APEX: A Verified Architecture for Proofs of Execution
on Remote Devices Under Full Software Compromise

Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Gene Tsudik

29" USENIX Security Symposium
August, 2020.

Safety Critical Embedded/Cyber-physical/loT Systems

Several interconnected devices
o Control units
o Sensors
o Actuators
o Network devices
Examples
o Industrial facilities
o Home automation
o Vehicles
Heterogeneous:
Typically more sophisticated
devices controlling simple low-end

embedded systems

Safety Critical Embedded/Cyber-physical/loT Systems

e Examples
o Smoke detector in a household
o Engine’s temperature sensor in a car

Controller
(Higher-end device)

Sensor
(Low-end device)

Controllers rely on sensed values to make
decisions (e.q., send help)

Safety Critical Embedded/Cyber-physical/loT Systems

e Examples
o Smoke detector in a household
o Engine’s temperature sensor in a car

Controller

(Higher-end device) Sensor

(Low-end device)

! . | < All good. - - ,

Controllers rely on sensed values to make
decisions (e.q., send help)

Safety Critical Embedded/Cyber-physical/loT Systems

e Examples
o Smoke detector in a household
o Engine’s temperature sensor in a car

Controller
(Higher-end device)

Sensor
(Low-end device)

)

> o
\;7— -~

Controllers rely on sensed values to make
decisions (e.q., send help)

Safety Critical Embedded/Cyber-physical/loT Systems

e Examples
o Smoke detector in a household
o Engine’s temperature sensor in a car

Controller

(Higher-end device) Sensor

(Low-end device)
Fire!l!
; [| < | T °)

Controllers rely on sensed values to make
decisions (e.q., send help)

Safety Critical Embedded/Cyber-physical/loT Systems

e Examples
o Smoke detector in a household
o Engine’s temperature sensor in a car

Controller
(Higher-end device)

Sensor Infected

(Low-end deviAce)/ Sensor

Problem: compromised software on the low-end
sensor device might spoof sensed values

Safety Critical Embedded/Cyber-physical/loT Systems

e Examples
o Smoke detector in a household
o Engine’s temperature sensor in a car

Controller
(Higher-end device)

Sensor Infected

(Low-end deviAce)/ Sensor
< &:g“ﬂ -

Problem: compromised software on the low-end
sensor device might spoof sensed values

Safety Critical Embedded/Cyber-physical/loT Systems

e Examples
o Smoke detector in a household
o Engine’s temperature sensor in a car

Controller
(Higher-end device)

!I"* [<

Problem: compromised software on the low-end
sensor device might spoof sensed values

Sensor Infected

(Low-end deviAce)/ Sensor
All good. ﬁ
% § ~ C

Low-End Embedded Devices, Sensors, Actuators...

(aka amoebas of the computing world)

Designed for: Low-Cost, Low-Energy, Small-Size.

Memory: Program (-32kB) and Data (-2-16 kB)
Single core CPU (-8-16MHz; 8- or 16-bit)
Simple Communication (I/0) Interfaces (a few kbps)

Examples: TI MSP-430, AVR ATMega32 (Arduino)

outside world

program memory
(flash ROM)

data memory
(RAM)

input and
output ports

aca 4

* f address

bus

3

central processing
unitc (CPU)

bus

clock

10

Problem at Hand

In the face of potential software compromise of low-end devices:

11

Problem at Hand

In the face of potential software compromise of low-end devices:
o How to trust results/data produced by a simple remote embedded device?

12

Problem at Hand

In the face of potential software compromise of low-end devices:
o How to trust results/data produced by a simple remote embedded device?
o Can we bind produced results/data to the execution of expected software?

13

Problem at Hand

e In the face of potential software compromise of low-end devices:

©)

©)

@)

How to trust results/data produced by a simple remote embedded device?
Can we bind produced results/data to the execution of expected software?
Can we do this cost-effectively? Even if all software on a device can be

modified and/or compromised at any point in time?

14

Problem at Hand

e In the face of potential software compromise of low-end devices:
o How to trust results/data produced by a simple remote embedded device?
o Can we bind produced results/data to the execution of expected software?
o Can we do this cost-effectively? Even if all software on a device can be
modified and/or compromised at any point in time?

