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Abstract
Despite an extensive anti-phishing ecosystem, phishing

attacks continue to capitalize on gaps in detection to reach
a signi�cant volume of daily victims. In this paper, we isolate
and identify these detection gaps by measuring the end-to-
end life cycle of large-scale phishing attacks. We develop a
unique framework—Golden Hour—that allows us to passively
measure victim tra�c to phishing pages while proactively
protecting tens of thousands of accounts in the process. Over a
one year period, our network monitor recorded 4.8 million vic-
tims who visited phishing pages, excluding crawler tra�c. We
use these events and related data sources to dissect phishing
campaigns: from the time they �rst come online, to email dis-
tribution, to visitor tra�c, to ecosystem detection, and �nally
to account compromise. We �nd the average campaign from
start to the last victim takes just 21 hours. At least 7.42% of visi-
tors supply their credentials and ultimately experience a com-
promise and subsequent fraudulent transaction. Furthermore,
a small collection of highly successful campaigns are responsi-
ble for 89.13% of victims. Based on our �ndings, we outline po-
tential opportunities to respond to these sophisticated attacks.

1 Introduction
Phishing attacks target millions of Internet users each year,
resulting in sensitive data exposures, �nancial fraud, and
identity theft [43, 62]. These attacks also harm the reputation
of targeted brands as well as incur collateral damage to
the broader ecosystem and user trust. Modern phishing
attacks fall into two general categories: spearphishing,
where attackers target speci�c high-value individuals or
groups [30, 32], and large scale attacks, where attackers
target a broad range of potential victims to pro�t through
volume [57]. In this work, we focus on the latter.

Prior research has shown that large scale phishing lures
have a low click-through rate (5-8%) [58] and that the likeli-
hoodthat targetedusers willhandovercredentials to attackers
is similarly low (9%) [29]. Yet, the volume of observed phishing
attacks shows no signs of subsiding [3,4]. Furthermore, social
engineering techniques such as phishing remain one of the

primary stepping stones to even more harmful scams [21].
In an adversarial race—fueled in part by the underground

economy [59]—phishers collectively seek to stay one step
ahead of the security community through a myriad of evasion
techniques [52]. Recent work has shown how cloaking and
related strategies signi�cantly delay browser-based phishing
detection and warnings—a defense layer adopted by every
major browser [51]. However, the implications of such delays
on the success of each attack are not yet well-understood, nor
is the precise window of opportunity available to attackers
between the launch and detection of their phishing websites.

In this paper, we present a longitudinal, end-to-end
analysis of the progression of modern phishing attacks, from
the time of deployment to the time a victim’s account is
compromised. Our study relies on a key observation: despite
cloaking and related evasive e�orts, a substantial proportion
of phishing pages make requests for web resources (e.g.,
images and scripts) hosted by third-parties, including the
websites that attackers impersonate. Based on this insight, we
collaborate with one of the most-targeted �nancial services
brands in the current ecosystem [64] to develop and deploy
a re-usable framework to meaningfully analyze victim tra�c
to live phishing pages.

We start by analyzing 404,628 distinct phishing URLs in
our tra�c dataset to gain an understanding of the aggregate
volume and timing of key events within the life cycle of
phishing attacks. Next, we correlate the tra�c with the orig-
inal phishing email lures to map the distribution phase of the
attacks. Finally, we investigate the timing and success rates
of attackers’ monetization e�orts based on the subsequent
account compromise and fraudulent transactions—of the
same victims—at a major �nancial services provider. We show
that the data sampled by our approach provides visibility into
39.1% of all known phishing hostnames which targeted the
same brand during our observation period.

We �nd that the average phishing attack spans 21 hours
between the �rst and last victim visit, and that the detection
of each attack by anti-phishing entities occurs on average
nine hours after the �rst victim visit. Once detected, a further
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seven hours elapse prior to peak mitigation by browser-based
warnings. This gap constitutes the “golden hours” during
which attackers achieve a signi�cant return-on-investment
from their attacks that might otherwise be mitigated.
Alarmingly, 37.73% of all victim tra�c within our dataset
took place after attack detection, and at least 7.42% of all
targeted victims su�er subsequent fraud.

Our approach allows us to identify characteristics of partic-
ularly successful phishing attacks. We found that the top 10%
largest attacks in our dataset accounted for 89.13% of targeted
victims and that these attacks proved capable of e�ectively de-
feating the ecosystem’s mitigations in the long term. Phishing
campaigns would remain online for as long as nine months
while deceiving tens of thousands of victims in the process—
using sophisticated, but o�-the-shelf phishing kits on a single
compromised domain name. As a result, we propose a prac-
tical methodology for organizations targeted by phishing to
proactively mitigate similar attacks, and we deploy our ap-
proach to secure the a�ected victims’ accounts in our study.

Our work motivates the expansion of collaborative,
defense-in-depth anti-phishing approaches as a means to
cope with phishers’ evasion techniques and increasing
sophistication. It underscores the importance of not only
making improvements to existing ecosystem defenses such
as browser-based detection, but also more widely adapting
proactive mitigations like those that we propose. The
contributions of our work are as follows:

• A longitudinal measurement study of the end-to-end
life cycle of real phishing attacks representative of the
modern anti-phishing ecosystem.

• A framework for the proactive detection and mitigation
of phishing websites that embed external resources.

• Security recommendations to address the limitations
within the current anti-phishing ecosystem based on
our analysis of highly successful phishing attacks.

2 Background
Phishing is a type of attack through which malicious actors
(i.e., phishers) leverage social engineering to trick victims
into unknowingly disclosing sensitive information such as
account credentials, personal data, or �nancial details [15].
Typically, victims are lured to a fraudulent website that
impersonates a well-known brand solely for the purpose of
harvesting such information. Attackers then use the stolen in-
formation for their own gain, either directly or through mone-
tization services prevalent in underground marketplaces [59].

In recent years, criminals have shown no signs of slowing
down their phishing attacks; the increased di�culty of drive-
by downloads and exploits has given a resurgence to large
attacks grounded in social engineering [69]. As such,phishing
continues to evolve in sophistication to adapt to best practices
within the broader Internet [4, 52]. When used by criminals,
credentials obtained through phishing have proved to work

the most reliably due to the broad range of other identifying
information obtainable through phishing [16,62]. Subsequent
account compromise occurs at scale and accounts for sub-
stantial monetary damage to both users and businesses [21].

2.1 PhishingWebsites and Phishing Kits
Large scalephishing attacks consistof threemain phases. First,
an attacker launches a deceptive website that spoofs the look-
and-feel of a legitimate website (e.g., of a prominent brand).
Thereafter, the attacker sends messages to potential victims
(e.g., via spam email) with a link to the phishing website.
Social engineering techniques often play an important role
in these messages; they may lure users by conveying a sense
of urgency and a need for action, such as correcting a billing
error or securing a (�ctitiously) compromised account [14]. If
the lure successfully deceives the victim [68], the victim sub-
mits the sensitive information requested by the attacker. The
phishing website may also record metadata about the user,
such as the user’s IP address or language from the HTTP re-
quest. Finally, the attacker downloads the stolen information
from the phishing page or associated drop box [18].

