(Mostly) Exitless VM Protection from Untrusted Hypervisor through Disaggregated Nested Virtualization

Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, Haibing Guan
Shanghai Jiao Tong University
https://ipads.se.sjtu.edu.cn
Vulnerable Commercial Hypervisors

• Xen CVE is growing
 – LoC: from 45K (v2.0) to 2,649K (v4.14.0)
 – 321 XSA

• KVM and VMware
 – KVM: 110+ CVE
 – VMware: 140+

https://xenbits.xen.org/xsa/
Analyzing 201 of Xen’s Vulnerabilities (XSA)

191

144 (75% of 191) 47

144 are in the hypervisor
E.g., Host DoS, privilege escalation, etc.
Use hypervisor to attack VM

47 are not in hypervisor
Some are in Domain-0
Some are in Qemu

10 are ignored

Existing Approaches

• **Software Method**
 – In-the-box: harden the hypervisor layer
 • Cannot eliminate the risks of exploiting hypervisor vulnerabilities
 – Out-of-the-box: nested virtualization
 • Numerous VM exits bring performance overhead

• **Hardware Method (Intel SGX)**
 – Only available to run in user mode
 – Limited EPC memory incurs significant performance overhead
CloudVisor (SOSP’ 11)

- Observation: protection logics for VMs are mostly fixed
- **Idea: Separate management from protection**
 - Deprivilege the commercial hypervisor to non-root mode
- **Result: Minimized TCB**
 - VMM and CloudVisor separately designed and evolved
The Cost of Protection: Excessive VM Exits

<table>
<thead>
<tr>
<th>Operation</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercall</td>
<td>>= 2X</td>
</tr>
<tr>
<td>EPT Violation</td>
<td>2 – 6X</td>
</tr>
<tr>
<td>DMA Operation</td>
<td>>= 2X</td>
</tr>
</tbody>
</table>
CloudVisor-D: No Compromise for Security & Performance

• A secure and efficient design to shield VM in untrusted clouds
 – Do not trust the commercial hypervisor
 – Introduce negligible overheads compared to the Xen hypervisor

• Disaggregated nested virtualization
 – Deprivilege the hypervisor through nested virtualization
 – Disaggregate the nested hypervisor
 • Offload VM operations and their protection work to the non-privileged mode
Architecture of CloudVisor-D

- A tiny nested hypervisor in root mode
- A Guardian-VM for each VM in non-root mode
- Most VM ops offloaded to Guardian-VM
 - Hypercalls
 - Memory virtualization
 - I/O operations
Threat Model

• **TCB**: RootVisor and each Guardian-VM
• **Distrusing**: SubVisor and all guest VMs
• **Out of scope**
 – physical attack
 – Side-channel attacks
 – DoS attacks
Key Secrets: VMFUNC

- Switch EPT efficiently without VM Exits
- Faster than VM exit (134 vs. 301 cycles on Intel Skylake)
CloudVisor-D as Reference Monitor

• CloudVisor-D satisfies two properties
 – **Tamperproof**: protect RootVisor and Guardian-VM from compromising
 – **Complete Mediation**: interpose on all communication paths between SubVisor and VMs
Complete Mediation

- Two paths
 - RootVisor Path: VM->RootVisor->SubVisor
 - Guardian-VM Path: VM->Guardian-VM->SubVisor
Faking VMFUNC Attacks

• **Type-1: Bypass Guardian-VM**
 – Access arbitrary memory region in VM or SubVisor

• **Type-2: Attack Guardian-VM**
Dynamic EPTP List Manipulation

• An invalid EPTP entry triggers a VM exit

VM

Guardian-VM

Error

SubVisor

RootVisor

<table>
<thead>
<tr>
<th>EPTP List</th>
<th>EPTP List</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Guardian-EPT</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>511</td>
<td>0</td>
</tr>
</tbody>
</table>

Guardian-EPT

SubVisor-EPT

VMFUNC(1)

VMFUNC(2)

VMFUNC(3)
Other Techniques

• Isolated Guardian-VM Page Table
• Jump table
• Memory virtualization
 – Shadow EPT and virtualization exception
• I/O protection
 – Compatible with PV I/O model
 – Encryption and integrity guarantee
Microbenchmark

<table>
<thead>
<tr>
<th>Operation</th>
<th>Xen</th>
<th>CloudVisor</th>
<th>CloudVisor-D</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercall</td>
<td>1758</td>
<td>4681</td>
<td>1810</td>
<td>61.3%</td>
</tr>
<tr>
<td>EPT violation handling</td>
<td>5374</td>
<td>66301</td>
<td>9929</td>
<td>85.0%</td>
</tr>
<tr>
<td>Virtual IPI</td>
<td>11214</td>
<td>21344</td>
<td>13331</td>
<td>37.5%</td>
</tr>
</tbody>
</table>
Applications

#VM exits: 1,691,758 -> 63,909
dbench: I/O Performance

The diagram compares the throughput (MB/s) of Xen and CloudVisor-D under different numbers of clients. The x-axis represents the number of clients ranging from 10 to 60, while the y-axis shows the throughput in MB/s. The bars indicate the performance percentages for each configuration.
Conclusion

• Today’s cloud tenants are facing severe security threats

• A secure and efficient system to shield VM in untrusted clouds
 – Disaggregated nested virtualization
 – Same level of security guarantee as nested virtualization
 – Introduce negligible overhead compared with the vanilla Xen

Thanks!

Q&A: yzmizeyu@sjtu.edu.cn