Controller Sensor
(Higher-end device) (Low-end device)

Fire!ll

Problem at Hand

In the face of potential software compromise of low-end devices:
o How to trust results/data produced by a simple remote embedded device?
o Can we bind produced results/data to the execution of expected software?
o Can we do this cost-effectively? Even if all software on a device can be

modified and/or compromised at any point in time?

Controller
(Higher-end device)

.

Sensor
(Low-end device)

Background: The Software Process in a Sensor

e Software on the Microcontroller triggers Sensing Hardware through

General Purpose Input-Output (GPIO), according to some communication

protocol, and waits for the sensed value as a response.

17

Background: The Software Process in a Sensor

Software on the Microcontroller triggers Sensing Hardware through

General Purpose Input-Output (GPIO), according to some communication

protocol, and waits for the sensed value as a response.

Sensing Hardware:
o Digital or Analog circuitry

o E.g.: Resistors with variable resistance ;"’Ch';:‘zp"era‘sg .)
according to temperature, pressure, light, — T
etc. X Analog Output

GPIO: Bus [T

o Memory addresses connected to
physical ports in the Microcontroller.

_— Timer

Serial I/O

N

UART

Other

gl Peripherals

18

Background: The Software Process in a Sensor

e Software on the Microcontroller triggers Sensing Hardware through
General Purpose Input-Output (GPIO), according to some communication

protocol, and waits for the sensed value as a response.

e Sensing Hardware:
o Digital or Analog circuitry

o E.g.: Resistors with variable resistance O”'C“';::"“e‘a‘sg —)
according to temperature, pressure, light, T
etc. CPU i—/ LS —> Analog Output

o GPIO: M e [T

o Memory addresses connected to [

physical ports in the Microcontroller. e U serii 1O
Trustworthy Sensing: Prove that a value was indeed obtained from the S eioherais 19

expected GPIO interface, via execution of the expected software 4

Previous Work on Securing the Software-State of
Low-End Embedded Systems

e Typically involves some form of Remote Attestation (RA):

o Ageneral approach of detecting malware presence on invalid software state
on devices

o Two-party interaction between:
m Verifier: trusted entity
e (e.g, ahigher-end controller device in a CPS)
m Prover: potentially infected and untrusted remote loT device
e (e.g,alow-end sensor/actuator)

o Goal: measure current internal state (the contents in memory) of prover

20

Previous Work on Securing the Software-State of
Low-End Embedded Systems

e Typically involves some form of Remote Attestation (RA):

o Ageneral approach of detecting malware presence on invalid software state
on devices

o Two-party interaction between:
m Verifier: trusted entity
e (e.g, ahigher-end controller device in a CPS)
m Prover: potentially infected and untrusted remote loT device
e (e.g,alow-end sensor/actuator)

o Goal: measure current internal state (the contents in memory) of prover

Examples of RA for Low-End Devices: SMART[NDSS"12], SANCUS[SEC12], Trustlite[EuroSys'14],

Tytan[DAC'15], Hydra[WiSec'17], VRASED[Sec'19], ... o

(4) Verify response,
decide outcome

Remote Attestation Interaction

Verifier

-0

(1) Challenge

<

(3) Response

Prover

(2) Response = authenticated
challenge-based measurement
(via some cryptographic
integrity-ensuring function)

Often implemented as a
Message Authentication
Code (MAC) over prover’s
memory

22

(4) Verify response,
decide outcome

If secure should providt_e an unforgeable proof that the Prover’s memory corresponds to a

Remote Attestation Interaction

Verifier Prover

(1) Challenge

(2) Response = authenticated
challenge-based measurement
(via some cryptographic
integrity-ensuring function)

(3) Response
< Often implemented as a
Message Authentication
Code (MAC) over prover’s

memory

23
given value at the time of RA computation

Natural Path: Use RA to Build Sensors that “Cannot
Lie”

However... RA by itself is not sufficient
o Does not prove execution of attested code
o Does not bind the outputs to the execution of the code

