we selected
some FPGAs as examples and provided estimated runtimes
of the attack. Note that the attack can also be parallelized
if two FPGAs with the same bitstream are available, which
can be the case, e.g., if one global key is used for bitstream
encryption within a given product. Even though less desirable
from a security point of view, using a global key, is without
doubt, a tempting option in many real-world situations as it
dramatically simplifies key management.

Running the second attack on the authentication of the bit-



stream requires the same amount of time as the first attack.
Because within the second attack the whole bitstream is en-
crypted. We can even speed up the second attack when only
parts of the bitstream need to be altered, e.g., when the at-
tacker wants to introduce a hardware Trojan and only changes
to a small fraction of the design are required. We also note that
no design can fully utilize the entire FPGA. Consequently,
there are blocks of the bitstream that are unused by the de-
sign. If now an attacker re-encrypts the changed blocks of
the design, until they reach an unused block, they can stop
the re-encryption and utilize this unused block as the IV for
the next regular block (CBC malleability). Consequently, the
unused block will be decrypted to random data. However,
since its content is not necessary for the design, it can be
ignored. Thus the attacker only needs to re-encrypt a part of
the bitstream rather than the whole bitstream, which speeds
up the encryption process.

Furthermore, we evaluated old FPGA series. The config-
uration logic on Virtex-6 devices is mostly identical with
the 7-Series’ configuration logic. Hence, we also mount our
attack on the XC6VLX240T, using xc3sprog with the USB
JTAG port present on the ML605 development board. The
single shortcoming of the attack is the limitation of the WB-
STAR register. The start address, present in the WBSTAR, is
shortened by 3-bit compared to the 7-Series. Hence, the upper
3 bits are marked as reserved. But only the two leftmost bits
are not implemented, i.e., writing any arbitrary value to those
2 bits will always return zero.

Therefore, every upper 2 bits of all words in the bitstream
cannot be read out, which leads to an imperfect recovered
netlist. Imperfect netlists are an already known obstacle in
the reverse-engineering community and can be tackled to a
certain degree [10]. Moreover, the encoding of the PIPs in the
bitstream and a meaningful routing of nets can help to repair
the recovered netlist [9]. However, the reversed LUTs are not
unambiguously recoverable.

5 Countermeasures & Defense Techniques

In this section, we discuss two possible countermeasures and
four defense techniques. We define countermeasures as tech-
niques defending current 7-Series devices, e.g., which hard-
ware developers can use, and defense techniques as measures,
which require to update the silicon, e.g., which platform com-
panies like Xilinx can offer. Note that our attacks are based
on protocol flaws that are hard-coded in the FPGA silicon.
Thus, any kind of non-trivial change to the security protocol
is not possible without a re-design of the FPGA hardware and
is currently not available for 7-Series and Virtex-6 devices.
Table 3 gives an overview of our proposed defence techniques
and countermeasures, which are discussed in this section. We
divided the section into two parts. In the first part, we discuss
four defense techniques for new developments, while the first
two are (seemingly) implemented in the new Xilinx series. In

Section new
dev

new
series

current
7-Series

5.1.1 Validate before use • •
5.1.2 Patchable Enc • •
5.1.3 IFA, Model Checker •
5.1.4 OpenSource HW •
5.2.1 Obfuscation •
5.2.2 RS pin reset •

TABLE 3: Proposed countermeasures and defense techniques and
their adaptability on new developments, new series from Xilinx, and
the current 7-Series discussed in Section 5

the second part, we discuss about design obfuscation and a
patch to the PCB as raise-the-bar countermeasures for current
7-Series devices.

5.1 General Defense Techniques
Here we discuss on general defense techniques, which can be
offered by Xilinx and are already partially used in the new
UltraScale(+) and Zynq series.

5.1.1 Validate Before Use

In a sound security design, no data is interpreted before its
cryptographic validation. However, one of the root causes
of the decryption attack is that this principle is violated in
the FPGA’s encryption engine, i.e., data of the encrypted bit-
stream header is interpreted before it has been verified. Hence,
the apparent countermeasure is to validate the configuration
header before any action. If that could be implemented, the
attack would be detected as it manipulates the header. Never-
theless, to our knowledge, updating the bitstream encryption
engine on current devices is not possible, as it is implemented
in the silicon and would require a redesign.

