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● Several interconnected devices
○ Control units
○ Sensors
○ Actuators
○ Network devices

● Examples
○ Industrial facilities
○ Home automation
○ Vehicles

● Heterogeneous:
Typically more sophisticated 
devices controlling simple low-end 
embedded systems
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● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car
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Controller
(Higher-end device) Sensor

(Low-end device)
Infected 
Sensor

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Problem: compromised software on the low-end 
sensor device might spoof sensed values
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● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Problem: compromised software on the low-end 
sensor device might spoof sensed values
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(Low-end device)
Infected 
Sensor

All good.
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● Designed for: Low-Cost, Low-Energy, Small-Size.

● Memory: Program (~32kB) and Data (~2-16 kB)

● Single core CPU (~8-16MHz; 8- or 16-bit)

● Simple Communication (I/O) Interfaces (a few kbps)

● Examples: TI MSP-430, AVR ATMega32 (Arduino)
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● In the face of potential software compromise of low-end devices:
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● In the face of potential software compromise of low-end devices:
○ How to trust results/data produced by a simple remote embedded device?
○ Can we bind produced results/data to the execution of expected software?
○ Can we do this cost-effectively? Even if all software on a device can be 

modified and/or compromised at any point in time?

Controller
(Higher-end device) Sensor

(Low-end device)

Fire!!!

Or: Can we build sensors that “cannot lie”? (Even when infected) 16



● Software on the Microcontroller triggers Sensing Hardware through 

General Purpose Input-Output (GPIO), according to some communication 

protocol, and waits for the sensed value as a response. 
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● Software on the Microcontroller triggers Sensing Hardware through 

General Purpose Input-Output (GPIO), according to some communication 

protocol, and waits for the sensed value as a response. 

● Sensing Hardware:
○ Digital or Analog circuitry
○ E.g.: Resistors with variable resistance 

according to temperature, pressure, light, 
etc.

● GPIO:
○ Memory addresses connected to 

physical ports in the Microcontroller.
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● Software on the Microcontroller triggers Sensing Hardware through 

General Purpose Input-Output (GPIO), according to some communication 

protocol, and waits for the sensed value as a response. 

● Sensing Hardware:
○ Digital or Analog circuitry
○ E.g.: Resistors with variable resistance 

according to temperature, pressure, light, 
etc.

● GPIO:
○ Memory addresses connected to 

physical ports in the Microcontroller.
Trustworthy Sensing: Prove that a value was indeed obtained from the 
expected GPIO interface, via execution of the expected software 19



● Typically involves some form of Remote Attestation (RA):
○ A general approach of detecting malware presence on invalid software state 

on devices

○ Two-party interaction between:
■ Verifier: trusted entity 

● (e.g., a higher-end controller device in a CPS)
■ Prover: potentially infected and untrusted remote IoT device

● (e.g., a low-end sensor/actuator)

○ Goal: measure current internal state (the contents in memory) of prover
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● Typically involves some form of Remote Attestation (RA):
○ A general approach of detecting malware presence on invalid software state 

on devices

○ Two-party interaction between:
■ Verifier: trusted entity 

● (e.g., a higher-end controller device in a CPS)
■ Prover: potentially infected and untrusted remote IoT device

● (e.g., a low-end sensor/actuator)

○ Goal: measure current internal state (the contents in memory) of prover

Examples of RA for Low-End Devices: SMART[NDSS’12], SANCUS[SEC’12], Trustlite[EuroSys’14], 
Tytan[DAC’15], Hydra[WiSec’17], VRASED[Sec’19], …
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(1) Challenge

(3) Response

(2) Response = authenticated 
challenge-based measurement 
(via some cryptographic 
integrity-ensuring function)

(4) Verify response,
     decide outcome

Verifier Prover

Often implemented as a 
Message Authentication 
Code (MAC) over prover’s 
memory
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(1) Challenge

(3) Response

(2) Response = authenticated 
challenge-based measurement 
(via some cryptographic 
integrity-ensuring function)

(4) Verify response,
     decide outcome

Verifier Prover

Often implemented as a 
Message Authentication 
Code (MAC) over prover’s 
memory

If secure should provide an unforgeable proof that the Prover’s memory corresponds to a 
given value at the time of RA computation
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● However… RA by itself is not sufficient
○ Does not prove execution of attested code
○ Does not bind the outputs to the execution of the code
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○ Does not prove execution of attested code
○ Does not bind the outputs to the execution of the code

● For example, attempts using a regular RA architecture:
○ Attest-then-Execute:

■ Vulnerable to: Attest ➔ Compromise ➔ Execute

○ Execute-then-Attest:
■ Vulnerable to: Compromise ➔ Execute ➔ Heal ➔Attest

○ Attest-then-Execute-then-Attest:
■ Vulnerable to: Attest ➔ Compromise ➔ Execute ➔ Heal ➔Attest
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Takeaway: Even ideal secure RA functionality,  by itself, is not sufficient! We 
need a proof of execution of the expected code tied to any produced output.

