Differentially-Private Control-Flow Node Coverage for Software Usage Analysis

Hailong Zhang, Sufian Latif, Raef Bassily, Atanas Rountev
Problem and motivation

DP control-flow node coverage analysis

Results and conclusions
Software usage analysis in the wild

Software collect numerous usage data from users
- How frequently certain things happen across all users?
- E.g., common behavior analysis, finding popular features, locating performance bottlenecks, ...

Example: mobile app analytics
Data privacy in the wild

Collect individual’s data to calculate statistics
- Data breaches, unethical business practices, rogue employees, powerful adversarial data analysis, ...

How can we do software usage analysis with principled privacy protection?

Solution: Differential privacy
Focus: CFG node coverage analysis

CFG is a graph representation of the control flow during the execution of a program

- Node: a statement, a code block, a function/method, a coarse-grained software component, ...
- Edge: temporal relationship between nodes
Focus: CFG node coverage analysis

The execution at each user covers a subset of nodes and edges in the CFG

- Node coverage analysis collects coverage of nodes from users

Goal: for each graph node, what is the number of users who have executed it
Focus: CFG node coverage analysis

Solution: Node coverage analysis with local differential privacy
Problem and motivation

DP control-flow node coverage analysis

Results and conclusions
Node coverage at each user

Each user i holds a coverage vector c_i

- One bit for each CFG node
- The bit is 1 if the corresponding node is covered at run time by the user

$$c_i = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$
The differential privacy protection

Goal: Do not leak information about whether a particular node is covered or not during data collection

Each user runs a local randomizer R

\[
\begin{align*}
c_i & = [1 \quad 1 \quad 1 \quad \ldots] \\
R(c_i) & = R
\end{align*}
\]
The differential privacy protection

For any CFG node v, local randomizer R guarantees the *indistinguishability* between any pair of coverage vectors that are *neighbors* w.r.t. v

- R ensures that anyone observing the output cannot determine *whether v is covered or not* at user i

$\mathbf{c}_i = [1 \ 1 \ 1 \ 1 \ ...]$

$\mathbf{c}_i' = [1 \ 0 \ 0 \ 1 \ ...]$

How to define neighbors?
Example: Hiding the coverage of \textbf{a}

\begin{itemize}
 \item \textbf{b} can only be invoked when \textbf{a} is executed.
\end{itemize}

\begin{tabular}{cccccc}
 \hline
 \textbf{start} & \textbf{a} & \textbf{b} & \textbf{c} & \ldots \\
 \hline
 \textbf{start} & 1 & 1 & 0 & \ldots \\
 \textbf{c} & 0 & 1 & 0 & \ldots \\
 \textbf{a} & 0 & 0 & 0 & \ldots \\
 \textbf{b} & 0 & 0 & 0 & \ldots \\
 \hline
\end{tabular}
Coverage vector neighbors

This correlation is captured by the **dominator tree** of a CFG

- In a CFG, a node \(d \) **dominates** a node \(m \) if every path from the start node to \(m \) goes through \(d \)

- **Dominator tree**: For any node in the tree, the set of its ancestors is exactly the set of its dominators

Dominator tree of the CFG in the example

The sensitivity of \(a \) in \(c_i \) is 2
Definition of local randomizer

Let S be an upper bound of all sensitivities of all users

- Randomizer R flips each bit in c_i with probability $\frac{1}{1+e^{\epsilon/S}}$

- $S \uparrow$, protection \uparrow, accuracy \downarrow

$$c_1 = [1011 \ldots] \rightarrow R(c_1)$$
$$c_2 = [1001 \ldots] \rightarrow R(c_2)$$
$$\vdots$$
$$c_n = [1110 \ldots] \rightarrow R(c_n)$$

$$h = \sum_i R(c_i)$$

$$\hat{f} = \frac{(1 + e^{\epsilon/S})h - n}{e^{\epsilon/S} - 1}$$
Selecting the upper bound

1. The baseline approach: \(S = |N| - 1 \)

2. Tighter bound via restricted sensitivity
 - Map vectors to restricted domain with lower sensitivity

3. Relaxed indistinguishability
 - Calibrate the strength of indistinguishability of neighbors
Problem and motivation
DP control-flow node coverage analysis
Results and conclusions
Experimental setup

15 popular Android apps
- Coverage analysis for GUI screen view graphs and call graphs
- Automatically simulate 1000 users per app

Metrics
- Mean error: average error of each node
\[\text{ME} = \frac{\sum_v |f(v) - \hat{f}(v)|}{|N|} \]
Experimental evaluation

Fundamental trade-off between privacy and accuracy

![Screen graph and call graph comparison chart](chart.png)

- **ME**
 - Screen graph:
 - Baseline: 1.5x
 - Tighter: 10x
 - Relaxed: 0x
 - Call graph:
 - Baseline: 2x
 - Tighter: 19x

Max: 1000
Experimental evaluation

Fundamental trade-off between privacy and accuracy

![Graph showing ME comparisons for screen and call graphs]
Conclusions

Privacy is highly needed for software usage analysis.

Differential privacy is an appealing and applicable tool.

Existing DP techniques cannot be directly applied; domain-specific knowledge is needed, e.g., dominators.

The proposed approaches can achieve high accuracy with meaningful privacy protection.
Differentially-Private Control-Flow Node Coverage for Software Usage Analysis

Hailong Zhang zhang.4858@osu.edu
Sufian Latif latif.28@osu.edu
Raef Bassily bassily.1@osu.edu
Atanas Rountev rountev.1@osu.edu