An Off-Chip Attack on Hardware Enclaves via the Memory Bus

Dayeol Lee¹, Dongha Jung³, Ian T. Fang¹, Chia-Che Tsai^{1,2}, Raluca Ada Popa¹

- ¹ UC Berkeley
- ² Texas A&M University
- ³ SK Hynix Inc.

Trusted Execution Environments (TEEs)

Memory Encryption of Intel SGX

Access Pattern Leakage via Side Channel

Spell Checker: Hunspell [Xu et al., 17] for each word in input text: **Input Text** dictionary.search(word) Dictionary (Hash Table): table[0] cask book table[1] rich cry

Access Pattern Leakage via Side Channel

Hunspell [Xu et al., 17]

Access Pattern:

Side-Channel Attacks on SGX Enclaves

- Cache Side-Channel Attacks
 - Brasser'17, Schwarz'17, Moghimi'17, VanBulck'18
- Page Table-Based Attacks
 - Controlled-Channel'15, VanBulck'17

Side-Channel Attacks on SGX Enclaves

- Cache Side-Channel Attacks
 - Brasser'17, Schwarz'17, Moghimi'17,
 VanBulck'18
- Page Table-Based Attacks
 - Controlled-Channel'15, VanBulck'17
- Mitigations
 - Varys '18, Chen et al.'18, Gruss et al.
 '17, T-SGX'17, DéJà Vu '17
- TEEs from Academia
 - Keystone'20, Sanctum'16

MEMBUSTER: Demonstrating "Off-Chip Attack"

MEMBUSTER: Demonstrating "Off-Chip Attack"

- Cache Side-Channel Attacks
 - Brasser'17, Schwarz'17, Moghimi'17,
 VanBulck'18
- Page Table-Based Attacks
 - Controlled-Channel'15, VanBulck'17
- Mitigations
 - Varys '18, Chen et al.'18, Gruss et al.'17, T-SGX'17, DéJà Vu '17
- TEEs from Academia
 - Keystone'20, Sanctum'16

None of these can mitigate

MEMBUSTER: Demonstrating "Off-Chip Attack"

- Hard to detect or mitigate on chip
 - No interference with SW
 - Resource partitioning does not work
- Oblivious memory access
 - Performance impact
- Address bus encryption
 - Infeasible in commodity DRAM

 Address Translation and Synchronization

- Address Translation and Synchronization
- Lossy Channel due to Cache Hierarchy

- Address Translation and Synchronization
- Lossy Channel due to Cache Hierarchy
- Unusual Behavior in SGX

- Address Translation and Synchronization
- Lossy Channel due to Cache Hierarchy
- Unusual Behavior in SGX

Maximizing Side-Channel Information

- Goal:
 - Increase cache misses
 - Avoid detectable interference
- Cross-core cache priming
 - Cache eviction in PRIME+PROBE Attack
- Problems
 - Insufficient memory access bandwidth
 - Large last-level cache
 - Hundreds of milliseconds to evict all

Maximizing Side-Channel Information

Observation 1

The address mapping is untrusted

Maximizing Side-Channel Information

- Observation 1
 - The address mapping is untrusted
- Observation 2

The attacker only needs to observe "critical" memory accesses

Idea: Squeeze the Cache!

Cache Squeezing in a Nutshell

No interrupt nor fault

Small slowdown

Evaluation

Hardware

- Intel i5-8400 (Coffee Lake)
- LLC: 9MB, 6-slice, 12-way set associative, 2048 sets
- DRAM: Non-ECC DDR4-2400 UDIMM 8GB
- Interposer/signal analyzer from SK Hynix

Software

- Two attack examples: Hunspell and Memcached
- Graphene-SGX with unmodified victim application
- Modified SGX driver for cache squeezing

Hunspell Attack Results

- Randomly-generated words (Random) and Wizard of Oz (Wizard)
- Squeezing+Priming recovers most of the data

No interference: hard to detect with on-chip techniques

Conclusion

- Membuster: an off-chip attack via the memory bus
 - Performed on commodity CPU and DRAM
 - Non-interfering with victim application
 - Previous on-chip solutions or other TEEs do not defeat the attack
- Costly mitigation techniques
 - Oblivious memory access
 - Alternative TEE architecture (e.g., memory bus encryption)

Thank You!

Thank You!

Dayeol Lee (<u>dayeol@berkeley.edu</u>)

Chia-Che Tsai (<u>chiache@tamu.edu</u>)

Raluca Ada Popa (<u>raluca.popa@berkeley.edu</u>)