
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

TPM-Fail: TPM meets Timing and Lattice Attacks
Daniel Moghimi and Berk Sunar, Worcester Polytechnic Institute,

Worcester, MA, USA; Thomas Eisenbarth, University of Lübeck, Lübeck,
Germany; Nadia Heninger, University of California, San Diego, CA, USA

https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

TPM-FAIL: TPM meets Timing and Lattice Attacks

Daniel Moghimi1, Berk Sunar1, Thomas Eisenbarth1, 2, and Nadia Heninger3

1Worcester Polytechnic Institute, Worcester, MA, USA
2University of Lübeck, Lübeck, Germany

3University of California, San Diego, CA, USA

Abstract
Trusted Platform Module (TPM) serves as a hardware-

based root of trust that protects cryptographic keys from priv-
ileged system and physical adversaries. In this work, we per-
form a black-box timing analysis of TPM 2.0 devices de-
ployed on commodity computers. Our analysis reveals that
some of these devices feature secret-dependent execution
times during signature generation based on elliptic curves. In
particular, we discovered timing leakage on an Intel firmware-
based TPM as well as a hardware TPM. We show how this
information allows an attacker to apply lattice techniques to
recover 256-bit private keys for ECDSA and ECSchnorr sig-
natures. On Intel fTPM, our key recovery succeeds after about
1,300 observations and in less than two minutes. Similarly, we
extract the private ECDSA key from a hardware TPM manu-
factured by STMicroelectronics, which is certified at Common
Criteria (CC) EAL 4+, after fewer than 40,000 observations.
We further highlight the impact of these vulnerabilities by
demonstrating a remote attack against a StrongSwan IPsec
VPN that uses a TPM to generate the digital signatures for
authentication. In this attack, the remote client recovers the
server’s private authentication key by timing only 45,000
authentication handshakes via a network connection.

The vulnerabilities we have uncovered emphasize the dif-
ficulty of correctly implementing known constant-time tech-
niques, and show the importance of evolutionary testing
and transparent evaluation of cryptographic implementations.
Even certified devices that claim resistance against attacks
require additional scrutiny by the community and industry, as
we learn more about these attacks.

1 Introduction

Hardware support for trusted computing has been proposed
based on trusted execution environments (TEE) and secure
elements such as the Trusted Platform Module (TPM) [40].
Computer manufacturers have been deploying TPMs on desk-
top workstations, laptops, and servers for over a decade. With

a TPM device attached to the computer, the root of trust can
be executed in a separate hardened cryptographic core, which
prevents even a fully compromised OS from revealing creden-
tials or keys to adversaries. TPM 2.0, the latest standard, is
deployed in almost all modern computers and is required by
some core security services [38]. TPM 2.0 supports multiple
signature schemes based on elliptic curves [63].

TPMs were originally designed as separate hardware mod-
ules, but new demands have resulted in software-based im-
plementations. The physical separation of the TPM from
the CPU is an asset for protection against system-leval adver-
saries [3]. However, its lightweight design and low-bandwidth
bus connection prevents the TPM from being used as a secure
cryptographic co-processor for high-throughput applications.
TEE technologies such as ARM TrustZone [2] are a more
recent approach to bringing trusted execution right into the
CPU, at minimal performance loss. Firmware TPMs (fTPM)
can run entirely in software within a TEE like ARM Trust-
zone [48]. In a cloud environment, a software-virtualized
TPM device will be executed within the trust boundary of
the hypervisor [23, 39, 46]. In this case, user applications
still benefit from the defense against attacks on the guest OS.
Virtual TPMs may or may not rely on a physically present
TPM hardware. Intel Platform Trust Technology (PTT), intro-
duced in Haswell processors, is based on fTPM and follows a
hybrid hardware/software approach to implement the TPM
2.0 standard, as discussed in Section 2.2. By enabling Intel
PTT, computer manufacturers do not need to deploy dedicated
TPM hardware.

Side-channel attacks are a potential attack vector for se-
cure elements like TPMs. These attacks exploit the unregu-
lated physical behavior of a computing device to leak secrets.
Processing cryptographic keys may expose secret-dependent
signal patterns through physical phenomena such as power
consumption, electromagnetic emanations, or timing behav-
ior [10,35,47]. A passive adversary who observes such signals
can reconstruct cryptographic keys and break the confidential-
ity and authenticity of a computing system [16,36]. The TPM,
as defined by the Trusted Computed Group (TCG), attempts

USENIX Association 29th USENIX Security Symposium 2057

to mitigate the threat of physical attacks through a rigorous
and lengthy evaluation and certification process. Most phys-
ical TPM chips have been certified according to Common
Criteria, which involves evaluation through certified testing
labs. Tests are conducted according to protection profiles.
For TPM, a specific TCG protection profile exists, which re-
quires the TPM to be protected against side-channel attacks,
including timing attacks [62, p. 23].

