
1

● Several interconnected devices
○ Control units
○ Sensors
○ Actuators
○ Network devices

● Examples
○ Industrial facilities
○ Home automation
○ Vehicles

● Heterogeneous:
Typically more sophisticated
devices controlling simple low-end
embedded systems

2

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Controller
(Higher-end device) Sensor

(Low-end device)

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Controllers rely on sensed values to make
decisions (e.g., send help)

3

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Controller
(Higher-end device) Sensor

(Low-end device)

All good.

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Controllers rely on sensed values to make
decisions (e.g., send help)

4

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Controller
(Higher-end device) Sensor

(Low-end device)

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Controllers rely on sensed values to make
decisions (e.g., send help)

5

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Controller
(Higher-end device) Sensor

(Low-end device)

Fire!!!

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Controllers rely on sensed values to make
decisions (e.g., send help)

6

Controller
(Higher-end device) Sensor

(Low-end device)
Infected
Sensor

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Problem: compromised software on the low-end
sensor device might spoof sensed values

7

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Problem: compromised software on the low-end
sensor device might spoof sensed values

Controller
(Higher-end device) Sensor

(Low-end device)
Infected
Sensor

8

● Examples
○ Smoke detector in a household
○ Engine’s temperature sensor in a car

Problem: compromised software on the low-end
sensor device might spoof sensed values

Controller
(Higher-end device) Sensor

(Low-end device)
Infected
Sensor

All good.

9

● Designed for: Low-Cost, Low-Energy, Small-Size.

● Memory: Program (~32kB) and Data (~2-16 kB)

● Single core CPU (~8-16MHz; 8- or 16-bit)

● Simple Communication (I/O) Interfaces (a few kbps)

● Examples: TI MSP-430, AVR ATMega32 (Arduino)

10

● In the face of potential software compromise of low-end devices:

11

● In the face of potential software compromise of low-end devices:
○ How to trust results/data produced by a simple remote embedded device?

12

● In the face of potential software compromise of low-end devices:
○ How to trust results/data produced by a simple remote embedded device?
○ Can we bind produced results/data to the execution of expected software?

13

● In the face of potential software compromise of low-end devices:
○ How to trust results/data produced by a simple remote embedded device?
○ Can we bind produced results/data to the execution of expected software?
○ Can we do this cost-effectively? Even if all software on a device can be

modified and/or compromised at any point in time?

14

● In the face of potential software compromise of low-end devices:
○ How to trust results/data produced by a simple remote embedded device?
○ Can we bind produced results/data to the execution of expected software?
○ Can we do this cost-effectively? Even if all software on a device can be

modified and/or compromised at any point in time?

Controller
(Higher-end device) Sensor

(Low-end device)

Fire!!!

15

● In the face of potential software compromise of low-end devices:
○ How to trust results/data produced by a simple remote embedded device?
○ Can we bind produced results/data to the execution of expected software?
○ Can we do this cost-effectively? Even if all software on a device can be

modified and/or compromised at any point in time?

Controller
(Higher-end device) Sensor

(Low-end device)

Fire!!!

Or: Can we build sensors that “cannot lie”? (Even when infected) 16

● Software on the Microcontroller triggers Sensing Hardware through

General Purpose Input-Output (GPIO), according to some communication

protocol, and waits for the sensed value as a response.

17

● Software on the Microcontroller triggers Sensing Hardware through

General Purpose Input-Output (GPIO), according to some communication

protocol, and waits for the sensed value as a response.

● Sensing Hardware:
○ Digital or Analog circuitry
○ E.g.: Resistors with variable resistance

according to temperature, pressure, light,
etc.

● GPIO:
○ Memory addresses connected to

physical ports in the Microcontroller.

18

● Software on the Microcontroller triggers Sensing Hardware through

General Purpose Input-Output (GPIO), according to some communication

protocol, and waits for the sensed value as a response.

● Sensing Hardware:
○ Digital or Analog circuitry
○ E.g.: Resistors with variable resistance

according to temperature, pressure, light,
etc.