Beyond email, attackers also rely on social media
lures [1, 10], spoofed or exploited mobile or cloud applica-
tions [67], search engine listings, text messages, and phone
calls [34, 65] in order to reach victims. However, email-based
attacks remain dominant within the ecosystem [4]; such
attacks enjoy greater scalability thanks in part to the help of
underground services that simplify bulk messaging [61, 63].
Also, advanced features in phishing kits help phishers deceive
their victims and bypass anti-phishing mitigations [51];
some can even intercept (and thus defeat) multi-factor
authentication like SMS in real time [45, 66].

Furthermore, the deployment of phishing websites—even
those which are technically sophisticated and laden with
evasion techniques—has a low barrier to entry, likewise
thanks to services in the underground economy. Phishing
kits are readily available o�-the-shelf packages that attackers
can use to deploy phishing websites without the need for any
technical knowledge [11]. Such kits are often bundled with
exploits which can be used to install the kit on a compromised
web server (thus minimizing any cost to the attacker).

2.2 Detecting andMitigating Phishing
The risk of phishing attacks has given rise to an extensive
anti-abuse ecosystem [52]. Multiple layers of defense include
email spam classi�cation �lters [17, 35], crimeware and
credential drop analytics [33], URL and content classi�cation
and blacklisting [39, 73, 75, 76], malware and vulnerability
scanning by web hosts [5, 9], DNS, domain, and certi�cate
intelligence [31,50], user training [15], content take-down [2],
and direct abuse reports [25].
Browser-based phishing detection [57]—like Google Safe

Browsing or Microsoft Windows Defender—serve a partic-
ularly important role due to its scale and always-on nature.
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All major web browsers have phishing detection built-in by
default for both desktop and mobile platforms [51]. When a
user visits a URL, their browser will make a call to a detection
backend (e.g., a URL blacklist or a heuristic classi�er) and
show a prominent warning if the URL is deemed harmful.
This represents a considerable improvement over early
decentralized mitigations such as add-on toolbars [74].

2.3 Evasion Techniques

The longer that phishing websites remain online and
are accessible to victims, the more attackers stand to pro�t.
Therefore, modern phishing websites seek to maximize their
own longevity through a variety of strategies to remain
stealthy [51]. We provide an overview of key strategies below,
and o�er further insight, based on our �ndings, in Section 7.1.

Cloaking: In an e�ort to prevent security infrastructure
from verifying malicious content, phishing websites with
cloaking display benign content or an inconspicuous error
message whenever they detect that a web request originates
from an anti-phishing crawler [34]. Cloaking is typically
implemented through client- or server-side code which
applies �lters using attributes such as IP address, geolocation,
user agent, session cookies, or browser �ngerprints. The
presence of cloaking is the norm, rather than the exception,
within modern phishing websites [52].

Redirection Links: URLs are the most direct indicators
of phishing attacks and are therefore one of the primary data
points used by anti-phishing systems. To evade detection,
some attackers initially distribute URLs that might appear
benign but redirect to di�erent landing URLs which may
contain deceptive keywords [10]. Such redirection not only
hampers the use of URL heuristics as a detection strategy [75],
but also makes it di�cult to correlate URLs that are part of
the same redirection chain in the wild [68]. Redirection links
themselves may leverage cloaking or frequently change to
evade detection, even when pointing to the same phishing
landing page.

2.4 Measuring the Impact of Phishing
Meaningfully assessing long-term trends in the volume of
phishing attacks has historically proved to be challenging due
to a lack of transparency and consistency in the methodology
applied [46]. Data sources that could be e�ectively used for
such measurements are spread throughout the ecosystem
and typically held closely by their owners. Other data, such
as phishing URLs, is more readily available and suitable for
classi�cation or �ngerprinting purposes, but not directly
coupled with attack volume or impact [12].

Since 2004, the Anti-Phishing Working Group (APWG)—an
industry-wide consortium of key anti-phishing entities—has
regularly published summary reports of monthly phishing
volume and ecosystem attack trends based on diverse partner
data [4]. Although these reports have provided phishing
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Figure 1: High-level stages of a typical phishing attack.

volume �gures for over a decade, changes in methodology
and data sources over time prevent longitudinal analysis
and only enable conclusions such as “phishing continues
on a large scale”. Research with deeper insight into the
progression of phishing attacks has thus far been limited to
smaller datasets or isolated scope [29, 48].

Obtaining data relating to the damage caused by phishing
attacks (i.e., as a result of account compromise or credential
theft) at speci�c organizations is even more challenging due
to its sensitive nature in terms of both individual victims’ and
businesses’ con�dentiality. Additionally, victims themselves
have shown a tendency to under-report cybercrime to
authorities [20]. Aggregate summaries of such damage are
thus often extrapolations based on certain assumptions [43].

3 Methodology

In this section, we discuss our approach to measuring the
end-to-end life cycle of phishing websites, from the time of
con�guration to the time the attack goes o�ine.

3.1 Phishing Attack Stages

We show an overview of the stages of a typical phishing attack
in Figure 1. Attackers �rst obtain infrastructure (A) and con-
�gure a phishing website on this infrastructure (B),often by in-
stalling a phishing kit. Once the website is operational, attack-
ers begin distributing it to theirvictims (C) andvictims startac-
cessing it (D), as previously discussed in Section 2.1. After this
point, the remaining stages are not necessarily consecutive.

Once detected by anti-phishing infrastructure, the attack
will be mitigated by the ecosystem’s defenses such as
browser-based phishing warnings (E). In an optimal scenario,
this mitigation would occur before time D and would prevent
all future victim tra�c. If these conditions are not satis�ed,
victim visits may continue for an extended period, and
attackers will proceed to monetize the data stolen by the
phishing website through various means (F ) [63], which could
entail testing stolen credentials against the corresponding
platforms, or submitting fraudulent transactions using
stolen �nancials [19, 71]. The original phishing website
will eventually go o�ine, either as a result of take-down
e�orts [2] or deliberately by attackers (G). Note that malicious
infrastructure con�guration (A) is outside of the scope of our
work, as we focus purely on phishing attacks themselves [5,6].
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Figure 2: Golden Hour framework design.

3.2 Observations

As a preliminary step in our study, in June 2018, we manually
inspected a sample of live phishing websites shortly after their
URLs were submitted to PhishTank [55], OpenPhish [53],
or the APWG eCrime Exchange [4] (large clearinghouses
of phishing URLs). We made two key observations: �rst,
that phishing websites routinely embed resources (e.g.,
images, fonts, or JavaScript) hosted on third-party domains,
including domains which belong to the organizations being
impersonated; and second, that some phishing websites
redirect the victim back to the organization’s legitimate
website after the victim submits their information.

It thus follows that third parties—including the organiza-
tions being targeted and impersonated by phishers—could,
with the right methodology, directly track visitor activity
on certain phishing websites by inspecting HTTP/HTTPS
requests for the aforementioned web resources within their
own systems, and by identifying referrals [22] from suspi-
cious sources. Such tracking could capture not only victim
interaction with the phishing websites, but also visits from
attackers themselves as they con�gure and test their attacks.