● However… RA by itself is not sufficient
○ Does not prove execution of attested code
○ Does not bind the outputs to the execution of the code

● For example, attempts using a regular RA architecture:
○ Attest-then-Execute:

■ Vulnerable to: Attest ➔ Compromise ➔ Execute

○ Execute-then-Attest:
■ Vulnerable to: Compromise ➔ Execute ➔ Heal ➔Attest

○ Attest-then-Execute-then-Attest:
■ Vulnerable to: Attest ➔ Compromise ➔ Execute ➔ Heal ➔Attest

Clever Malware hides itself! Not possible to prove that the proper code executed!
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● Cryptographic binding between:

○ Executed code

○ Outputs produced by this execution

○ Temporally consistent remote attestation of the 

executed code and respective outputs

● Extension to the RA capability
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● Cryptographic binding between:

○ Executed code

○ Outputs produced by this execution

○ Temporally consistent remote attestation of the 

executed code and respective outputs

● Extension to the RA capability

● Reminder! We must be mindful of:

○ Low-cost, low-energy, small-size 

○ Possibility of full software compromise 

■ Implies some hardware support!

Sensor
(Low-end device)
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● APEX: (Formally Verified) Architecture for Proofs of Execution
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● APEX: (Formally Verified) Architecture for Proofs of Execution

● Idea:
○ With cost in mind… The simplest thing we can do is to set one bit

■ This bit is referred to as “EXEC flag”
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● APEX: (Formally Verified) Architecture for Proofs of Execution

● Idea:
○ With cost in mind… The simplest thing we can do is to set one bit

■ This bit is referred to as “EXEC flag”

○ Minimal formally verified hardware controls EXEC value.
○ EXEC = 1⇒ Attested software executed properly. 
○ EXEC = 0⇒ It did not execute, or execution was tampered with

○ EXEC flag is stored in a fixed physical memory address that is covered by 

the RA measurement.

● Assuming a secure underlying RA architecture, unforgeability 

guarantees that the attestation result must reflect the actual 

value of EXEC during the RA computation
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● The problem is reduced to properly controlling EXEC value!
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● The problem is reduced to properly controlling EXEC value!

● What does “proper execution” mean?
○ In this work:

1 - Executable runs atomically (i.e., uninterrupted), from its first instruction, 
until its last instruction.

2 - Execution happens after receiving the latest attestation challenge
- Timeliness. No replayed PoX!!!

3 - Neither the Executable, nor its Outputs (if any)  are modified in between 
the execution and subsequent RA computation.
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Attested Memory
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Attested Memory

● METADATA:
○ Set of physical addresses reserved to store 

configuration parameters about the execution
METADATA
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Attested Memory

● METADATA:
○ Set of physical addresses reserved to store 

configuration parameters about the execution

● METADATA includes:
○ EXEC flag
○ Location for storing the received challenge
○ Pointers to location reserved for the execution 

output
■ Output Range (OR)

○ Pointers to the location of the executable
■  Executable Range (ER)
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Attested Memory

● METADATA:
○ Set of physical addresses reserved to store 

configuration parameters about the execution

● METADATA includes:
○ EXEC flag
○ Location for storing the received challenge
○ Pointers to location reserved for the execution 

output
■ Output Range (OR)

○ Pointers to the location of the executable
■  Executable Range (ER)

APEX hardware module controls EXEC value based on 
the parameters in METADATA and several CPU signals.

APEX

CPU 
CORE
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Attested Memory

● Before execution:
○ Execution configuration must be written to 

METADATA before execution
■ Including the challenge!
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Attested Memory

● Before execution:
○ Execution configuration must be written to 

METADATA before execution
■ Including the challenge!

○ METADATA cannot be changed once execution starts!
■ Any change to METADATA at any point causes EXEC=0
■ Necessary for PoX security
■ More on this later…
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Attested Memory

● Before execution:
○ Execution configuration must be written to 

METADATA before execution
■ Including the challenge!

○ METADATA cannot be changed once execution starts!
■ Any change to METADATA at any point causes EXEC=0
■ Necessary for PoX security
■ More on this later…

○ Configuration parameters can be written by untrusted 
software running on the Prover (i.e., the low end 
device), however:
■ Must specify ER to be the region actually 

containing the proper executable
■ Must specify OR sufficiently large to fit the 

expected output
■ Otherwise PoX will fail

● More on this later... 49



Attested Memory

● During execution:
○ Initially EXEC=0 (default value, e.g., after boot or a reset)

EXEC=0
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Attested Memory

● During execution:
○ Initially EXEC=0 (default value, e.g., after boot or a reset)

○ The only way to switch from EXEC=0 to EXEC=1 is to start 
execution from scratch

■ Program counter (PC) must point to the first instruction of ER (as 
determined in METADATA)

PC0

EXEC=1
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Attested Memory

● During execution:
○ Initially EXEC=0 (default value, e.g., after boot or a reset)

○ The only way to switch from EXEC=0 to EXEC=1 is to start 
execution from scratch

■ Program counter (PC) must point to the first instruction of ER (as 
determined in METADATA)

○ If any of the following happens before PC reaches the last 
instruction of ER, APEX sets EXEC=0:

■ Interruption: irq, reset, PC ∉ ER, etc…
- Gives Malware opportunity to skip instructions, change 

intermediate execution data, outputs etc.
■ DMA activity: Could tamper with intermediate execution results 

in data memory and OR, or change instructions in ER.

