Scaling Verifiable Computation Using Efficient Set Accumulators

USENIX Security, 2020

Alex Ozdemir*, Riad Wahby*, Barry Whitehat^, Dan Boneh*

*Stanford ^Unaffiliated
Verifiable Storage

- Represent a large storage (e.g. array) with a small digest
- Verifiably read and update the digest

\[d \leftarrow \text{Digest}(A) \]

Prover \((A, d)\)
- \(v \leftarrow A[i]\)
- \(A[i_w] \leftarrow v_w\)

Verifier \((d)\)
- \(\text{Verify}_{\text{read}}(d, i, v, \pi_r)\)
- \(\text{Verify}_{\text{update}}(d, i_w, v_w, d', \pi_w)\)

Application: Verifiable Outsourcing (e.g. smart contracts)

Goal: Efficient Verification!
Outline

• Merkle Trees (existing approach)
• RSA Accumulators (proposed approach)
• Our Work:
 • Implementing RSA Accumulators
 • Demonstrating that they are cheaper in some situations
Computational Model

• Inherited from verifiable outsourcing

• The *arithmetic constraint* computational model (“constraints”)
 • Data encoded in a large *finite field* \((\text{integers mod } p, p \approx 2^{256})\)
 • Constraints are expressed as equations of sums & products in the field
 • One multiplication per constraint!
 • Goal: minimize the number of constraints

• The prover can provide *advice*
 • E.g. the inverse of a field element.
 • Computable using Fermat’s little theorem (many constraints)
 • Checkable using 1 constraint.
Merkle Trees

• Based on a hash function $H : F \times F \rightarrow F$
 • Collision-Resistant
• Reduce the array to a single value with a hash-tree
• Proofs based on paths in the tree

Verification cost: $k \log m$ hashes
for k updates and a storage of capacity m.
RSA Accumulators

• Based on RSA groups
 • The integers modulo pq: the produce of two unknown primes.
 • Hard to compute roots.
 • x^n is easy, $n\sqrt{x}$ is hard.

• The digest of an RSA Accumulator is

$$d = g^\prod_i h(x_i)$$

• The stored elements
 - Fixed generator
 - A (special) hash function
RSA Accumulator Proofs

- Insertion proof:
 - Verifier checks an exponentiation

- Removal proof:
 - Insertion in reverse

- Membership proof:
 - A removal proof, but the new digest is forgotten
 - Sound because computing roots is hard!

- Batches require a single exponentiation [BBF 18]/[Wes 18]
 - Requires a hash function to prime numbers (for non-interactivity)

\[d' = d^{h(x)} \]

Verification cost: **k hashes + 1 exponentiation**
for \(k \) updates and a storage of capacity \(m \).
Traditional Hash-to-Prime

- Rejection sampling of primes
- Miller Rabin primality test
 - Probabilistic!
 - $2^{-\lambda}$ soundness uses $O(\lambda)$, $\tilde{O}(\lambda)$-bit exponentiations
 - Many constraints

procedure `HashToPrime(x)`:

 $g \leftarrow PRG(\text{seed} = x)$

 while g.output() is composite:

 g.advance()

 Return g.output()
Pocklington Prime Generation

- **Pocklington's criterion:**
 - If
 - p is prime
 - $n < p$
 - $\exists a. a^{np} \equiv_{np+1} 1 \land \gcd(a^n - 1, np + 1) = 1$
 - Then $np + 1$ is prime
- **Basis for a recursive primality certificate**
 - Idea: Rejection sampling of prime certificates

Many fewer constraints than Miller-Rabin, and provably prime
Other Techniques and Tricks

• Multiprecision arithmetic in constraints
 • Based on xjSnark [KPS 18]

• A new hash function, conjectured to be division-intractable

• Precise semantics for batching dependent accesses.
Evaluation

• Implementation in Bellman, using Groth16.
• Consider storage of varying size
• Perform varying numbers of swaps (remove x, add y)
• Measure constraints
• Crossover occurs at a few thousand operations
Summary

Research Question
Do RSA accumulators use fewer constraints than Merkle Trees?

Techniques
• Multiprecision arithmetic
• Division-intractable hashing
• Hashing to prime numbers
• Semantics of dependent accesses

Implementation: github.com/alex-ozdemir/bellman-bignat