
UNDERSTANDING SECURITY 
MISTAKES DEVELOPERS MAKE

Daniel Votipka, Kelsey Fulton, James Parker, Matthew Hou, Michelle Mazurek, and Mike Hicks

Qualitative Analysis From Build It, Break It, Fix It

University of Maryland, College Park

 1



“SOLVED” VULNERABILITIES ARE 
STILL A VERY REAL PROBLEM

 2

Here we’re looking at the vulnerabilities type change by year based on cwe reporting from NIST. Note that buffer errors still remains in a top 2 spot. information leak/
disclosure, improper access control, and cryptography issues have barely or not at all decreased, and yet they’re supposed to be relatively “solved” issues given current 
libraries and APIs. *Note I’m using the word solved here very loosely. So if we have solutions to this problem, why are we still seeing these vulnerabilities in the real 
world? We can see some of these play out in recent examples.



Why do developers 
continue to make 

stupid and lazy 
mistakes?

 3

So some experts may ask the question:



Why do developers 
continue to make 

stupid and lazy 
mistakes?

 4

There’s a flaw in this thinking though. We cannot expect developers to know how to do everything, and we cannot assume the all the fault can be placed on them. But we 
need to avoid thinking this way. Of the developers as the enemy. Instead we should ask



Why do developers 
continue to make 

stupid and lazy 
mistakes?

How can we make secure 
programming easier?

 5



POSSIBLE SOLUTIONS

More/Better Education

Better APIs

Better documentation 

Automation

Etc.

How can we improve the 
effectiveness of these solutions?

 6

So we have some classic existing solutions such as: Obviously, these aren’t working as well as we’d hoped. So we may be asking ourselves how can we improve the 
effectiveness of these solutions?



IN ORDER TO IMPROVE THESE SOLUTIONS, WE 
NEED TO UNDERSTAND THE TYPES, CAUSES, 
AND PERVASIVENESS OF VULNERABILITIES.

 7



HOW TO MEASURE?

 8

Ecological validity Control over  
Conditions

Field 
Measurements

Lab 
Studies

Build It, 
Break It, Fix It

How can we measure this.  Well, when deciding a method for this type of study, you’re working along a spectrum with ecological validity at one end and control over 
conditions at the other. 



Build it Break it Fix it

BUILD IT, BREAK IT, FIX IT

Ruef et al. , CCS 2016

 9

Build to spec

Then break other teams

Incentivize:

Functionality

Performance

Security

Build Break Fix

contest. We take all of these approaches and balance the tradeoffs.


Build it – two weeks, build to spec, any language, any design choices

Break it – given source, try to find correctness and security bugs in any other teams’ code



RESEARCH QUESTIONS

What types of vulnerabilities do developers introduce?

How severe are the vulnerabilities? If exploited, what is the effect 
on the system?

How exploitable are the vulnerabilities? What level of insight is 
required and how much work is necessary?

 10

14:00



How severe are the vulnerabilities? If exploited, what is the effect 
on the system?

How exploitable are the vulnerabilities? What level of insight is 
required and how much work is necessary?

What types of vulnerabilities do developers introduce?

RESEARCH QUESTIONS

 11

14:00



ANALYSIS APPROACH

Examine projects and associated exploits in detail

Iterative open coding

Two independent researchers with high reliability

94 projects with 866 submitted exploits

Both qualitative and quantitative analysis performed

 12

Vulnerabilities are both the breaker submitted and researcher identified. We used a rigorous technique that is considered best practice that was developed in the social 
sciences.




RESULTS

 13



Mistake

Vulnerability classes

No implementation Misunderstanding

Intuitive Bad 
Choice Conceptual ErrorUnintuitive

 14

So from our coding process, we developed these classes. I’m going to explain what each of these mean later.



Vulnerability classes

No implementation

 15

The no implementation class can be broken into three subclasses



Vulnerability classes

No implementation

Intuitive

• Missed something “Intuitive”
• No encryption 
• No access control

 16

The first one is all intuitive where a team missed something that would be considered to be completely intuitive and necessary to implement. Examples of this are….



Vulnerability classes

No implementation

Intuitive Unintuitive

• Missed something “Intuitive”
• No encryption
• No access control

• Missed something “Unintuitive”
• No MAC
• Side-channel leakage
• No replay prevention

 17

The last subclass is unintuitive where a team missed implementing something that may not necessarily be obvious or intuitive to implement such as no MAC (integrity 
checks), checking for side-channel leakage, or making sure to prevent a replay attack



Vulnerability classes

Misunderstanding

 18

The next class I’ll talk about is the misunderstanding class. It can be broken into two subclasses.



Vulnerability classes

Misunderstanding

Bad 
Choice

• Made a “Bad Choice”
• Weak algorithms
• Homemade 

encryption
• strcpy

 19

The first subclass is defined by teams that made a bad choice in their security implementation and it resulted in a vulnerability. One code in this subclass is choosing 
weak algorithms.  


Another is using homemade encryption. An example of a team using homemade encryption is one team xor’d key length chunks of the text with the user provided key to 
make the final ciphertext. Therefore, an attacker could simply extract two key length chunks and xor them to get the key. 


Another category is using functions like strcpy. One team used strcpy and missed a single bounds check. Rather than classifying this as a mistake, we chose bad choice 
because they could have used the bounded copy in the first place. A final code within this category is having a weak access control design.


Weak access control design example == The default delegator’s permissions are checked at use-time, not creation time.



Vulnerability classes

Misunderstanding

Bad 
Choice Conceptual Error

• Made a “Conceptual 
Error”
• Fixed value

 20

The second subclass is defined by teams that made an error in the conceptual way they were thinking. One code within this subclass is using a fixed value.