Moreover, the data could be used to proactively identify
phishing URLs and propagate them through the anti-phishing
ecosystem. Correlating the data with victim information (e.g.,
if a visitor’s request for a resource on a phishing website has
the same session identi�er as a prior visit to the organiza-
tion’s legitimate website [7]) could help organizations better
mitigate attacks by securing any accounts tied to the victims,
while simultaneously measuring the e�ective damage likely
caused by phishing. Lastly, correlating URLs in phishing
lures (e.g., email messages) with victim tra�c to phishing
websites can paint a clear picture of the distribution phase
of phishing attacks.

Recent work used a similar approach to identify character-
istics of successful email lures and discover the corresponding
URLs [68]. Our analysis of web event data instead focuses
on mapping the overall progression of phishing attacks:
consequently, we correlate the timing of key events within
phishing attacks to a deeper extent, and on a larger scale,
than previous studies [29, 48]. We also consider the success
of phishing attacks, and we directly leverage the web event
data as an anti-phishing mitigation.

3.3 Data Analysis Framework

The aforementioned analysis necessitates access to data
only available to speci�c organizations (i.e., those commonly
targeted by phishers or engaged in anti-phishing). We
collaborated with one such organization—a major �nancial
services provider—to develop and deploy a generic frame-
work for processing the relevant data. The Golden Hour
framework, shown in Figure 2, extracts web tracking events
associated with phishing websites for analytical purposes
or as a real-time proactive mitigation.

Our framework is brand-agnostic and could thus realisti-
cally be adapted for use by a broad range of organizations that
have access to the appropriate data. We start by providing
an abstract overview of the framework and then discuss our
deployment in Section 4.1. In Section 5, we show that our
framework enables insight into phishing attacks during their
early golden hours, and that it can e�ectively disrupt attacks
during or prior to this period.

In theGoldenHour framework,we �rst ingest web events of
interest ( 1 ), which can be obtained from raw web tra�c logs
(i.e., requests for images or style elements) or pre-processed
data from web trackers or JavaScript web application code.
We annotate each ingested event with a timestamp and
extract further attributes, such as the IP address, user agent,
session identi�ers (i.e., from prior requests), referring URL,
and the main page URL which was visited. We then take
the latter two URL attributes and apply whitelist �ltering
( 2 ) to eliminate benign events which would normally be
expected to be seen in this context, such as requests to the
organization’s legitimate website or requests with referrers
on approved partner websites. Thereafter, we correlate (by
substring matching) the URLs of the remaining events with
a recent list of known phishing URLs from additional data
sources ( 3 ); this correlation enables the discovery of new
phishing URLs which might only share a similar hostname or
path with a previously-reported URL, but di�er otherwise. It
is also possible to apply phishing URL classi�cation heuristics
to identify previously-unknown URLs of interest [23].

The event correlation can take place in an online manner,
or be deferred, in which case events are archived for later
analysis ( 4 ). In both cases, to allow for scalability, a chosen
observation window de�nes a range of time (i.e., before and
after a URL is reported) within which correlations for a
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Date Range No. of Samples
GoldenHour web events 10/01/18 - 09/30/19 22,553,707
(distinct phishing URLs) 404,628
E-mail reports 09/01/19 - 09/30/19 68,502
APWGphishing URLs 10/01/18 - 09/30/19 52,116
Organization’s phishing URLs 10/01/18 - 09/30/19 37,438
Fraudulent account transactions 10/01/18 - 09/30/19 Not disclosed
Compromised user accounts

Table 1: Overview of the datasets analyzed.

given phishing URL are made. Successive reports of the same
URL naturally extend the observation window; otherwise,
correlations against unnecessary data can be avoided.

Events that are identi�ed as phishing are additionally
marked for immediate mitigation. Over time, we further
re�ne the archived events ( 5 ) by identifying false positive
correlations, noise from automated (i.e., web crawler) tra�c,
and phishing URLs detected at a later point in time, with the
use of statistical analysis and external data sources ( 6 ).

To bene�t from our framework’s mitigation capabilities,
it should ideally be deployed online, on a stream of live (or
recent) data during the ingestion stage ( 1 ). However, the
framework can also process archived (i.e., historical) event
data alone. In the long term, as the anti-phishing ecosystem
builds ground truth (i.e., by having access to a vetted list
of known phishing URLs), both approaches will enable the
same level of analytical insight. Thus, the framework can
accommodate di�erent data ingestion strategies to support
the infrastructure of the organization deploying it.

4 Dataset Overview
We deployed the Golden Hour framework to collect and
analyze one year of phishing web tra�c data between October
1, 2018 and September 30, 2019 (inclusive) at the same organi-
zation mentioned in the previous section—a major �nancial
services provider and one of the most-targeted brands within
the current ecosystem [13, 44]. We provide an overview of
the scope of all of our datasets in Table 1. Note that this data
was collected ethically and in compliance with user privacy
laws within the originally-intended context (see Section 8.4).

4.1 Data Collection
We operated the Golden Hour framework in an online manner
from July 1, 2019 through September 30, 2019 and additionally
processed archived data from the preceding nine months. To
e�ciently query a data warehouse, we limited our observation
window for web event data (as discussed in Section 3.3) to one
week before and one week after the corresponding hostname
appeared in a phishing feed. We found that this approach did
not lead to the omission of any relevant events, as phishing
URLs which remained live for longer periods would reappear
in the feeds at a later date, and would thus also be extracted
by our framework for analysis.

The resulting dataset initially contained a total of
22,553,707 web events resulting from tra�c to phishing

websites from victims, attackers, and security crawlers alike.
Using the tra�c data, we are able to gain detailed insight into
stages B, D, E, and G within the life cycle of phishing attacks.
For the framework’s correlation ( 3 ) and re�nement ( 5 )
steps, we programmatically queried additional data sources:
phishing URLs for the same brand in the APWG eCrime
Exchange feed, the organization’s proprietary phishing URL
feed, and the organization’s proprietary automated (i.e.,
crawler) tra�c detection system ( 6 ).

During our deployment, we pruned 3,194,031 events
by identifying tra�c to legitimate websites (based on a
whitelist and manual review) and false-positive URLs that
were under-represented in the phishing feeds or �agged as
such by the organization. Thus, our �nal dataset contained
19,359,676 total events. These events corresponded to 404,628
distinct phishing URLs—more than either phishing feed
we considered, as our hostname correlation enables the
identi�cation of unreported variants of URLs similar to those
which appeared in feeds. However, additional types of data
are required to obtain timings of attack distribution (stage C)
and monetization (stage F ) and thus complete our end-to-end
analysis, as these are not captured by the tra�c dataset alone.
Phishing URL Distribution: To measure URL distri-

bution to victims, we extracted metadata from phishing
emails that users forwarded (i.e., as spam reports) to the
organization. The timestamps within the original email lures
allow us to calculate when phishers originally distributed
their attacks. To correlate these timestamps with web events
in our tra�c dataset, we extracted URLs from each email
and followed redirects (if any) to obtain the URL of the �nal
phishing landing page. In cases when a redirect was followed,
or if the phishing URL was no longer accessible, we would
additionally query the organization’s internal anti-phishing
system to obtain any other landing page URLs known to be
previously associated with the URL in the email. To complete
the correlation, we search for events within the tra�c dataset
with the same hostname and a common path.

We were able to correlate 21,244 email reports with
phishing URLs in our event dataset1. We found that 84.44%
of these emails contained a timestamp detailed enough (i.e.,
date, time, and timezone) for our analysis. Determining
�nal landing page URLs from links within the email proved
integral, as only 3.99% of emails contained the same URL as
the �nal phishing page (i.e., others made use of redirection).