It is instructive to look at the newer FPGA families by
Xilinx. It seems that Xilinx introduced a continuous checksum
in the UltraScale and UltraScale+ series, as we could not
mount the attack on such devices. Xilinx used an AES-GCM
scheme for the new series, where the first 32 bits of every
256-bit encrypted data block are unknown (seems random),
which are also not addressed by the configuration logic. We
speculate that these 32 bits are a kind of checksum used for
verification/integrity. However, to the best of our knowledge,
there is no official statement from Xilinx about these 32 bits.

5.1.2 Patchable Bitstream Encryption

It might be a bit ironic that the security measures of a re-
configurable device are not reconfigurable. Unterstein et al.
showed an implementation of a patchable bitstream encryp-
tion scheme on the Zynq-7000 platform [54], which is a re-
alization of [38]. There are several variations of the same



idea reported in references [19, 21, 22]. Note that the Zynq-
7000, UltraScale and UltraScale+ devices have the needed
public key scheme, while the 7-Series and older devices have
not. Consequently, this countermeasure does not apply to the
7-Series. In a nutshell, the FPGA loads an initial bitstream
and only verifies it. This initial bitstream contains a hard-
ened bitstream encryption engine in terms of side-channel
resistance, and a Physical Unclonable Function (PUF) which
generates the encryption key. This engine decrypts the origi-
nal bitstream, as well as loads it via partial-reconfiguration to
the fabric.

The engine is patchable as it residents in the fabric and
is not hard-coded into the FPGA. Hence, it is possible to
improve the engine if new attacks arise, e.g., enhanced side-
channel attacks, or if bugs are found in the system (like our
attacks in this work). Additionally, no key storage is needed as
a PUF is used, which reduces the risk of attacks and disadvan-
tages of the BBRAM and eFUSES key storage implemented
by Xilinx. For example, it is shown in [28, 53] how to read
out keys stored in register cells of various FPGAs.

The only requirement is to verify the initial bitstream and
avoid running invalid bitstreams. Accordingly, the authors
of [54] used the Xilinx Zynq-7000 series, where a public-key
signature scheme is integrated. Besides the Zynq-7000 series,
the UltraScale and UltraScale+ series also include such em-
bedded public-key signatures. In the 7-Series devices, no such
signature scheme exists. The validating prevents any modifica-
tion, e.g., the insertion of hardware Trojans like modifications
to the encryption engine to leak the keys or the decrypted
bitstream. Since the initial bitstream only needs to be veri-
fied, it is not encrypted. Hence, the attacker can see how it
is realized and implemented. Thus, the implementation and
exact location of the PUF is known to the adversary. There-
fore, the FPGA must suppress any non-verified bitstreams, as
otherwise, the attacker can modify the bitstream to read out
the PUF response, i.e., the secrets.

Admittedly, this scheme is based on trust in the public key
signature scheme and its implementation. Although it lowers
the unpatchable attack surface to the signature scheme only,
as if a successful attack targets the encryption scheme, it is
still patchable. However, an unpatchable attack surface ex-
ists. Thus, we discuss model-checking and Information Flow
Analysis (IFA) as another countermeasure in the following.

5.1.3 Information Flow Analysis and Model Checking

A detailed study of the Xilinx official documents [56], to-
gether with experiments, led us to our attack. However, since
the bitstream encryption and the behavior of the WBSTAR
register are documented, it is perceivable that one could have
developed a formal model to find the bug. Within the last
years, there has been an increasing trend towards formal veri-
fication and model checking in the scientific community. The
recent publication from Dessouky [5] discusses various tech-
niques to find hardware bugs. Three of them can be applied

to our findings: proof assistant and theorem-proving, model
checking, and IFA. Note that the formal verification of the
design against the specification is not sufficient, as the bug
is already visible in the documentation, i.e., the specifica-
tion of configuration. Additionally, after the specification is
changed, the current devices should be reproduced to apply
this countermeasure.

Within proof assistant and theorem-proving, the security
properties are mathematically modeled and verified with the
proofs. For example, VeriCoq [4] transfers a Verilog code
into the Coq language and proof system. With additional
labeling the signals, the flow of information is tracked, i.e.,
the signals are classified if they transmit secret information
or not. Mathematical proofs ensure that no secret information
is leaked. However, the accurate labeling of each signal is
error-prone and laborious, and the proving might be infeasible
for large designs.

The more general model checking is mostly built on
Boolean satisfiability problems. The engineer formulates an
abstract model of the specification and tests predefined as-
sumptions of the model to be correct, e.g., a decrypted bit-
stream cannot flow to a configuration register.