● GPIO:
○ Memory addresses connected to

physical ports in the Microcontroller.
Trustworthy Sensing: Prove that a value was indeed obtained from the
expected GPIO interface, via execution of the expected software 19

● Typically involves some form of Remote Attestation (RA):
○ A general approach of detecting malware presence on invalid software state

on devices

○ Two-party interaction between:
■ Verifier: trusted entity

● (e.g., a higher-end controller device in a CPS)
■ Prover: potentially infected and untrusted remote IoT device

● (e.g., a low-end sensor/actuator)

○ Goal: measure current internal state (the contents in memory) of prover

20

● Typically involves some form of Remote Attestation (RA):
○ A general approach of detecting malware presence on invalid software state

on devices

○ Two-party interaction between:
■ Verifier: trusted entity

● (e.g., a higher-end controller device in a CPS)
■ Prover: potentially infected and untrusted remote IoT device

● (e.g., a low-end sensor/actuator)

○ Goal: measure current internal state (the contents in memory) of prover

Examples of RA for Low-End Devices: SMART[NDSS’12], SANCUS[SEC’12], Trustlite[EuroSys’14],
Tytan[DAC’15], Hydra[WiSec’17], VRASED[Sec’19], …

21

(1) Challenge

(3) Response

(2) Response = authenticated
challenge-based measurement
(via some cryptographic
integrity-ensuring function)

(4) Verify response,
 decide outcome

Verifier Prover

Often implemented as a
Message Authentication
Code (MAC) over prover’s
memory

22

(1) Challenge

(3) Response

(2) Response = authenticated
challenge-based measurement
(via some cryptographic
integrity-ensuring function)

(4) Verify response,
 decide outcome

Verifier Prover

Often implemented as a
Message Authentication
Code (MAC) over prover’s
memory

If secure should provide an unforgeable proof that the Prover’s memory corresponds to a
given value at the time of RA computation

23

● However… RA by itself is not sufficient
○ Does not prove execution of attested code
○ Does not bind the outputs to the execution of the code

24

● However… RA by itself is not sufficient
○ Does not prove execution of attested code
○ Does not bind the outputs to the execution of the code

● For example, attempts using a regular RA architecture:
○ Attest-then-Execute:

■ Vulnerable to: Attest ➔ Compromise ➔ Execute

25

● However… RA by itself is not sufficient
○ Does not prove execution of attested code
○ Does not bind the outputs to the execution of the code

● For example, attempts using a regular RA architecture:
○ Attest-then-Execute:

■ Vulnerable to: Attest ➔ Compromise ➔ Execute

○ Execute-then-Attest:
■ Vulnerable to: Compromise ➔ Execute ➔ Heal ➔Attest

26

● However… RA by itself is not sufficient
○ Does not prove execution of attested code
○ Does not bind the outputs to the execution of the code

● For example, attempts using a regular RA architecture:
○ Attest-then-Execute:

■ Vulnerable to: Attest ➔ Compromise ➔ Execute

○ Execute-then-Attest:
■ Vulnerable to: Compromise ➔ Execute ➔ Heal ➔Attest

○ Attest-then-Execute-then-Attest:
■ Vulnerable to: Attest ➔ Compromise ➔ Execute ➔ Heal ➔Attest

27

Takeaway: Even ideal secure RA functionality, by itself, is not sufficient! We
need a proof of execution of the expected code tied to any produced output.

● However… RA by itself is not sufficient
○ Does not prove execution of attested code
○ Does not bind the outputs to the execution of the code

● For example, attempts using a regular RA architecture:
○ Attest-then-Execute:

■ Vulnerable to: Attest ➔ Compromise ➔ Execute

○ Execute-then-Attest:
■ Vulnerable to: Compromise ➔ Execute ➔ Heal ➔Attest

○ Attest-then-Execute-then-Attest:
■ Vulnerable to: Attest ➔ Compromise ➔ Execute ➔ Heal ➔Attest

Clever Malware hides itself! Not possible to prove that the proper code executed!

28

29

● Cryptographic binding between:

○ Executed code

○ Outputs produced by this execution

○ Temporally consistent remote attestation of the

executed code and respective outputs

● Extension to the RA capability

30

● Cryptographic binding between:

○ Executed code

○ Outputs produced by this execution

○ Temporally consistent remote attestation of the

executed code and respective outputs

● Extension to the RA capability

● Reminder! We must be mindful of:

○ Low-cost, low-energy, small-size

○ Possibility of full software compromise

■ Implies some hardware support!