Account Compromise and Monetization: To under-
stand one way in which criminals exploit credentials from
phishing victims, we analyzed session identi�ers program-
matically extracted from events in the tra�c dataset (i.e.,
victim visits to a phishing website which had cookies from a
prior interaction with the legitimate organization’s website).
The organization then mapped these identi�ers to user

1The uncorrelated emails either were outside of the visibility of our
approach, or had redirection chains which could not be reconstructed. We
discuss the relatively small size of our email dataset in Section 8.3.
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Figure 3: Visibility of phishing websites targeting the
organization in our dataset.

accounts and provided timestamps of fraudulent transactions
associated with these accounts, and timestamps of when cor-
responding credentials appeared in a public dump. We could
then correlate these timestamps with the victims’ original
interaction with the phishing page per the tra�c dataset.

Due to the sensitive nature of user information, we present
our �ndings related to this data in aggregate form only (in
Section 5). Note that no Personally Identi�able Information
(PII) was given to us for the purposes of this analysis.

4.2 Level of Visibility
An immediate question thatarises aboutouranalysis concerns
the levelofvisibilitywhichcan be providedby theGoldenHour
framework. We de�ne visibility as the proportion of phishing
websites that target the organization in our study that can be
analyzed through our approach. While we cannot provide a
de�nite visibility measurement, as this would require knowl-
edge of all phishing campaigns that target the organization,
we estimate the visibility of our dataset by dividing the
number of distinct hostnames with at least one associated
web event by the total number of phishing hostnames, for the
same brand, known to us from other data sources during the
data collection period (i.e., in the APWG or organization’s
phishing URL feed). We also calculate the same ratio for full
URLs. We note that it is easier for phishers to create multiple
paths on a single domain compared to multiple subdomains;
thus, the hostname ratio better represents unique attacks.

We found that our approach had visibility into an average
of 39.1% of all hostnames and 40.9% of all URLs which
were found in the aforementioned feeds and targeted
the organization during our data collection period. We
present the visibility ratios by month in Figure 3. Given the
evasiveness of modern phishing attacks, we suspect that the
list of phishing URLs known to us is an underestimate of
phishing URLs in the wild [52,62]; however, consequently, the
same would apply to the URLs for which we have event data.

The degree of visibility for both hostnames and URLs
remained fairly consistent throughout our data collection
period, with the exception of July 2019. During this month,

we observed a spike to 50.2% and 57.1% visibility, respectively,
which coincided with the launch of numerous sophisticated,
large-scale attacks that were detectable by our approach. We
discuss these attacks in more detail in Section 7.

Per the APWG eCrime Exchange, the brand in our dataset
accounted for 10.6% of all phishing hostnames (with known
brands) during the same one-year period. This allows the
extrapolation of the potential visibility of our approach into
the population of phishing websites.

4.3 Event Distribution
We collected web events of two broad types: visits that oc-
curred directly on phishing websites (Page URLs) and referral
tra�c from a phishing website back to the organization’s
legitimate website (Referring URLs). We show the monthly
distribution of these events in our dataset in Figure 4. We
observe that phishing attacks are not uniformly distributed;
some months see substantially more tra�c than others. His-
torically, phishing attacks have been associated with a certain
seasonality, particularly near holidays. The spike in the �nal
three months of our dataset is consistent with the Q3 2019
APWG report, which found this period to have the largest
volume of phishing URLs in three years [4]. However, we
expose a limitation of counting URLs alone as a measurement
of overall phishing volume, as the spike in our tra�c dataset
is far more dramatic than the change in total URLs2.

In Table 2, we further subdivide the events by the type of
user. Events from Known Visitors are those which contain
a session or device identi�er previously known to the
organization, and can thus be linked with certainty to a
known account at the organization. Crawler events are
those which we or the organization classi�ed as automated
tra�c based on request attributes. The Other events fall into
neither category but follow a similar distribution to Known
Visitors, and thus represent potential victims which cannot
be immediately traced back to an account at the organization.

To ensure consistency across our measurements in the
following sections, we de�ne the set of Compromised Visitors
as those Known Visitors whose accounts were subsequently
either accessed by an attacker or had at least one fraudulent
transaction. We consider only these events in our analysis
of monetization e�orts, as the sequence of observations
strongly suggests that a phishing attack succeeded against
the corresponding victims. We do not disclose the total
number of unique victims within these two sets for reasons
discussed in Section 8.3.

5 Progression of Phishing Attacks
To create an end-to-end timeline of the progression of
phishing attacks, we calculate the relative di�erence between
the timestamp of each Golden Hour web event and the

2We believe that both of these spikes are associated with the e�ectiveness
(and proliferation) of highly sophisticated phishing websites, which we
characterize in Section 7.1.
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Known Visitor Crawler Other Total

Page URL 2,968,735 2,934,976 7,982,475 13,886,186
(71.73%)

Referring URL 1,879,179 820,716 2,773,595 5,473,490
(28.27%)

Total 4,847,914
(25.04%)

3,755,692
(19.40%)

10,765,070
(55.56%) 19,359,676

Table 2: Breakdown of Golden Hour web events by type.

Figure 4: Distribution of Golden Hour web events by month.

original detection of the corresponding phishing URL within
a feed, as correlated by our framework. We calculate similar
timestamp di�erences for email lures, account compromise,
and fraudulent account transactions. We can then plot
a histogram of victim tra�c relative to attack detection,
alongside the average timestamps of key attack milestones.
Note that the e�ect of outliers on these averages is inherently
suppressed by our use of a �xed observation window for each
phishing URL’s web events.

In Figure 5, we show such a histogram forCompromisedVis-
itors: in other words, every user represented in the �gure was
highly likely to have been successfully deceived by a phishing
attack. We count multiple events from the same victim on
the same phishing website only once. For brevity, we do not
separate Page URL and Referring URL events in our �gures,
as these did not di�er signi�cantly except in the success rates
of subsequent account compromise (discussed in Section 5.3).

We observe that phishers enjoy a large window of opportu-
nity when carrying out their attacks. Nearly nine hours elapse
on average between the �rst victim visit and detection by the
ecosystem. By this time, the phishing websites have already
lured 62.73% of victims. Moreover, victim visits continue at
a slower pace for the next 12 hours. We show the Cumulative
Density Function (CDF) of Compromised Visitor web events
in Figure 6a. Despite the 21-hour time frame (-08:44 to +12:26)
of a typical phishing attack illustrated in Figure 5, there exist
some attacks with a longer overall duration.

5.1 Initial Tra�c
The average �rst non-victim visit to each phishing website oc-
curs 9 hours and42 minutes prior to attackdetection,as shown
in Figure 5. We believe that such visits are representative of
attackers’ initial testing of each phishing website.

Country Other
Tra�c Country KnownVisitor

Tra�c

United States 32.84% United States 65.48%
Morocco 9.17% United Kingdom 6.15%
Indonesia 8.16% Canada 4.26%
United Kingdom 6.08% Italy 3.05%
Algeria 3.73% Spain 2.78%
Canada 2.99% Australia 2.58%
Germany 2.88% Germany 2.29%
Brazil 2.35% Mexico 1.46%
Tunisia 2.29% France 0.93%
Italy 2.24% Netherlands 0.79%
France 1.92% Brazil 0.72%
Iraq 1.60% Singapore 0.64%
Egypt 1.44% Ireland 0.40%
Spain 1.39% Belgium 0.40%
Nigeria 1.39% Portugal 0.38%

Table 3: Geolocation of initial visits to live phishing websites,
by tra�c category.

