Remote Side-Channel Attacks on Anonymous Transactions

In Zcash & Monero

Florian Tramèr and Dan Boneh and Kenny Paterson

USENIX Security Symposium
Meet Alice the Anonymous Activist Blogger
Alice’s Lack of Privacy

Send $5 to \(PK_A \)
Signed by \(SK_{Bob} \)

The activist just received $5 from Bob
Alice’s Lack of Privacy

Send $5 to PK_{Bob}
Signed by SK_A

This P2P node belongs to the activist!
Alice’s Lack of Privacy
The Solution: Anonymous Transactions

Zcash, Monero and others

Send $5\text{ Enc}(PK_A)$
Signed by $\text{Enc}(SK_{Bob})$

$+ \text{zk-proof } \pi$

- Bob received 5 from previous txs
- These funds haven’t been spent yet
- Bob knows SK_{Bob}
Our Attacks: Identifying Transaction Recipients

Send Tx to $\text{Enc}(PK_A)$

I know which node belongs to the transaction recipient
Our Attacks: Linking an Address to a Node

I know which P2P node belongs to the activist

Send Tx to $\text{Enc}(PK_A)$
Summary of Results

Remote side-channel attacks on various system components of anonymous transactions

1. A general attack framework for any anonymous transaction system

2. Specific attack instantiations for Zcash and Monero
 • Determine the P2P node of any transaction recipient
 • Link a (diversified) public key to an IP address

3. Attacks beyond de-anonymization (for Zcash):
 • Remotely crash user nodes
 • Remotely extract a user’s secret viewing key
 • Learn transaction amounts by timing a zk-proof generation
Summary of Results

Remote side-channel attacks on various system components of anonymous transactions

We have disclosed these vulnerabilities to Zcash and Monero and they have all been fixed!

The general issues we found, and the lessons we learned, extend to other anonymous payment systems

⇒ Getting the cryptography right is not enough!
Summary of Results

Remote side-channel attacks on various system components of anonymous transactions

1. A general attack framework for any anonymous transaction system
2. Specific attack instantiations for Zcash and Monero
 - Determine the P2P node of any transaction recipient
 - Link a (diversified) public key to an IP address
3. Attacks beyond de-anonymization (for Zcash):
 - Remotely crash user nodes
 ~ Remotely extract a user’s secret viewing key
 ~ Learn transaction amounts by timing a zk-proof generation
De-anonymizing Zcash Transactions
Receiving Transactions in Zcash

Commitment opening encrypted under the recipient’s public key

Commitment to a “coin”

OnReceive(Tx={Comm,C,...}):
1) Note = Decrypt(SK_A, C)
2) if Note = ⊥, return
3) ($v, r) = Note
4) Check that Comm = Commit(PK_A, $v; r)

This check ensures that the coin is spendable

(public key crypto)
The PING Attack

That took a while...

Send Tx to $Enc(PK_A)$

Oh this one’s for me 😊 let me check the commitment
Adversary can use timing side-channel to infer receiver of *any* Tx
P2P node and wallet are tightly decoupled
⇒ Node & wallet are in completely different layers of the protocol stack
⇒ The P2P node should just act as a DB for the wallet

Improved Design: (and now also in !)
So why was Monero also vulnerable?
Exploiting Leaks at Synchronization Points

Timing of wallet’s requests leaks wallet’s processing time

```
while True:
    txs = request_txs()
    process(txs)
    sleep(60)
```

Monero P2P node acquires **global mutex** to process a request

Fixed!
Timing side channels in zkSNARK proof generation

Send $\text{Enc}(\$5)$ to $\text{Enc}(\text{PK}_{\text{Bob}})$

Signed by $\text{Enc}(\text{SK}_{\text{A}})$

$+ \text{zk-proof } \pi$

Cryptographic proof that the transaction is valid

Zero-knowledge: proof leaks nothing about PK_{Bob}, SK_{A}, $\$5$, ..., right?
Timing side channels in zkSNARK proof generation

Transaction generation time leaks (some) information about value!
Anonymity is hard!

- Flaws are not (only) in the complicated cryptography
- Be careful when inheriting designs from non-anonymous currencies (e.g., Bitcoin → Zcash)
- Develop constant-time crypto implementations

Anonymity = good crypto + good systems design

https://crypto.stanford.edu/timings tramer@cs.stanford.edu