24

Natural Path: Use RA to Build Sensors that “Cannot
Lie”

e However.. RA by itself is not sufficient

o Does not prove execution of attested code

o Does not bind the outputs to the execution of the code
e For example, attempts using a regular RA architecture:

o Attest-then-Execute:
m Vulnerableto: Attest = Compromise = Execute

25

Natural Path: Use RA to Build Sensors that “Cannot
Lie”

e However.. RA by itself is not sufficient

o Does not prove execution of attested code

o Does not bind the outputs to the execution of the code
e For example, attempts using a regular RA architecture:

o Attest-then-Execute:
m Vulnerableto: Attest = Compromise = Execute
o Execute-then-Attest:
m Vulnerableto: Compromise = Execute => Heal =2Attest

26

Natural Path: Use RA to Build Sensors that “Cannot
Lie”

e However.. RA by itself is not sufficient
o Does not prove execution of attested code
o Does not bind the outputs to the execution of the code
e For example, attempts using a regular RA architecture:
o Attest-then-Execute:
m Vulnerableto: Attest = Compromise = Execute
o Execute-then-Attest:
m Vulnerableto: Compromise = Execute => Heal =2Attest

o Attest-then-Execute-then-Attest:
m Vulnerableto: Attest = Compromise => Execute => Heal =>Attest

27

Natural Path: Use RA to Build Sensors that “Cannot
Lie”

e However.. RA by itself is not sufficient
o Does not prove execution of attested code
o Does not bind the outputs to the execution of the code
e For example, attempts using a regular RA architecture:
o Attest-then-Execute:
m Vulnerableto: Attest = Compromise = Execute
o Execute-then-Attest:

m Vulnerableto: Compromise => Execute => Heal =2Attest
o Attest-then-Execute-then-Attest:

m Vulnerableto: Attest = Compromise => Execute => Heal =>Attest

Clever Malware hides itself! Not possible to prove that the proper code executed!

Takeaway: Even ideal secure RA functionality, by itself, is not sufficient! We
need a proof of execution of the expected code tied to any produced output.

Proofs of (Remote Software) EXecution (PoX)

29

Proofs of (Remote Software) EXecution (PoX)

e Cryptographic binding between:
o Executed code
o Outputs produced by this execution

o Temporally consistent remote attestation of the
executed code and respective outputs
e Extension to the RA capability

30

Proofs of (Remote Software) EXecution (PoX)

e Cryptographic binding between:
o Executed code
o Outputs produced by this execution
o Temporally consistent remote attestation of the

executed code and respective outputs
e Extension to the RA capability

. . Sensor
e Reminder! We must be mindful of: (Low-end device)
o Low-cost, low-energy, small-size ﬁ
o Possibility of full software compromise e

m Implies some hardware support!

31

Realizing PoX with APEX

e APEX: (Formally Verified) Architecture for Proofs of Execution

32

Realizing PoX with APEX

e APEX: (Formally Verified) Architecture for Proofs of Execution

e |dea:

o With cost in mind... The simplest thing we can do is to set one bit
m This bit is referred to as “"EXEC flag”

33

Realizing PoX with APEX

e APEX: (Formally Verified) Architecture for Proofs of Execution
e Idea:

©)

With cost in mind... The simplest thing we can do is to set one bit
m This bit is referred to as “"EXEC flag”

Minimal formally verified hardware controls EXEC value.

EXEC = 1= Attested software executed properly.

EXEC = 0= It did not execute, or execution was tampered with

34

Realizing PoX with APEX

e APEX: (Formally Verified) Architecture for Proofs of Execution

e |dea:

©)

O O O O

With cost in mind... The simplest thing we can do is to set one bit
m This bit is referred to as “"EXEC flag”

Minimal formally verified hardware controls EXEC value.

EXEC = 1= Attested software executed properly.

EXEC = 0= It did not execute, or execution was tampered with

EXEC flag is stored in a fixed physical memory address that is covered by

the RA measurement.

35

Realizing PoX with APEX

e APEX: (Formally Verified) Architecture for Proofs of Execution

e |dea:

©)

O O O O

With cost in mind... The simplest thing we can do is to set one bit
m This bit is referred to as “"EXEC flag”

Minimal formally verified hardware controls EXEC value.

EXEC = 1= Attested software executed properly.

EXEC = 0= It did not execute, or execution was tampered with

EXEC flag is stored in a fixed physical memory address that is covered by

the RA measurement.