We performed an unequal variance T-test [56] to compare
the distribution of the relative timestamps of the �rst event
(for each attack) within the Other category to the �rst
event for Known Visitors. We �nd the means of the two
distributions to be statistically signi�cantly di�erent, with
a p value of 0.011. Furthermore, in Table 3, we show that
top geolocations within the former set closely coincide with
countries disproportionately associated with cybercrime [37]
(and inconsistent with the organization’s customer base).

5.2 Phishing Email Distribution
We show the CDF of phishing email distribution in Figure 6b.
We note that prior to attack detection, the cumulative
proportion of victim visits to phishing websites (in Figure 6a)
grows at a faster rate than emails sent. In other words, tra�c
from phishing emails to phishing websites drops after attack
detection, as should be expected following the intervention
of spam �lters. However, just one day after detection, the
rate of victim visits once again starts outpacing the sending
of emails. This suggests that victims will follow links in
old emails, and, thus, attackers continue to pro�t without
further intervention. Take-down can potentially assist with
mitigating these long-lasting phishing attacks [2].

5.3 Progression ofMonetization E�orts
In our dataset, the accounts of 7.42% of distinctKnownVisitors
subsequently su�ered a fraudulent transaction; we believe
this represents a lower bound on success rates and subsequent
damage from phishing, as our approach does not identify
victimization of the Other tra�c. After each victim’s visit to
a phishing website, we found that such a transaction would
occur with an average delay of 5.19 days. However, as we
show in Figure 6c, fraudulent transactions grow consistently
over a 14-day period, with the earliest ones occurring less
than one hour after a victim visit. Although about 3.99% of
fraudulent transactions occur after this period, the increasing
potential for mitigation encourages attackers to act quickly.

The credentials of 63.61% of these compromised victims
would additionally appear in a public dump, with an average
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Figure 5: Histogram of Compromised Visitor tra�c to phishing websites, annotated with attack stages.

(a) Compromised Visitor tra�c. (b) Phishing email distribution. (c) Fraudulent transactions over time.

Figure 6: Cumulative Density Function (CDF) plots depicting key phishing attack stages.

delay of 6.92 days. This trend suggests that criminals tend
to �rst monetize the accounts of their victims, and only later
sell credentials within underground economies [8].

Our dataset does not provide insight into the monetization
of each victim’s stolen personal information beyond the
organization’s own systems. We �nd that the average victim
makes 2.43 page loads during his or her interaction with a
phishing website—enough to visit a landing page and submit
credentials. Some victims, however, made substantially more
visits during a single session. After inspecting the chain
of phishing URLs visited in such sessions, we believe that
such victims provide additional personal information to
the phishing website (i.e., one with multiple data collection
forms), and could thus su�er from identity theft or other
�nancial fraud. Per our dataset, we observed that victims with
an above-average number of page loads who also appeared
in a Referring URL event (i.e., returned to the organization’s
website after presumably completing interaction with the
phishing website) were 10.03 times more likely to later
encounter a fraudulent withdrawal from their account.

5.4 Browser-based Detection E�ectiveness
Given the ubiquity of browser-based detection and warnings,
the role of these defenses in preventing phishing in the wild is
a key measurement we seek to estimate. The mitigation from
browser-based detection can be delayed for two main reasons:
failure of backend systems to �ag a given phishing URL or the
lag between backend �agging and data propagation to clients
(e.g., browsers) [26]. This lag period may vary between the
same browser on di�erent devices due to di�erences in cache
state [51].

We can meaningfully estimate the overall impact of

Figure 7: Impact of browser-based detection on phishing
e�ectiveness.

browser-based warnings on phishing attack e�ectiveness
by calculating the ratio of Compromised Visitors for browsers
with native defenses (Google Safe Browsing, Windows
Defender) and Compromised Visitors for all browsers, at
regular time intervals after attack detection (i.e., after the
midpoint of Figure 5), and subsequently comparing this ratio
to a baseline ratio just prior to detection. This ratio is not
sensitive to the decrease in absolute phishing tra�c as it
simply isolates the likelihood that the phishing attack will
be successful (Compromised Visitors are visitors who likely
submitted credentials to a phishing website).

As we show in Figure 7, browser-based warnings start to
substantially reduce the relative e�ectiveness of phishing
attacks within one hour after detection, at which point the
ratio of Compromised Visitors drops to 71.51%. By the end of
the second hour, the ratio drops further to 43.55%: at this point,
attacks are less than half as e�ective as they were originally.
The e�ectiveness continues declining more slowly until the
seventh hour and thereafter stabilizes within the 0-10% range.
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Figure 8: Classi�cation of URLs in the Golden Hour dataset.

Browser-based phishing warnings are clearly an e�ective
mitigation overall, but attackers can and do abuse their reac-
tive delay, as we have demonstrated. In addition, certain eva-
sion techniques,whichwe discuss in Section 7.1,can avoidtrig-
gering such warnings even after attack detection. Additional
mitigations are required to thwart the trickle of Compromised
Visitor visits which we observed many hours after detection.

6 Phishing Attack Characteristics
In this section, we analyze metadata related to the phishing
websites in our dataset in an e�ort to better understand the
characteristics of successful attacks. We consider all phishing
URLs with at least one Compromised Visitor event.

6.1 Phishing URL Classi�cation
Attackers have traditionally crafted phishing URLs to deceive
victims by either mimicking the brand being impersonated
by the phishing website (e.g., www.brand-alerts.com), or by
including misleading keywords which convey a desire to
help the victim (e.g., secure-my-account.com) [23].

We apply a previously-proposed classi�cation scheme [52]
to the URLs in our dataset and show the results in Figure 8.
We observe that 28.70% of all URLs have no deceptive content
whatsoever; 34.76% have non-deceptive domains with
deceptive paths only. 8.64% use deceptive subdomains on
a non-deceptive domain, and the remaining 27.90% have
deceptive domains (0.52% with Punycode). The nature of
deceptiveness is similarly split between brand names and
misleading keywords, except in the case of subdomains,
which favor brand names. Bare IP addresses were negligible
in our dataset and thus are excluded from the �gure.

The vast majority of phishing URLs (98.58%) were hosted
on traditional, paid domain names. Only 0.79% of URLs
leveraged subdomains from free hosting providers; 0.63% had
domains with free TLDs [52]. However, compromised hosting
infrastructure plays a key role, which we assess in Section 7.

With the increasing use of mobile devices to browse the
Internet, the importance of URL content has diminished (i.e.,
because of limited screen real estate on such devices) [40, 72].
However, the heavy use of redirection in phishing lures

Browser Name Tra�c Share

Chrome Mobile 29.72%
Safari Mobile 22.38%
Chrome 21.56%
Samsung Browser 7.97%
Edge 5.53%
Safari 4.10%
Firefox 3.66%
Internet Explorer 3.21%
Other 1.87%

(a) By browser

Device Tra�c Share

Android 35.70%
Windows 28.13%
iOS 27.03%
OS X 8.35%
Other 0.79%

(b) By device

Table 4: Known Visitor tra�c share by browser and device.

allows attackers to continue using deceptive URLs (which
would otherwise be easily detectable by text-based classi�ers)
on their landing pages.