Since model checkers are a general approach and require
to write an additional model besides the specification and
HDL code, IFA checks the design directly. In general, the
input data are labeled, mostly in high and low, e.g., private
and public information. Then, these labels are tracked while
flowing through the design. If any private-labeled data in-
fluence public data, a vulnerability might be detected. For
performing IFA, a variety of tools exists which operate at
different layers of abstraction. Gate-Level Information Flow
Tracking (GLIFT) works on the gate-level [2, 34, 52], where
the analysis is performed on the synthesized design. Hence, it
is mostly done automated and works on existent designs but
does not scale well. Caisson [27], Sapper [26], and SecVer-
ilog [57] works on the language level, while Caisson and
Sapper are new HDLs, and SecVerilog extends Verilog with
annotations. Therefore, it is applicable to already existing
projects.

5.1.4 Open-Source Hardware

When considering a redesign, one can take open-source hard-
ware into account. Open-source hardware has, at the least in
theory, the advantage of being verifiable from a large com-
munity, similar to what is already done in software projects,
e.g., OpenSSL [3]. Hence, it gains its trust by transparency
rather than obscurity and follows the approach of Kerckhoffs
Principle [18]. The recently released OpenTitan [36, 37] sili-
con root of trust moves into that direction. It provides a trust
anchor for system security and is applicable as an IP core for
custom made devices.



5.2 Countermeasures for Current Devices
With our attack, a product using a 7-Series (or Virtex-6) device
needs to be upgraded to one with a sound bitstream encryption
engine, as our findings imply a complete loss of authenticity
and confidentiality and no patch is available. However, it is
neither possible nor feasible to update the FPGAs used in
all products. The old Virtex-6 and current 7-Series are com-
monly used in low-budget devices. Thus, a countermeasure
that raises the bar for the attacker can be sufficient in many
applications. In this section, we first introduce obfuscation
as a countermeasure and then a patch to the PCB to reset the
FPGA if the attack is detected.

5.2.1 Obfuscation

One of the raise-the-bar countermeasures is obfuscation. It
changes the design without changing its functionality, while
the design is concealed and becomes significantly more com-
plex to be reverse-engineered for humans and machines. Sev-
eral works [12–14,39] already exist, especially for low-budget
FPGAs, which do not offer any bitstream encryption. Here,
two main goals exist: securing against overproduction/cloning
and reverse engineering. A mechanism to secure against over-
production is always bound to an FPGA, hence often PUFs are
used. Based on physical variations of each device, a device-
specific key is generated by the PUF to unlock the design.
Consequently, the design would not unlock on a different
FPGA, since its physical characteristics are different, and the
PUF generates a different unlock key. More general obfus-
cation schemes defend against reverse-engineering. Often,
the Finite State Machines (FSMs) of the designs are targeted;
hence, dummy states are added to the design to increase the
complexity of the state-transition graph. By applying a tran-
sition sequence to unlock the design, the FSM can still be
used as initially intended. Subramanyan et al. benchmarked
different obfuscation techniques in [48]. They consider an
area overhead of 5% as a realistic budget and a 10% overhead
for sensitive designs acceptable. Nevertheless, the current
obfuscation methods are not ideal, as shown in [12].

5.2.2 Revision Select PIN

In the second raise-the-bar countermeasure, the Revision
Select (RS) pins are used to reset the FPGA and clear the
BBRAM key storage, which extends the root of trust from the
FPGA’s silicon to the PCB.

Besides the warm boot address (bits 28-0), the WBSTAR
register drives two RS pins (bit 31 and 30) during the configu-
ration phase. The two RS pins are enabled with the RS_TS_B
bit in the WBSTAR register (bit 29), which controls a tri-state,
driving the RS pins. If the RS_TS_B bit is high, these two
RS bits in the WBSTAR register directly drive the two RS
pins. Otherwise, the RS pins are in high-Z. During regular
operation, e.g., after the configuration phase, the RS pins can
be used as regular I/O pins [56]. We have observed this on

the SAKURA-X board, where one RS pin drives one of the
user’s LEDs.