® Assuming a secure underlying RA architecture, unforgeability

guarantees that the attestation result must reflect the actual

value of EXEC during the RA computation

36

APEX

® The problem is reduced to properly controlling EXEC value!

37

APEX

® The problem is reduced to properly controlling EXEC value!
e What does “proper execution” mean?

38

APEX

® The problem is reduced to properly controlling EXEC value!

e What does “proper execution” mean?
o In this work:

1 - Executable runs atomically (i.e., uninterrupted), from its first instruction,
until its last instruction.

2 - Execution happens after receiving the latest attestation challenge
- Timeliness. No replayed PoX!!!

3 - Neither the Executable, nor its Outputs (if any) are modified in between
the execution and subsequent RA computation.

39

APEX Design

Attested Memory

40

APEX Design
® METADATA:

o Set of physical addresses reserved to store
configuration parameters about the execution

Attested Memory

METADATA

41

APEX Design
METADATA:

o Set of physical addresses reserved to store
configuration parameters about the execution

METADATA includes:
o EXEC flag

Attested Memory

EXEC

METADATA

42

APEX Design
METADATA:

o Set of physical addresses reserved to store
configuration parameters about the execution

METADATA includes:

o EXEC flag
o Location for storing the received challenge

Attested Memory

Chal

EXEC

METADATA

43

APEX Design
® METADATA:
o Set of physical addresses reserved to store
configuration parameters about the execution
® METADATA includes:
o EXEC flag

o Location for storing the received challenge

o Pointers to location reserved for the execution
output

m Output Range (OR)

Attested Memory

Chal

OR ax

ORmin

EXEC

OR

METADATA

44

APEX Design
® METADATA:

o Set of physical addresses reserved to store
configuration parameters about the execution

® METADATA includes:

o EXEC flag
o Location for storing the received challenge
o Pointers to location reserved for the execution

output
m Output Range (OR)
o Pointers to the location of the executable
m Executable Range (ER)

Attested Memory

Chal

OR ax

ORmin

ERinax

ERmin

EXEC

ER

OR

METADATA

45

APEX Design Atteslted Memf)ry
® METADATA: Chal

. OR pax
o Set of physical addresses reserved to store o
configuration parameters about the execution @ i

® METADATA includes: el 4

o EXEC flag
o Location for storing the received challenge

o Pointers to location reserved for the execution r

output
m Output Range (OR)
o Pointers to the location of the executable
m Executable Range (ER)
APEX hardware module controls EXEC value based on OR

the parameters in METADATA and several CPU signals.

46

Attested Memory

APEX Design

® Before execution: -
o Execution configuration must be written to ORpax
METADATA before execution -

m Including the challenge! o

EXEC

ER

OR

Attested Memory

APEX Design

® Before execution: -
o Execution configuration must be written to ORax
METADATA before execution - Zﬁ"’""
m Including the challenge! . ER::
o METADATA cannot be changed once execution starts! . [BxEC
m Any change to METADATA at any point causes EXEC=0
m Necessary for PoX security
m More on this later...
ER

OR

APEX Design

Before execution:

O

Execution configuration must be written to
METADATA before execution
m Including the challenge!

METADATA cannot be changed once execution starts!
m Any change to METADATA at any point causes EXEC=0

m Necessary for PoX security
m More on this later...
Configuration parameters can be written by untrusted
software running on the Prover (i.e., the low end
device), however:
m Must specify ER to be the region actually
containing the proper executable
m Must specify OR sufficiently large to fit the
expected output

m Otherwise PoX will fail
e More on this later...

Attested Memory

Chal

OR ax

ORmin

ERpax

ERmin

EXEC

ER

OR

49

APEX Design

® During execution:

©)

Initially ExECc=0 (default value, e.g., after boot or a reset)

Attested Memory

Chal

ORpax

ORomin

ERinax

ERmin

ER

OR

50

APEX Design

During execution:
O Initially ExEc=0 (default value, e.g., after boot or a reset)

O The only way to switch from ExEc=0 to ExEc=1 is to start

execution from scratch
m Program counter (PC) must point to the first instruction of ER (as
determined in METADATA)

Attested Memory

ER

OR

PC

51

APEX Design

During execution:
O Initially Exec=0 (default value, e.g., after boot or a reset)

O The only way to switch from ExEc=0 to ExEC=1 is to start

execution from scratch
m Program counter (PC) must point to the first instruction of ER (as
determined in METADATA)

O If any of the following happens before PC reaches the last

instruction of ER, APEX sets EXEC=0:
m Interruption: irg, reset, PC ¢ ER, etc...
- Gives Malware opportunity to skip instructions, change
intermediate execution data, outputs etc.
m DMA activity: Could tamper with intermediate execution results
in data memory and OR, or change instructions in ER.