6.2 Device and Browser Type
As shown in Table 4, mobile devices accounted for 62.73% of
all victim tra�c in our dataset. Browsers protected by Google
Safe Browsing—Chrome, Safari, and Firefox—accounted for
81.42% of the tra�c (roughly consistent with overall market
share) [60]. The wide use of these browsers, in particular on
mobile platforms, underscores the importance of the e�cacy
of the anti-phishing features which they natively include. The
Samsung Browser, which does not currently include browser-
based phishing detection to the best of our knowledge, and
thus leaves users particularly vulnerable to phishing, had a
disproportionate representation of 7.97% in our dataset. The
behavior of individual browsers has previously been studied
in detail and is thus outside of the scope of our analysis [51].

6.3 Use of HTTPS
The webhas movedawayfrom traditionalHTTP in favorofen-
crypted communication over HTTPS; phishers started follow-
ing this trend in 2017 [3], which has been simpli�ed through
the wide availability of free SSL certi�cates [38]. Within our
entire dataset, 66.85% of distinct URLs used HTTPS. However,
these URLs accounted for 85.77% of the Compromised Visitors.
Phishing attacks with HTTPS thus proved about three times
more successful than HTTP. Even though some successful
phishing attacks still occur on unencrypted websites, this now
represents a minority of attacks. Simultaneously, the potential
impact of Certi�cate Authorities in helping prevent abuse—
especially on attacker-controlled domains—has grown.

7 Phishing Attack Longevity
Prior research has stipulated that individual phishing attacks
tend to be short-lived and that they capitalize on the narrow
gap between deployment and detection [41]. Despite some
caveats, we have made a similar observation in Section 5.
However, these observations do not capture trends within
broader phishing campaigns, which may entail a group of
organized criminals involved in the successive deployment
of persistent and sophisticated attacks.
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Rank First Seen
Date

Last Seen
Date

Campaign
Duration
(Days)

Known
Visitor
Events

Average
Events
Per Day

Distinct
URLs

Reported

URL Text
Classi�cation

Domain
Type

1 01/06/2019 09/22/2019 259 145,306 560 41 Deceptive Path Only Compromised
2 08/30/2019 09/26/2019 27 115,616 4,329 41 Deceptive Subdomain Compromised
3 07/20/2019 09/14/2019 56 102,601 1,847 40 Non-deceptive Free Subdomain
4 01/11/2019 01/15/2019 4 82,636 20,487 6 Deceptive Path Only Regular Registration
5 06/14/2019 06/20/2019 6 71,478 11,681 56 Non-deceptive Compromised
6 04/21/2019 05/27/2019 36 71,037 1,992 39 Deceptive Path Only Regular Registration
7 08/11/2019 08/17/2019 5 59,911 11,296 40 Deceptive Subdomain Free Domain
8 03/14/2019 04/22/2019 39 55,147 1,427 81 Deceptive Subdomain Regular Registration
9 08/30/2019 09/26/2019 27 50,402 1,877 28 Deceptive Subdomain Compromised
10 01/07/2019 01/07/2019 1 49,627 49,627 8 Deceptive Subdomain Free Subdomain
11 12/22/2018 12/26/2018 4 44,502 10,806 45 Non-deceptive Compromised
12 06/23/2019 06/28/2019 6 42,574 7,708 22 Deceptive Subdomain Free Subdomain
13 09/24/2019 09/25/2019 2 42,406 21,203 29 Deceptive Domain Regular Registration
14 12/12/2018 01/02/2019 21 38,484 1,814 16 Deceptive Path Only Compromised
15 10/06/2018 02/22/2019 140 32,591 233 39 Deceptive Path Only Compromised
16 12/11/2018 12/29/2018 18 30,983 1,768 63 Deceptive Subdomain Regular Registration
17 10/31/2018 03/24/2019 145 30,853 213 90 Deceptive Path Only Regular Registration
18 09/12/2019 09/22/2019 10 30,781 2,990 23 Deceptive Path Only Compromised
19 03/19/2019 03/24/2019 4 23,552 5,399 21 Deceptive Path Only Regular Registration
20 08/13/2019 08/15/2019 3 22,254 7,418 16 Deceptive Domain Regular Registration

Table 5: Top phishing campaigns by number of Known Visitor events.

Figure 9: Share of Known Visitor events by top attacks.

To gain better insight into long-term phishing campaigns,
we group phishing URLs from events in our dataset by
domain (or hostname in the case of free subdomain hosting
providers). We then sort the groups by the total number
of unique Known Visitor events to capture variations in
hostname or path for attacks which are likely related3. We
de�ne the date range of a campaign as the time between
the �rst and last web event from a Compromised Visitor; we
found the average date range to be 13.55 days.

We discovered that the top 5% of attacks accounted for
77.79% of Known Visitor events within our dataset, and the
top 10% for 89.13%, as shown in the CDF in Figure 9. We
then manually analyzed the top 20 campaigns (these alone
accounted for 23.57% for Known Visitor events), some of
which lasted several months each, as shown in Table 5. We
also determined whether they were hosted on compromised
domains (i.e., otherwise belonging to a legitimate website)
or domains directly controlled by attackers.

3Some threat actors pivot across di�erent infrastructure and might
thus be underestimated by domain-based grouping of attacks. Con�dently
grouping attacks by other attributes, such as phishing kit signature or drop
email, would require additional data. The same applies in case di�erent
threat actors were to leverage a single domain.

7.1 Sophistication and Evasion
To understand the success of the top phishing attacks, we
manually inspected the content (and, when possible, phishing
kits) of high-impact phishing URLs that were live during our
online deployment between July 1 and September 30, 2019.
We identi�ed such URLs by spikes in the number of Known
Visitor events associated with any individual hostname.

The characteristics we found contribute to the attacks’
success not only by avoiding detection by anti-phishing
infrastructure, but also by more e�ectively targeting human
victims. We quantify our observations to the extent possible
given our methodology; however, a more comprehensive
measurement would be suitable for future work.

Broad Data Collection: The sophisticated phishing
websites which we analyzed mark a clear departure away
from single-page login forms, and thus venture far beyond
mere theft of usernames and passwords [11]. Phishers fully
match the page structure of the victim organization’s website,
complete with a homepage with links to (fraudulent) login
pages and resources in case the victim was to navigate away
from the initial landing page. Once the victim returns to the
login page and starts interacting with the phishing website, it
will seek to harvest extensive personal and �nancial informa-
tion, identity documents, and even photographs (i.e., sel�es)
to steal and more e�ectively monetize victims’ identities.

Automatic Translation: Five of the phishing websites
in Table 5 used the visitor’s geolocation to automatically
translate their deceptive content. Manual analysis of the
phishing kit used on one of these websites revealed a total of
14 language options that coincided with the targeted brand’s
major markets.