During the attack, the bitstream content is written into the
WBSTAR register. Thus, the RS pins are driven with the
bitstream contents. Exemplarily, if the RS_TS_B bit is set in
any word, the two RS bits in that word drive the RS pins. In a
raise-the-bar countermeasure, one could wire the RS pins to a
reset logic on the PCB, to power-off the FPGA, which hinders
the readout of the current word as the power-down wipes all
registers, including the WBSTAR register. Accordingly, if the
upper three bits of a random word in the bitstream are set,
the FPGA would be reset, which hinders the readout of the
WBSTAR content. Nonetheless, a defender needs to impede
the readout of further bitstream words, since words where no
RS and the RS_TS_B bit is set, are still possible to be read out
as the FPGA is not reset during the attack. Therefore, one can
also cut the battery power to the BBRAM to clear the stored
key. Thus, no further encryption operations are possible since
the keys are discarded. To provoke the reset via an RS pin, the
defender can change the bitstream content in unused regions
to drive an RS pin high, i.e., set the upper 3 bits in multiple
words of the bitstream that are unused.

On the PCB, the RS pins are wired to a reset circuit to
power-cycle the FPGA completely, i.e., the FPGA is reset,
and the battery power to the BBRAM is cut. Whereas, the
bitstream encryption’s goal is to run all security-relevant mea-
sures inside the FPGA and not rely on other components.
This means that the FPGA’s designer needs to solely trust the
FPGA’s silicon and not other components, which minimizes
the attack surface notably. Thus, with this countermeasure,
the bitstream encryption’s goal of not relying on the PCB is
not fulfilled. Hence, this method is a raise-the-bar counter-
measure.

6 Conclusion

In this paper, we demonstrated two attacks on the Xilinx
7-Series and Virtex-6 bitstream encryption. The first attack
breaks the confidentiality of any encrypted design using the
FPGA as a decryption oracle. The second attack breaks the
authenticity by using the same oracle to encrypt arbitrary
bitstreams and generating a valid authentication tag. In our
implementation, any communication with the oracle needs
7.9 ms to reveal 32 bits of an encrypted block. Thus, it takes
for example 3:42 hours to recover a Kintex-7 XC7K160T
bitstream (see Table 2).

For our attacks, it is sufficient to have access to the en-
crypted bitstream and either the JTAG or the SelectMap con-
figuration interface. Hence, the attack can be potentially con-
ducted remotely and does not require any sophisticated tools.
We identified two roots leading to the attacks. First, the de-
crypted bitstream data are interpreted by the configuration
logic before the HMAC validates them. Second, the HMAC
key is stored inside the encrypted bitstream. Consequently, if



the confidentiality is broken, the authenticity is lost as well.
We consider this as a severe attack, since (ironically) there

is no opportunity to patch the underlying silicon of the crypto-
graphic protocol. We note that the 7-Series have a substantial
share of the FPGA market, which makes it even more difficult
or impossible to replace these devices. As a countermeasure,
we propose (for future-series devices) to verify all input data
before use, apply model checkers and IFA, use when possible
open-source hardware, and make use of a patchable bitstream
encryption engine, like the one implemented on the Zynq-
7000. For the current series, we propose to use obfuscation
schemes or patching the PCB to use the FPGA’s RS pins for
clearing the BBRAM key storage in case of an attack. Al-
though these countermeasures are not a substitute for a sound
bitstream encryption, they still raise the bar for legacy systems
until more secure devices can be provided.

The bitstream encryption for newer generations, e.g., Ul-
taScale, appears to be an entirely new development. Thus, it is
still impossible to mount the same attacks on new-generation
devices, as detailed information about the bitstream packets
is not yet publicly available.
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A Readout Bitstream

LISTING 1: Readout Bitstream

0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0x00 , 0x00 , 0x00 , 0xBB ,
0x11 , 0x22 , 0x00 , 0x44 , #BUS S i z e D e t e c t
0xFF , 0xFF , 0xFF , 0xFF ,
0xFF , 0xFF , 0xFF , 0xFF ,
0xAA, 0x99 , 0x55 , 0x66 , #SYNC Word
0x20 , 0x00 , 0x00 , 0x00 , #NOP
0x30 , 0x00 , 0x80 , 0x01 ,
0x00 , 0x00 , 0x00 , 0x04 ,
0x20 , 0x00 , 0x00 , 0x00 ,
0x20 , 0x00 , 0x00 , 0x00 ,
0x20 , 0x00 , 0x00 , 0x00 ,
0x28 , 0x02 , 0x00 , 0x01 , # r e a d r e g WBSTA
0x20 , 0x00 , 0x00 , 0x00 ,
0x20 , 0x00 , 0x00 , 0x00 ,

0x20 , 0x00 , 0x00 , 0x00 ,
0x20 , 0x00 , 0x00 , 0x00
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