PC0

irq, DMA, reset

EXEC=1
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Attested Memory

● During execution:
○ Initially EXEC=0 (default value, e.g., after boot or a reset)

○ The only way to switch from EXEC=0 to EXEC=1 is to start 
execution from scratch

■ Program counter (PC) must point to the first instruction of ER (as 
determined in METADATA)

○ If any of the following happens before PC reaches the last 
instruction of ER, APEX sets EXEC=0:

■ Interruption: irq, reset, PC ∉ ER, etc…
- Gives Malware opportunity to skip instructions, change 

intermediate execution data, outputs etc.
■ DMA activity: Could tamper with intermediate execution results 

in data memory and OR, or change instructions in ER.

Key Observations:
1- The only way to leave ER’s execution with EXEC=1 is by running ER in its entirety 
(until its last instruction)!
2- In order to bind the execution to the produced output, ER must write outputs to 
OR (as configured in METADATA)!

PC0

PCe

EXEC=1
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Attested Memory● After execution:
○ Honest Prover: Calls attestation. Memory is set to produce a 

valid PoX for execution of ER with output OR
■ Recall: RA covers METADATA, ER and OR.

EXEC=1
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● Spoof the code that produced a given result
○ Maybe the execution was done with some other 

invalid/malicious code to begin with!
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○ Maybe the execution was done with some other 
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Attested Memory● After execution:
○ Honest Prover: Calls attestation. Memory is set to produce a 

valid PoX for execution of ER with output OR
■ Recall: RA covers METADATA, ER and OR.

○ Malicious/Infected Prover: Before calling RA it might try to:
■ Modify ER:

● Spoof the code that produced a given result
○ Maybe the execution was done with some other 

invalid/malicious code to begin with!
■ Modify OR:

● Spoof the execution result
■ Modify METADATA to spoof challenge:

● Use this execution proof with future challenges (execution 
replay attack!)

■ Modify METADATA to change ER/OR addresses:
● Make it look like a valid proof of execution of some other 

ER, somewhere else in memory.
● Make it look like this execution produced some other result, 

stored somewhere else in memory.
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Attested Memory● After execution:
○ Honest Prover: Calls attestation. Memory is set to produce a 

valid PoX for execution of ER with output OR
■ Recall: RA covers METADATA, ER and OR.

○ Malicious/Infected Prover: Before calling RA it might try to:
■ Modify ER:

● Spoof the code that produced a given result
○ Maybe the execution was done with some other 

invalid/malicious code to begin with!
■ Modify OR:

● Spoof the execution result
■ Modify METADATA to spoof challenge:

● Use this execution proof with future challenges (execution 
replay attack!)

■ Modify METADATA to change ER/OR addresses:
● Make it look like a valid proof of execution of some other 

ER, somewhere else in memory.
● Make it look like this execution produced some other result, 

stored somewhere else in memory.
APEX hardware module monitors for such actions setting EXEC=0 if any of 

them happen!

EXEC=1

MOD

MOD

MOD

MOD

MOD

EXEC=0 APEX
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● Formal Verification: Why bother?

○ Formal specification:
■ Provides unambiguous logical expressions to state APEX sub-properties 

avoiding misinterpretation of requirements.
○ Did we get it right?

■ Once properties are formally specified, the hardware design can be proved 
to adhere to such properties (computer aided verification via model 
checking)

○ Are these properties enough?
■ Many properties... we could be missing something!
■ Can use theorem proving to show that the conjunction of all properties, 

when applied to the low-end device machine model implies an end-to-end 
notion of secure PoX.
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Formalized 
using Linear 

Temporal 
Logic(LTL)

Hardware 
compliance 

verified using
NuSMV

Check APEX 
paper for details



● The conjunction of APEX properties are shown to imply the following LTL Statement:

● The notion of Secure PoX is formalized as a Security Game

● APEX is hardware is composed into VRASED formally verified RA architecture [Sec’19]

● The composition is shown to imply Secure PoX, as long as

1-  VRASED is a secure RA Architecture (RA Security Game), and

2- The above LTL statement holds.

See APEX paper for formal definitions and proof details. 68
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● APEX was instantiated 
along with VRASED on 
OpenMSP430 Verilog 
Design

● Synthesized on Basys3 
FPGA 

● Used to implement a fire 
sensor that “cannot lie”.

Publicly Available at: 

https://github.com/sprout-uci/APEX 
70
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● On top of VRASED:
- 12% more Look-Up Tables
- 2% additional registers

● Relatively inexpensive in 
comparison with related 
security services for 
run-time attestation, such 
as Control Flow Attestation 
(CFA).
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