HumanVeri�cation: We observed that as part of a URL
redirection chain, some attackers would show a reCAPTCHA
challenge [70] prior to redirecting the victim to the phishing
landing page. Also, one speci�c phishing kit showed a
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CAPTCHA challenge directly on its landing page, prior to
allowing the victim to input any credentials. Such challenges
not only hamper the veri�cation of phishing content by
automated systems, but may also trick users into proceeding
due to the use of CAPTCHA on legitimate websites.

Cloaking: All phishing websites which we analyzed
leveraged server-side cloaking, a well-known technique that
seeks to block tra�c based on a blacklist (or a whitelist) of
request attributes such as IP address or hostname [34, 52, 62].
Such cloaking intends to restrict access from security
crawlers or other non-victim entities. Also, some phishing
kits include an initial landing page that contains nothing but
a simple piece of JavaScript code or an HTML Meta tag to
redirect the victim to the true phishing page. Such code could
defeat basic crawlers that look at static HTML only.

Victim-speci�c Paths: Eight of the campaigns in Table 5
had a landing page that automatically generates a sub-path
unique to each visitor’s IP address, and then immediately redi-
rects to that path. The path is not visible to other IP addresses,
and would thus evade crawlers visiting a previously-
generated path rather than the attack’s initial landing page.

Fake Suspension Notices: As a deterrent to take-down
e�orts [2], when a visitor fails cloaking checks, we observed
that several phishing websites displayed a misleading page
indicating that the domain has been suspended, rather than
a generic HTTP 404 or 403 error message [22].

Man-in-the-Middle Proxies: Rather than a traditional
phishing kit, two of the large phishing attacks we analyzed
used a proxy that would make live requests to the legitimate
organization’s website and display the page to the user
while intercepting all data submitted [28]. Such proxies can
defeat most forms of two-factor authentication [66] and may
require special care from the targeted organization—such
as requiring security keys—to mitigate.

7.2 AttackMitigation
While analyzing the sophisticated attacks in Table 5, we
simultaneously manually reported them to anti-phishing
entities and hosting providers. By the time the many original
URLs were added to detection backends, the attackers rede-
ployed subsequent attacks on di�erent subdomains or paths,
which would, in turn, necessitate another cycle of reporting
or detection. In this manner, attackers can stay one step ahead
of the ecosystem. When paired with bulletproof hosting (i.e.,
resistant to take-down from abuse reports) [36] or successive
re-compromise of legitimate, albeit vulnerable, infrastructure,
such attacks can remain e�ective for prolonged periods.

To help overcome the challenges faced by the ecosystem,
we adapted the Golden Hour framework to perform proactive
mitigation of attacks. We reported events corresponding
to Known Visitor back to the victim organization, such that
the organization could �ag accounts to prevent successful
compromise or re-secure accounts that had already been
compromised. We reported tens of thousands of distinct

events in this manner, which has motivated the permanent
adoption of our framework by the organization.

Our framework can also be used to discover previously-
unknown phishing URLs based on heuristics such as textual
URL content (applied during correlation) or context. Such
URLs can then be reported to detection backends and prop-
agated through the ecosystem. Due to technical limitations,
we did not automate this aspect of the framework during our
deployment. In a retrospective analysis, we found that this
would have potentially increased the number of web events
in our dataset by 7.28%, which, if reported, could help narrow
the gap in the detection of phishing attacks by the ecosystem.

8 Discussion
Although individual evasion techniques might not su�ce
to defeat the modern anti-phishing ecosystem, the increased
degree of sophistication which arises from the combination
of such techniques poses a key threat. We have shown that in
terms of the number of victims compromised, sophisticated
and persistent phishing attacks dominate, and should,
therefore, be a priority for the ecosystem. At a more granular
level, both the response time of browser-based warnings
(which protect victims once a phishing attack is detected by
the ecosystem) and speed of initial detection by backends
(which closes attackers’ window of opportunity) represent
potential directions for improvement.

8.1 Data Sharing
The mere fact that so many of phishing websites in our dataset
embed third-party resources shows that attackers do not
fear being detected by certain organizations. Consequently,
there is an opportunity for increased data sharing across
the ecosystem to better detect threats based on proactive
intelligence indicative of attacks: the web events from Golden
Hour are just one example of such intelligence.
Reporting Phishing: Sophisticated phishing attacks

currently exploit limitations within the detection ecosystem.
In the case of cloaked phishing websites, simple URL-based
reporting to anti-phishing backends—such as what is cur-
rently commonly carried out through automated systems and
web submission forms [26]—fails to provide su�cient context
for the backend to verify the phishing content. In particular,
with only a URL in hand, the anti-phishing backend may not
be able to determine the parameters required to defeat the
cloaking or �nd new, but related threats. We experienced this
phenomenon when manually reporting certain URLs from
the sophisticated attacks in Table 5 to Google Safe Browsing;
by the time such URLs were �ltered, attackers would have
shifted their websites to alternate paths or subdomains
on the same web server. Enhanced phishing reporting
protocols—potentially bolstered by trust between vetted
entities within the ecosystem—could help anti-phishing
entities share detailed attack data at scale. Similarly, with
proper consent and privacy protections, su�ciently detailed
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information could potentially be shared (e.g., request
parameters, redirection chains, or a screenshot) [27]. Such
measures might help close the gap between what users see
and anti-phishing systems see, thus preventing cloaking.

Similarly, the ecosystem currently lacks standardized
approaches for requesting malicious content to be taken-
down [2]. Although major hosting providers may have
well-documented avenues for removing phishing websites,
attackers might migrate to bulletproof hosting [36] or small
hosts with fewer resources for timely intervention, or by
compromising infrastructure.

Phishing Links in Emails: Attackers make heavy use of
redirection links in phishing email lures. As we have shown,
such links complicate the correlation of phishing emails with
live websites—and, in turn, hamper further mitigation e�orts,
such as browser-based detection. Additionally, we observed
an average delay of 9.62 hours between the start of each
phishing email campaign (i.e., the initial arrival of a phishing
message) and the �rst report sent by a victim. Due to this
delay, we believe that direct user reports should only serve
as a secondary means for entities to discover new phishing
attacks. As such, there is a potential for email providers to
share known abusive URLs with the wider ecosystem [8].

In our dataset, at the granularity of individual phishing
hostnames, email lures were sent in large spikes, similar
to what has been previously observed [41]. If a message is
initially classi�ed as benign but the URL within it is later
detected as phishing, additional measures are needed to
ensure retroactive detection.

8.2 Third-party Resources
It may seem counter-intuitive for malicious websites to
embed external web resources hosted by third parties,
especially in light of our �ndings that these resources enable
both analysis and mitigation of phishing attacks. However,
we argue that phishing websites will nevertheless use
external resources for a number of reasons.

Most importantly, anti-phishing systems use known
�lenames of scripts, images, favicons, and archives as one
type of �ngerprinting to identify malicious websites [24, 52].
Phishing pages which only link to external �les can avoid
such �ngerprinting entirely; with the added use of cloaking
on their landing pages, phishing websites can remain stealthy
to avoid or delay detection by the ecosystem.

In some cases, attackers choose to use third-party
services for their own bene�t. Within our dataset, the use
of reCAPTCHA is one such example. Additionally, we
observed phishing websites hosted on single-page pastebin
services [42]. In order for phishing pages to render correctly
on such services (and thus successfully deceive victims), most
images and scripts must be retrieved from external sources.

