DECAF: Automatic, Adaptive De-bloating and Hardening of COTS Firmware

Supported by the Office of Naval Research

Jake Christensen
Rob Taglang
Radu Sion
Private Machines Inc

Ionut Mugurel Anghel
Mihai Chiroiu
Univ. Politehnica Bucharest
Introduction

- Despite its privileged position, firmware is almost entirely opaque to the end-user
- The delivered blob is the result of a long chain (e.g. EDK II, American Megatrends, Dell)
- Code is of questionable quality
- Lots of code reuse leads to easily replicable attacks
 - Kovah & Kallenberg 2015
- Many (up to 69%) modules are unnecessary
SerialNumStrLen = StrLen(SerialNumberPtr);
if (SerialNumStrLen > SMBIOS_STRING_MAX_LENGTH)
 { return EFI_UNSUPPORTED; }
....
SKUNumStrLen = StrLen(SKUNumberPtr);
if (SerialNumStrLen > SMBIOS_STRING_MAX_LENGTH)
 { return EFI_UNSUPPORTED; }
....
FamilyStrLen = StrLen(FamilyPtr);
if (SerialNumStrLen > SMBIOS_STRING_MAX_LENGTH)
 { return EFI_UNSUPPORTED; }

Analysis courtesy Nikolaj Schlej (https://www.viva64.com/en/b/0326/)
Introducing DECAFE

- DECAFE is an extensible platform for debloating commercial UEFI firmware
- Automatically prune up to 70% of an image!
- No source code needed
- Customizable functionality
- DECAFEd firmware running in production data centers since mid-2017
Benefits of pruning

- Remove potentially unknown vulnerabilities
- Removed code is NOT unused/unreachable
- Pruned firmware boots faster, and contains less potentially vulnerable code
- Features can be removed on demand, while retaining other functionality

“Remove all other stuff you don’t want or need, if the firmware can still boot your OS - it’s fine to have that components removed”
Background: UEFI Firmware

- Splits platform initialization into four phases
 - Security (SEC)
 - Pre-EFI Initialization (PEI)
 - Driver Execution Environment (DXE)
 - Boot Device Selection (BDS)
- Basic building unit is a module (generally containing a PE32 executable)
- Modules communicate via EFI protocols
DECAF Pruning Overview

- Luigi workflow engine used for scheduling tasks (https://github.com/spotify/luigi)
- Python layer based on UEFITool used for modifying images (https://github.com/LongSoft/UEFITool)
- Python tools used to manage IPMI operations and collect info
- Docker images loaded onto booted images to validate the flashed firmware
- Custom dependency discovery modules written in C
Pruning Tasks and Phases

- Process can be parallelized on multiple boards
- Pruning happens in two phases: merge and hill climbing
 - Modules tried individually
 - Successfully removed groups are merged
 - Modules are then randomly selected and added to candidate solution
Dependency Discovery

- UEFI modules communicate with each other (using EFI protocols), creating dependencies
- Dependencies vary at runtime
- Module removal order becomes important!
- Solution: hijack the EFI protocol API and log active modules
Validation

DECAF employs several utilities to validate the pruned images:

- dmidecode
- lspci
- /proc/acpi
- CHIPSEC

CHIPSEC scans for known firmware vulnerabilities
- DECAF did not fix any CHIPSEC vulnerabilities
Results I

- Boot time reduction up to 24%
 - 55 to 44 seconds for SuperMicro
 - 34 to 27 seconds for Tyan
- DECAF can also selectively remove features
 - USB, network, VGA, etc
- Many common attacks on USB, network stack
 - BadUSB, Karsten Nohl and Jakob Lell, BlackHat 2014
- Example: 6/244 modules removed to disable USB on SuperMicro board
Results II

- DECAF can also selectively remove features
 - USB, network, VGA, etc
- Many common attacks on USB, network stack
 - BadUSB, Karsten Nohl and Jakob Lell, BlackHat 2014
- Example: 6/244 modules removed to disable USB on SuperMicro board
<table>
<thead>
<tr>
<th>Motherboard</th>
<th>Original modules</th>
<th>Remaining modules</th>
<th>Reduction</th>
<th>Original Gadgets</th>
<th>Remaining Gadgets</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM A1SAi-2550F (V519)</td>
<td>244</td>
<td>90</td>
<td>63.11%</td>
<td>37846</td>
<td>14240</td>
<td>62.37%</td>
</tr>
<tr>
<td>Tyan 5533V101</td>
<td>194</td>
<td>60</td>
<td>69.07%</td>
<td>38776</td>
<td>20317</td>
<td>47.60%</td>
</tr>
<tr>
<td>HP DL380 Gen10</td>
<td>643</td>
<td>323</td>
<td>49.77%</td>
<td>183677</td>
<td>105116</td>
<td>42.77%</td>
</tr>
<tr>
<td>SM A1SAi-2550F (V827)</td>
<td>241</td>
<td>124</td>
<td>48.55%</td>
<td>37735</td>
<td>23055</td>
<td>38.90%</td>
</tr>
<tr>
<td>SM A2SDi-12C-HLN4F</td>
<td>313</td>
<td>194</td>
<td>38.02%</td>
<td>43593</td>
<td>31003</td>
<td>28.88%</td>
</tr>
<tr>
<td>SM A2SDi-H-TP4F</td>
<td>313</td>
<td>206</td>
<td>34.19%</td>
<td>44121</td>
<td>31024</td>
<td>29.68%</td>
</tr>
<tr>
<td>SM X10SDV-8C-TLN4F</td>
<td>316</td>
<td>286</td>
<td>9.49%</td>
<td>51534</td>
<td>45724</td>
<td>11.27%</td>
</tr>
</tbody>
</table>

SM is short for SuperMicro
Thank you for your attention!

For further information and questions:

Ionut Mugurel Anghel: ionut.mugurel.anghel@gmail.com

Jake Christensen: jake@privatemachines.com