Sensor
(Low-end device)

31

● APEX: (Formally Verified) Architecture for Proofs of Execution

32

● APEX: (Formally Verified) Architecture for Proofs of Execution

● Idea:
○ With cost in mind… The simplest thing we can do is to set one bit

■ This bit is referred to as “EXEC flag”

33

● APEX: (Formally Verified) Architecture for Proofs of Execution

● Idea:
○ With cost in mind… The simplest thing we can do is to set one bit

■ This bit is referred to as “EXEC flag”

○ Minimal formally verified hardware controls EXEC value.
○ EXEC = 1⇒ Attested software executed properly.
○ EXEC = 0⇒ It did not execute, or execution was tampered with

34

● APEX: (Formally Verified) Architecture for Proofs of Execution

● Idea:
○ With cost in mind… The simplest thing we can do is to set one bit

■ This bit is referred to as “EXEC flag”

○ Minimal formally verified hardware controls EXEC value.
○ EXEC = 1⇒ Attested software executed properly.
○ EXEC = 0⇒ It did not execute, or execution was tampered with

○ EXEC flag is stored in a fixed physical memory address that is covered by

the RA measurement.

35

● APEX: (Formally Verified) Architecture for Proofs of Execution

● Idea:
○ With cost in mind… The simplest thing we can do is to set one bit

■ This bit is referred to as “EXEC flag”

○ Minimal formally verified hardware controls EXEC value.
○ EXEC = 1⇒ Attested software executed properly.
○ EXEC = 0⇒ It did not execute, or execution was tampered with

○ EXEC flag is stored in a fixed physical memory address that is covered by

the RA measurement.

● Assuming a secure underlying RA architecture, unforgeability

guarantees that the attestation result must reflect the actual

value of EXEC during the RA computation
36

● The problem is reduced to properly controlling EXEC value!

37

● The problem is reduced to properly controlling EXEC value!

● What does “proper execution” mean?

38

● The problem is reduced to properly controlling EXEC value!

● What does “proper execution” mean?
○ In this work:

1 - Executable runs atomically (i.e., uninterrupted), from its first instruction,
until its last instruction.

2 - Execution happens after receiving the latest attestation challenge
- Timeliness. No replayed PoX!!!

3 - Neither the Executable, nor its Outputs (if any) are modified in between
the execution and subsequent RA computation.

39

Attested Memory

40

Attested Memory

● METADATA:
○ Set of physical addresses reserved to store

configuration parameters about the execution
METADATA

41

Attested Memory

● METADATA:
○ Set of physical addresses reserved to store

configuration parameters about the execution

● METADATA includes:
○ EXEC flag

METADATA

42

Attested Memory

● METADATA:
○ Set of physical addresses reserved to store

configuration parameters about the execution

● METADATA includes:
○ EXEC flag
○ Location for storing the received challenge

METADATA

43

Attested Memory

● METADATA:
○ Set of physical addresses reserved to store

configuration parameters about the execution

● METADATA includes:
○ EXEC flag
○ Location for storing the received challenge
○ Pointers to location reserved for the execution

output
■ Output Range (OR)

METADATA

44

Attested Memory

● METADATA:
○ Set of physical addresses reserved to store

configuration parameters about the execution

● METADATA includes:
○ EXEC flag
○ Location for storing the received challenge
○ Pointers to location reserved for the execution

output
■ Output Range (OR)

○ Pointers to the location of the executable
■ Executable Range (ER)

METADATA

45

Attested Memory

● METADATA:
○ Set of physical addresses reserved to store

configuration parameters about the execution

● METADATA includes:
○ EXEC flag
○ Location for storing the received challenge
○ Pointers to location reserved for the execution

output
■ Output Range (OR)

○ Pointers to the location of the executable
■ Executable Range (ER)

APEX hardware module controls EXEC value based on
the parameters in METADATA and several CPU signals.

APEX

CPU
CORE

46

Attested Memory

● Before execution:
○ Execution configuration must be written to

METADATA before execution
■ Including the challenge!

47

Attested Memory

● Before execution:
○ Execution configuration must be written to

METADATA before execution
■ Including the challenge!