 21

An example of this code can be seen with this team using a fixed IV value. Turns out that this is…


Actually a stack overflow answer



Vulnerability classes

Misunderstanding

Bad 
Choice Conceptual Error

• Made a “Conceptual 
Error”
• Fixed value
• Lacking sufficient 

randomness
• Disabling protections 

in library

 22

Other codes within this subclass are lacking sufficient randomness, using security on only a subset of the data instead of all of it, and intentionally disabling protections 
provided by a library. An example of this last code can be seen in….



 23

This team who used sqlcipher which has full page MACing built in. This team decided to explicitly turn the use of a MAC off within the library for a non-obvious reason.



Mistake

Vulnerability classes

• Made a “Mistake”
• Control flow mistake
• Skipped algorithmic step

 24

The final class is full of codes where teams made coding mistakes. Codes within this class are things like insufficient error checking, control flow mistakes, and teams 
that skipped an algorithmic step. An example of this is this team that skip checked to see if the nonce is the same as a previous nonce on line 10, but they fail to actually 
save any of the previous nonces, so this always returns true…. Meaning they intended to save the nonce to check it but accidentally skipped that step.



MistakeNo implementation Misunderstanding

Intuitive Bad 
Choice

PREVALENCE

Conceptual ErrorUnintuitive

 25

Least common

Best practices and code review helped

50% 56% 21%

So from our coding process, we developed these classes. I’m going to explain what each of these mean later.



No implementation Misunderstanding

Intuitive Bad 
Choice Conceptual ErrorUnintuitive

 26

MistakeNo implementation Misunderstanding

Intuitive Bad 
Choice

PREVALENCE

Conceptual ErrorUnintuitive

50% 56% 21%

16% 45% 21% 44%

Most knew they needed security and picked the right tools, but didn’t know all the security requirements and how to implement them all correctly.



RECOMMENDATIONS

Simplify API design

Build in security primitives and focus on common use-cases

Indicate security impact of non-default use in API 
Documentation

Explain the negative effects of turning off certain things

Vulnerability Analysis Tools

More emphasis on design-level conceptual issues
 27

It may be useful to build in basic security primitives to API design. Can we build in the use of a MAC or nonce? Could we possibly add basic primitives like secure 
messaging or secure logs?


Let users know that if they choose to turn off a certain security primitive that it may cause major security vulnerabilities. Make the error messages more clear so we don’t 
have developers googling them and then copying and pasting from Stackoverflow


It’s easy to blame security education in the failure of developers to use security primitives correctly, but as we saw in this competition that definitely isn’t fair. Many of the 
teams in our data had completed a security competition and yet they still failed to implement some things correctly. It could be that the topics presented were not 
emphasized and driven home in a meaningful way. The failure to get this education portion right, a failure of BIBIFI itself, serves as a valuable lesson.




SUMMARY

Developers struggle with security concepts

Mostly knew they needed security and picked reasonable tools

Didn’t know all necessary security mitigations (Unintuitive) or 
all the implementation details (Conceptual Error)

Mistakes happen, but can be reduced through code review and 
best practices 

Improve API design, documentation, and automation to handle 
conceptual nuances

 28

It may be useful to build in basic security primitives to API design. Can we build in the use of a MAC or nonce? Could we possibly add basic primitives like secure 
messaging or secure logs?


Let users know that if they choose to turn off a certain security primitive that it may cause major security vulnerabilities. Make the error messages more clear so we don’t 
have developers googling them and then copying and pasting from Stackoverflow


It’s easy to blame security education in the failure of developers to use security primitives correctly, but as we saw in this competition that definitely isn’t fair. Many of the 
teams in our data had completed a security competition and yet they still failed to implement some things correctly. It could be that the topics presented were not 
emphasized and driven home in a meaningful way. The failure to get this education portion right, a failure of BIBIFI itself, serves as a valuable lesson.




 29

It may be useful to build in basic security primitives to API design. Can we build in the use of a MAC or nonce? Could we possibly add basic primitives like secure 
messaging or secure logs?


Let users know that if they choose to turn off a certain security primitive that it may cause major security vulnerabilities. Make the error messages more clear so we don’t 
have developers googling them and then copying and pasting from Stackoverflow


It’s easy to blame security education in the failure of developers to use security primitives correctly, but as we saw in this competition that definitely isn’t fair. Many of the 
teams in our data had completed a security competition and yet they still failed to implement some things correctly. It could be that the topics presented were not 
emphasized and driven home in a meaningful way. The failure to get this education portion right, a failure of BIBIFI itself, serves as a valuable lesson.




SUMMARY

Developers struggle with security concepts

Mostly knew they needed security and picked reasonable tools

Didn’t know all necessary security mitigations (Unintuitive) or 
all the implementation details (Conceptual Error)

Mistakes happen, but can be reduced through code review and 
best practices 

Improve API design, documentation, and automation to handle 
conceptual nuances

 30

Questions
dvotipka@cs.umd.edu

sec-professionals.cs.umd.edu

It may be useful to build in basic security primitives to API design. Can we build in the use of a MAC or nonce? Could we possibly add basic primitives like secure 
messaging or secure logs?


Let users know that if they choose to turn off a certain security primitive that it may cause major security vulnerabilities. Make the error messages more clear so we don’t 
have developers googling them and then copying and pasting from Stackoverflow


It’s easy to blame security education in the failure of developers to use security primitives correctly, but as we saw in this competition that definitely isn’t fair. Many of the 
teams in our data had completed a security competition and yet they still failed to implement some things correctly. It could be that the topics presented were not 
emphasized and driven home in a meaningful way. The failure to get this education portion right, a failure of BIBIFI itself, serves as a valuable lesson.


mailto:dvotipka@cs.umd.edu
http://sec-professionals.cs.umd.edu