The use of external �les can also ensure consistency
between the look and feel of the legitimate website and a
phishing page. Phishing kits can thus remain current without

the need for frequent updates, which may be particularly
desirable for phishers who do not want to invest money into
sophisticated phishing kits. It is also easier for attackers to
directly copy the source of the original page than to build
a deceptive version from scratch.

Even if they do not embed third-party resources, phishing
websites may link back to the legitimate organization’s
website and could thus be detected by our approach. The
same applies if victims are redirected back to the legitimate
website after being phished: a common strategy used by
attackers to minimize victims’ awareness of the attack.

8.3 Limitations

Our analysis should be considered alongside certain limita-
tions. Despite a large sample size, our data is based on victim
tra�c to phishing websites that target a single organization,
which may skew our �ndings. However, our Golden Hour
framework is not tied to any one organization; thus, future
analysis in other contexts could deepen the insight into the
broader ecosystem.

Due to the nature of our agreements with the organization,
we cannot disclose certain concrete �ndings from our
analysis, such as the total pro�t secured by attackers.
Also, the success of phishing attacks hinges on numerous
factors—such as the content and type of the original lure,
appearance of the landing page, or redirection services
used—which we did not consider, but which could provide
details about the ecosystem vulnerabilities being exploited.

Despite the incentives for phishers to use third-party
resources, as discussed in Section 8.2, our approach does not
guarantee the detectability of an arbitrary phishing website.
Phishers could deliberately evade our approach by excluding
any trackable third-party �les and avoiding redirecting
victims back to the organization’s website.

The timeframe of our email dataset is shorter than that of
our web event dataset. We originally intended to correlate
the event data with phishing URLs sent to victim inboxes at
a major email provider over the full data collection period.
However, the prevalence of redirection links within phishing
emails made such correlation di�cult to scale.

Lastly, our web event correlation approach (stage 3 of the
framework) bene�ts from the ability to accurately classify
URLs as suspicious from within a large stream of tra�c data,
or a reliable source of ground truth (i.e., known phishing
URLs) to match events. We only did the latter during our
deployment; however, we consider our data sources (in
Section 4.1) to be of high quality: peaks in Crawler tra�c
in our event dataset coincided with detection times of URLs
in the phishing feeds considered. Yet, recent research has
shown that even reputable anti-phishing vendors fail to
identify many phishing URLs reported to them [54]. Future
deployments of our approach should maximize the number
of data sources for correlation to further increase visibility.
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8.4 Ethical Considerations
We took great care to ensure that user privacy was preserved
throughout this research. Our analysis did not involve access
to any PII, and processing which entailed datasets that could
contain PII (such as user account information or email report
content) was carried out in a purely programmatic fashion
by existing, automated systems. During our analysis of user
account compromise times, we only handled anonymized
session or account identi�ers which were interpreted and
aggregated by the organization with which we collaborated.

Entities that become aware of compromised accounts
within their systems—through internal or external data
sources—should make reasonable e�orts to re-secure such
accounts [62]. During our research, we ensured that user
accounts which we associated with phishing website tra�c by
Golden Hour were appropriately �agged by the organization.
Furthermore, we recommended that user accounts that likely
visited sophisticated phishing websites be investigated in an
e�ort to identify and thwart the underlying threat actors.

9 RelatedWork
Because phishing attacks are by nature spread across diverse
infrastructure, empirical measurements of the relationships
between the di�erent attack phases are di�cult. Nevertheless,
such measurements can deliver crucial insights that are not
possible at a �ner granularity. To the best of our knowledge,
our work is the �rst to paint an end-to-end picture of phishing
attacks at scale by correlating victim tra�c to live phishing
websites with attack distribution and monetization.

The work most similar to ours is that of Heijden and
Allodi [68], who leveraged methodology similar to Golden
Hour to correlate URLs in phishing emails (reported to an
organization) with the timestamps of clicks by individual
victims. The authors combined the click data with email
content analysis to identify cognitive and technical factors
that characterize successful phishing emails, which can help
prioritize the mitigation of high-impact phishing URLs.

Han et al. monitored the life cycles of phishing kits in-
stalled on a honeypot [29]. Unlike our approach, the authors
captured the credentials sent by each phishing kit and more
closely analyzed attackers’ interaction with the kit. However,
honeypots are limited in scale and scope compared to our
approach and do not o�er insight into the damage caused by
phishing, such as how stolen credentials are ultimately used.

Thomas et al. [62] analyzed a one-year dataset of data
breaches, phished credentials, and keyloggers to study
trends in the users victimized by such attacks, and the
e�ectiveness of each type of attack. Although this work did
not strictly focus on phishing attack anatomy, it underscores
the e�ectiveness of large-scale, cross-organizational data
analysis to capture the state of the ecosystem.

Ho et al. [32] analyzed over 113 million emails sent by
employees of enterprise organizations to model lateral
phishing attacks carried out via compromised email accounts.

The authors revealed new types of attacks marked by both
sophistication and e�ectiveness. Although this work does
not focus on traditional phishing, it shows that important
insight can be gained from analyzing attack data at scale.

Other prior work has scrutinized the time between
phishing attack detection and blacklisting [49]. Oest et al. [52]
conducted a controlled empirical analysis of the e�ectiveness
of evasion techniques against the response time and coverage
of blacklists. The study revealed weaknesses in blacklists and
measured the gap between attack detection and mitigation
under speci�c conditions.

In early measurements of the ecosystem, Moore and Clay-
ton analyzed the temporal relationship between the sending
of spam emails and the availability of phishing websites [48],
and the latency between phishing deployment and detection
by anti-phishing blacklists [47]. The authors cited a need for
take-down due to the persistence of spam campaigns.

10 Conclusion

At their disposal, phishers have an array of sophisticated
techniques that aim to circumvent existing anti-phishing
defenses and increase the likelihood of compromising victims.
With the addition of underground resources, such attacks
are scalable, as has long been observed by the ecosystem [4].
However, the ecosystem itself is not powerless to �ght back,
as it has access to a wealth of data that can be used to analyze,
detect, and prevent phishing. By correlating data from
multiple ecosystem sources, we performed a longitudinal,
end-to-end life cycle analysis of phishing attacks on a large
scale: we not only gained insight into the timing of key events
associated with modern phishing attacks, but also identi�ed
the gaps in defenses that phishers actively target.

Phishing remains a signi�cant threat to Internet users
in part because the reactive anti-phishing defenses that are
standard throughout the ecosystem, such as browser-based
detection and warnings, struggle to e�ectively address
the agility and sophistication of attackers. Importantly,
analysis such as that carried out in our research can inform
anti-phishing entities of an appropriate response time
threshold for speci�c mitigations, to ultimately narrow the
window of opportunity available to phishers.

Our use of the Golden Hour framework to automatically se-
cure the accounts of tens of thousands of phishing victims also
motivates the continued expansion of proactive mitigations
within the ecosystem. The framework could be practically
adapted by any organization (commonly targeted by phishers)
with access to its own phishing URL and web tra�c data, and
can help seal gaps in defenses by securing compromised user
accounts and enabling earlier detection of phishing websites.
Moreover, closer collaboration between anti-phishing
entities, coupled with the development of enhanced and
standardized mechanisms for sharing intelligence, would
allow such mitigations to better scale to the ecosystem level.
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