Attested Memory

Chal

ORpax

OR in

ERinax

ERin

ER

OR

irq, DMA, reset

52

APEX Design

During execution:
O Initially Exec=0 (default value, e.g., after boot or a reset)

O The only way to switch from ExEc=0 to ExEC=1 is to start

execution from scratch
m Program counter (PC) must point to the first instruction of ER (as
determined in METADATA)

O If any of the following happens before PC reaches the last

instruction of ER, APEX sets EXEC=0:
m Interruption: irg, reset, PC ¢ ER, etc...
- Gives Malware opportunity to skip instructions, change
intermediate execution data, outputs etc.
m DMA activity: Could tamper with intermediate execution results
in data memory and OR, or change instructions in ER.

Attested Memory

Chal

ORpax

ORpin

ERinax

ERin

ER

OR

irq, DMA, reset

53

APEX Design

® During execution:
O Initially Exec=0 (default value, e.g., after boot or a reset)

O The only way to switch from ExEc=0 to ExEC=1 is to start

execution from scratch
m Program counter (PC) must point to the first instruction of ER (as
determined in METADATA)

O If any of the following happens before PC reaches the last

instruction of ER, APEX sets EXEC=0:
m Interruption: irg, reset, PC ¢ ER, etc...
- Gives Malware opportunity to skip instructions, change
intermediate execution data, outputs etc.
m DMA activity: Could tamper with intermediate execution results
in data memory and OR, or change instructions in ER.

Key Observations:

1- The only way to leave ER’s execution with EXEC=1 is by running ER in its entirety
(until its last instruction)!

2- In order to bind the execution to the produced output, ER must write outputs to
OR (as configured in METADATA)!

Attested Memory

Chal

ORpax

ORpin

ERinax

ERmin

ER

< PC0

OR

54

APEX Design Attested Memory
® After execution: . .
o Honest Prover: Calls attestation. Memory is set to produce a
valid PoX for execution of ER with output OR
m Recall: RA covers METADATA, ER and OR.

ER

OR

APEX Design

After execution:
o Honest Prover: Calls attestation. Memory is set to produce a
valid PoX for execution of ER with output OR
m Recall: RA covers METADATA, ER and OR.
o Malicious/Infected Prover: Before calling RA it might try to:

m Modify ER:
e Spoof the code that produced a given result
o Maybe the execution was done with some other
invalid/malicious code to begin with!

Attested Memory

ER

OR

MOD

56

APEX Design Attested Memory
® After execution: . .
o Honest Prover: Calls attestation. Memory is set to produce a
valid PoX for execution of ER with output OR

m Recall: RA covers METADATA, ER and OR.
o Malicious/Infected Prover: Before calling RA it might try to:

m Modify ER:

e Spoof the code that produced a given result

o Maybe the execution was done with some other
invalid/malicious code to begin with!

m Modify OR:
e Spoof the execution result

ER | <yoD

OR *oD %

57

APEX Design

After execution:
o Honest Prover: Calls attestation. Memory is set to produce a
valid PoX for execution of ER with output OR
m Recall: RA covers METADATA, ER and OR.
o Malicious/Infected Prover: Before calling RA it might try to:
m Modify ER:
e Spoof the code that produced a given result

o Maybe the execution was done with some other
invalid/malicious code to begin with!
m Modify OR:
e Spoof the execution result

m Modify METADATA to spoof challenge:

e Use this execution proof with future challenges (execution
replay attack!)