○ METADATA cannot be changed once execution starts!
■ Any change to METADATA at any point causes EXEC=0
■ Necessary for PoX security
■ More on this later…

48

Attested Memory

● Before execution:
○ Execution configuration must be written to

METADATA before execution
■ Including the challenge!

○ METADATA cannot be changed once execution starts!
■ Any change to METADATA at any point causes EXEC=0
■ Necessary for PoX security
■ More on this later…

○ Configuration parameters can be written by untrusted
software running on the Prover (i.e., the low end
device), however:
■ Must specify ER to be the region actually

containing the proper executable
■ Must specify OR sufficiently large to fit the

expected output
■ Otherwise PoX will fail

● More on this later... 49

Attested Memory

● During execution:
○ Initially EXEC=0 (default value, e.g., after boot or a reset)

EXEC=0

50

Attested Memory

● During execution:
○ Initially EXEC=0 (default value, e.g., after boot or a reset)

○ The only way to switch from EXEC=0 to EXEC=1 is to start
execution from scratch

■ Program counter (PC) must point to the first instruction of ER (as
determined in METADATA)

PC0

EXEC=1

51

Attested Memory

● During execution:
○ Initially EXEC=0 (default value, e.g., after boot or a reset)

○ The only way to switch from EXEC=0 to EXEC=1 is to start
execution from scratch

■ Program counter (PC) must point to the first instruction of ER (as
determined in METADATA)

○ If any of the following happens before PC reaches the last
instruction of ER, APEX sets EXEC=0:

■ Interruption: irq, reset, PC ∉ ER, etc…
- Gives Malware opportunity to skip instructions, change

intermediate execution data, outputs etc.
■ DMA activity: Could tamper with intermediate execution results

in data memory and OR, or change instructions in ER.

PC0

irq, DMA, reset

EXEC=1

52

Attested Memory

● During execution:
○ Initially EXEC=0 (default value, e.g., after boot or a reset)

○ The only way to switch from EXEC=0 to EXEC=1 is to start
execution from scratch

■ Program counter (PC) must point to the first instruction of ER (as
determined in METADATA)

○ If any of the following happens before PC reaches the last
instruction of ER, APEX sets EXEC=0:

■ Interruption: irq, reset, PC ∉ ER, etc…
- Gives Malware opportunity to skip instructions, change

intermediate execution data, outputs etc.
■ DMA activity: Could tamper with intermediate execution results

in data memory and OR, or change instructions in ER.

PC0

irq, DMA, reset

EXEC=0

53

Attested Memory

● During execution:
○ Initially EXEC=0 (default value, e.g., after boot or a reset)

○ The only way to switch from EXEC=0 to EXEC=1 is to start
execution from scratch

■ Program counter (PC) must point to the first instruction of ER (as
determined in METADATA)

○ If any of the following happens before PC reaches the last
instruction of ER, APEX sets EXEC=0:

■ Interruption: irq, reset, PC ∉ ER, etc…
- Gives Malware opportunity to skip instructions, change

intermediate execution data, outputs etc.
■ DMA activity: Could tamper with intermediate execution results

in data memory and OR, or change instructions in ER.

Key Observations:
1- The only way to leave ER’s execution with EXEC=1 is by running ER in its entirety
(until its last instruction)!
2- In order to bind the execution to the produced output, ER must write outputs to
OR (as configured in METADATA)!

PC0

PCe

EXEC=1

54

Attested Memory● After execution:
○ Honest Prover: Calls attestation. Memory is set to produce a

valid PoX for execution of ER with output OR
■ Recall: RA covers METADATA, ER and OR.

EXEC=1

55

Attested Memory● After execution:
○ Honest Prover: Calls attestation. Memory is set to produce a

valid PoX for execution of ER with output OR
■ Recall: RA covers METADATA, ER and OR.

○ Malicious/Infected Prover: Before calling RA it might try to:
■ Modify ER:

● Spoof the code that produced a given result
○ Maybe the execution was done with some other

invalid/malicious code to begin with!

EXEC=1

MOD

56

Attested Memory● After execution:
○ Honest Prover: Calls attestation. Memory is set to produce a

valid PoX for execution of ER with output OR
■ Recall: RA covers METADATA, ER and OR.