Attested Memory

ER

OR

MOD %

58

APEX Design

After execution:
o Honest Prover: Calls attestation. Memory is set to produce a
valid PoX for execution of ER with output OR
m Recall: RA covers METADATA, ER and OR.
o Malicious/Infected Prover: Before calling RA it might try to:
m Modify ER:
e Spoof the code that produced a given result
o Maybe the execution was done with some other
invalid/malicious code to begin with!
m Modify OR:
e Spoof the execution result

m Modify METADATA to spoof challenge:

e Use this execution proof with future challenges (execution
replay attack!)
m Modify METADATA to change ER/OR addresses:
® Make it look like a valid proof of execution of some other
ER, somewhere else in memory.

e Make it look like this execution produced some other result,

stored somewhere else in memory.

ER

OR

Attested Memory

MOD %

MOD %

59

APEX Design

® After execution:
o Honest Prover: Calls attestation. Memory is set to produce a
valid PoX for execution of ER with output OR
m Recall: RA covers METADATA, ER and OR.
o Malicious/Infected Prover: Before calling RA it might try to:
m Modify ER:
e Spoof the code that produced a given result
o Maybe the execution was done with some other
invalid/malicious code to begin with!
m Modify OR:
e Spoof the execution result
m Modify METADATA to spoof challenge:
e Use this execution proof with future challenges (execution
replay attack!)
m Modify METADATA to change ER/OR addresses:
® Make it look like a valid proof of execution of some other
ER, somewhere else in memory.
e Make it look like this execution produced some other result,

stored somewhere else in memory.
APEX hardware module monitors for such actions setting EXEC=0 if any of

them happen!

Attested Memory

Chal

OR

ORpin

ERinax

ERmm

ER

OR

-

\

@ Define execution
METADATA

Verifier

APEX Interaction Summary

/ Prover

© Send METADATA

o ———————————

Unprivileged SW

o J

METADATA is received by untrusted software running on the Prover that may (or may not):

G

\

61

APEX Interaction Summary

4 Verifier R / Prover \

@ Define execution o33 e ™
METADATA © Send METADATA Unprivileged SW

© Install received code to
proper location

/
[
|
|
O
: © Set up configuration
|
|
|
|
|
|
|
|
|

registers (located in
protected memory)
according to the other
parameters in METADATA
© Execute received
software , producing

qut (o] 7
e)

METADATA is received by untrusted software running on the Prover that may (or may not):

VRASED'’s
Attestation

T ——— — —— —————— — —

3. Install the received code in the defined location

4, Setup configuration registers (e.g., “where to store the output” among others)

5. Execute the installed code

6. Call VRASED attestation functionality (locations to be attested defined according to step 4 above).

62

APEX Interaction Summary

4 Verifier) / Prover \

@ Define execution NP —— . ™\
o APEX HW
METADATA © Send METADATA Hipriviaged S | » Monitor steps:
© Install received code to : ©.0.0 psé
proper location ’ ’ '
© Set up configuration ! EXEC
S e R Tl

protected memory)
according to the other
parameters in METADATA

© Execute received
software , producing

\EET
o J

Meanwhile APEX verified hardware monitors steps 3 to 6:
- Controls the value of a 1-bit flag “"EXEC".
- IMPORTANT: EXEC is read-only to all software.
- EXEC=1 if and only if steps steps 3 to 6 happen securely:
- If untrusted software misbehaves in 3 to 6: EXEC=0.
- Several important details to the meaning of “securely” omitted in this presentation.
- EXEC value and the execution output are also covered by VRASED's attestation (in addition to the executed code).

[VRASED’s
O Invoke || Attestation
|
|
|

[
:
|
|
| registers (located in
|
|
|
|
I
|
|
|

Y ——
! s s e g

APEX Interaction Summary

- D

Verifier Prover
@ Define execution e o o "
METADATA © Send METADATA M A 2 N » hﬁ)’:fif ls-tle‘:;:,s-
© Install received code to l ©.0.0. Q
© Set up configuration ! EXEC

O Invoke

parameters in METADATA
© Execute received | | @ Compute H

software , producing /l‘e Output H |

VRASED's Attestation produces result H:
- Attestation result H is sent back to the Verifier along with output O.
- Both “EXEC" flag and are O are covered by VRASED's attestation.
- Verifier will only accept H reflecting EXEC=1.
- Therefore, Prover can not produce pair (H, O) that will be accepted by the verifier unless:
O was indeed produced by the execution expected software (as defined in METADATA).
Cryptographic challenge ensure freshness of the execution (i.e., no replay of previous executions/results).