○ Malicious/Infected Prover: Before calling RA it might try to:
■ Modify ER:

● Spoof the code that produced a given result
○ Maybe the execution was done with some other

invalid/malicious code to begin with!
■ Modify OR:

● Spoof the execution result

EXEC=1

MOD

MOD

57

Attested Memory● After execution:
○ Honest Prover: Calls attestation. Memory is set to produce a

valid PoX for execution of ER with output OR
■ Recall: RA covers METADATA, ER and OR.

○ Malicious/Infected Prover: Before calling RA it might try to:
■ Modify ER:

● Spoof the code that produced a given result
○ Maybe the execution was done with some other

invalid/malicious code to begin with!
■ Modify OR:

● Spoof the execution result
■ Modify METADATA to spoof challenge:

● Use this execution proof with future challenges (execution
replay attack!)

EXEC=1

MOD

MOD

MOD

58

Attested Memory● After execution:
○ Honest Prover: Calls attestation. Memory is set to produce a

valid PoX for execution of ER with output OR
■ Recall: RA covers METADATA, ER and OR.

○ Malicious/Infected Prover: Before calling RA it might try to:
■ Modify ER:

● Spoof the code that produced a given result
○ Maybe the execution was done with some other

invalid/malicious code to begin with!
■ Modify OR:

● Spoof the execution result
■ Modify METADATA to spoof challenge:

● Use this execution proof with future challenges (execution
replay attack!)

■ Modify METADATA to change ER/OR addresses:
● Make it look like a valid proof of execution of some other

ER, somewhere else in memory.
● Make it look like this execution produced some other result,

stored somewhere else in memory.

EXEC=1

MOD

MOD

MOD

MOD

MOD

59

Attested Memory● After execution:
○ Honest Prover: Calls attestation. Memory is set to produce a

valid PoX for execution of ER with output OR
■ Recall: RA covers METADATA, ER and OR.

○ Malicious/Infected Prover: Before calling RA it might try to:
■ Modify ER:

● Spoof the code that produced a given result
○ Maybe the execution was done with some other

invalid/malicious code to begin with!
■ Modify OR:

● Spoof the execution result
■ Modify METADATA to spoof challenge:

● Use this execution proof with future challenges (execution
replay attack!)

■ Modify METADATA to change ER/OR addresses:
● Make it look like a valid proof of execution of some other

ER, somewhere else in memory.
● Make it look like this execution produced some other result,

stored somewhere else in memory.
APEX hardware module monitors for such actions setting EXEC=0 if any of

them happen!

EXEC=1

MOD

MOD

MOD

MOD

MOD

EXEC=0 APEX

60

61

62

63

64

65

● Formal Verification: Why bother?

○ Formal specification:
■ Provides unambiguous logical expressions to state APEX sub-properties

avoiding misinterpretation of requirements.
○ Did we get it right?

■ Once properties are formally specified, the hardware design can be proved
to adhere to such properties (computer aided verification via model
checking)

○ Are these properties enough?
■ Many properties... we could be missing something!
■ Can use theorem proving to show that the conjunction of all properties,

when applied to the low-end device machine model implies an end-to-end
notion of secure PoX.

66

67

Formalized
using Linear

Temporal
Logic(LTL)

Hardware
compliance

verified using
NuSMV

Check APEX
paper for details

● The conjunction of APEX properties are shown to imply the following LTL Statement:

● The notion of Secure PoX is formalized as a Security Game

● APEX is hardware is composed into VRASED formally verified RA architecture [Sec’19]

● The composition is shown to imply Secure PoX, as long as

1- VRASED is a secure RA Architecture (RA Security Game), and

2- The above LTL statement holds.

See APEX paper for formal definitions and proof details. 68

69

● APEX was instantiated
along with VRASED on
OpenMSP430 Verilog
Design

● Synthesized on Basys3
FPGA

● Used to implement a fire
sensor that “cannot lie”.

Publicly Available at:

https://github.com/sprout-uci/APEX
70

https://github.com/sprout-uci/APEX

● On top of VRASED:
- 12% more Look-Up Tables
- 2% additional registers

● Relatively inexpensive in
comparison with related
security services for
run-time attestation, such
as Control Flow Attestation
(CFA).

71

72