|
|
|
|
registers (located in : Pt e, SRR
|
|
|
f
|

protected memory) {/ VRASED’s
I
i

/
[
|
!
| Pproper location
|
|
|
: \
|
| according to the other i |
| Attestation
| |
| |
| |
|

® Verify O and H ‘_o Send O and H

APEX Verification

65

APEX Verification

Formal Verification: Why bother?

o Formal specification:

m Provides unambiguous logical expressions to state APEX sub-properties

avoiding misinterpretation of requirements.
o Did we get it right?
Once properties are formally specified, the hardware design can be proved

=
to adhere to such properties (computer aided verification via model

checking)

o Arethese properties enough?
m Many properties... we could be missing something!

m Can use theorem proving to show that the conjunction of all properties,

when applied to the low-end device machine model implies an end-to-end

notion of secure PoX.

66

Formalized
using Linear
Temporal
Logic(LTL)

Hardware
compliance
verified using
NuSMV

Check APEX
paper for details

APEX Sub-Properties Formally

Definition 7. Necessary Sub-Properties for Secure Proofs of Execution in LTL.

Ephemeral Immutability:

G: {[Wen A (Daddr € ER)]V [DMAen A (DM Agddr € ER)] - -EXEC}

Ephemeral Atomicity:

G: {(PC € ER) A~(X(PC) € ER) — PC = ERpmaz V —X(EXEC) }
G: {~(PC € ER) A (X(PC) € ER) — X(PC) = ERmin V -X(EXEC)}
G: {(PC € ER) Airq - ~EXEC}

Output Protection:

G: {[~(PC € ER) A (Wen A Dagdr € OR)]V (DM Aen A DMAgqq4, € OR)V (PC € ERA DMA,,,) - ~EXEC}

Executable/Output (ER/OR) Boundaries & Challenge Temporal Consistency:

G: {ERnn'n > Eana,:z V OR/ln.in > Oanu:l: G 2 _‘EXEC}
G: {ERmin < CRmaz V ERmazr > CRmaz — ﬁ-E){E‘C}
G: {[Wen A (Daadr € METADATA)|V [DM Aen A (DM Aggar € METADATA)] - —EXEC}

Remark: Note that Chalypermn € METADATA.

Response Protection:

G: {WEXECAX(EXEC) = X(PC = ERmin)}

G: {reset > ~EXEC}

3

(O]
(5)
(6)

)

()]
&)

(10)

1n

(12)

Are APEX Properties Enough?

® The conjunction of APEX properties are shown to imply the following LTL Statement:

Definition 5. Formal specification of APEX’s correctness.

{

PC = ERyin A [(PC € ER A~ Interrupt A—reset \—=DMA,,) U PC=ERpu| A

[(= Modify_Mem(ER) A\ — Modify_Mem(METADATA) A\ (PC € ERV — Modify_Mem(OR))) U PC = CRyy
} B {EXECAPC€CR)

e The notion of Secure PoX is formalized as a Security Game
e APEXis hardware is composed into VRASED formally verified RA architecture [Sec19]
e The composition is shown to imply Secure PoX, as long as

1- VRASED is a secure RA Architecture (RA Security Game), and

2- The above LTL statement holds.

See APEX paper for formal definitions and proof details.

68

Implementation and Evaluation

69

Implementation and Evaluation

Zigbee Module
7 e

e APEX was instantiated
along with VRASED on
OpenMSP430 Verilog
Design

e Synthesized on Basys3
FPGA

e Used to implement a fire
sensor that “cannot lie”.

Temperature/

Buzzer 2;'""3,""

.......

ey

Publicly Available at:

https://github.com/sprout-uci/APEX

https://github.com/sprout-uci/APEX

Implementation and Evaluation

« Ontop of VRASED:
- 12% more Look-Up Tables

- 2% additional registers) Y
i §1
o Relatively inexpensive in e £
comparison with related ;
security services for i 8
run-time attestation, such R i .
as Control Flow Attestation =~ o s B L S e
(CFA).
(a) % extra HW overhead: # Look-Up Tables (b) % extra HW overhead: # Registers

71

Thank you for listening.
Questions?

72