TPMs have previously suffered from vulnerabilities due
to weak key generation [41]. However, it is widely believed
that the execution of cryptographic algorithms is secure even
against system adversaries. Indeed, TPM devices are expected
to provide a more reliable root of trust than the OS by keeping
cryptographic keys secure. Contrary to this belief, we show
that these implementations can be vulnerable to remote at-
tacks. These attacks not only reveal cryptographic keys, but
also render modern applications using the TPM less secure
than without the TPM.

1.1 Our Contribution
In this work, we perform a black-box timing analysis of TPM
devices. Our analysis reveals that elliptic curve signature op-
erations on TPMs from various manufacturers are vulnerable
to timing leakage that leads to recovery of the private signing
key. We show that this leakage is significant enough to be
exploited remotely by a network adversary. In summary, our
contribution includes:

• An analysis tool that can accurately measure the execu-
tion time of TPM operations on commodity computers.
Our developed tool supports analysis of command re-
sponse buffer (CRB) and TPM Interface Specification
(TIS) communication interfaces.

• The discovery of previously unknown vulnerabilities in
TPM implementations of ECDSA and ECSchnorr sig-
nature schemes, and the pairing-friendly BN-256 curve
used by the ECDAA signature scheme. These elliptic
curve signature schemes are supported by the TPM 2.0
standard. We apply lattice-based techniques to recover
private keys from these side-channel vulnerabilities.

• A remote attack that breaks the authentication of a VPN
server that uses Intel fTPM to store the private certificate
key and to sign the authentication message. We demon-
strate the efficacy of our attack against the strongSwan
IPsec-based VPN Solution that uses the TPM device to
sign authentication messages.

Our study shows that these vulnerabilities exist in devices
that have been validated based on FIPS 140-2 Level 2 and
Common Criteria (CC) EAL 4+, which is the highest interna-
tionally accepted assurance level in CC, in a protection profile
that explicitly includes timing side channels.

1.2 Experimental Setup
We tested Intel fTPM on multiple computers running Intel
Management Engine (ME), and we demonstrate key recovery
attacks on these machines. We also tested multiple machines
manufactured with dedicated TPM hardware, as discussed
in Section 3. All the machines run Ubuntu 16.04 with kernel
4.15.0-43-generic. We used the tpm2-tools1 and tpm2-tss2

software packages and the default TPM kernel device driver
to interact with the TPM device. Our analysis tool takes ad-
vantage of a custom Linux loadable kernel module (LKM).

The remote attacks are demonstrated on a simple local
area network (LAN) with the attacker and victim workstation
connected through a 1 Gbps switch manufactured by Netgear.

1.3 Coordinated Disclosure
We informed the Intel Product Security Incident Response
Team (iPSIRT) of our findings regarding Intel fTPM on Febru-
ary 1, 2019. Intel acknowledged receipt on the same day,
and responded that an outdated version of Intel IPP has been
used in the Intel fTPM on February 12, 2019. Intel assigned
CVE-2019-11090 and awarded us separately for three vul-
nerabilities. They issued a firmware update for Intel Manage-
ment Engine (ME) including patches to address this issue on
November 12, 2019.

We informed STMicroelectronics of our findings regarding
the TPM chip flaw on May 15, 2019. They acknowledged
receipt on May 17, 2019. We shared our tools and techniques
with STMicroelectronics. They assigned CVE-2019-16863
and provided us an updated version of their TPM product for
verification. We tested the updated hardware and confirmed
that it is resistant to our attacks on September 12, 2019.

2 Background

2.1 Trusted Platform Module
TPMs are secure elements which are typically dedicated phys-
ical chips with Common Criteria certification at EAL 4 and
higher, and thus provide a very high level of security assur-
ance for the services they offer [12]. As shown in Figure 1,
the TPM, including components like cryptographic engines,
forms the root of trust. On a commodity computer, the host
processor is connected to the TPM via a standard communi-
cation interface [59]. For trusted execution of cryptographic
protocols, applications can request that the OS interact with
the TPM device and use various cryptographic engines that
support hash functions, encryption, and digital signatures. The
TPM also contains non-volatile memory for secure storage of
cryptographic parameters and configurations. As discussed
in Section 5.3, for instance, a Virtual Private Network (VPN)

1https://github.com/tpm2-software/tpm2-tools commit c66e4f0
2https://github.com/tpm2-software/tpm2-tss commit 443455b

2058 29th USENIX Security Symposium USENIX Association

TrustedUntrusted

TPM

PCR Registers Crypto Engine

Random Number
Generator

Execution
Engine

Volatile Memory Non-volatile
Memory

Host CPU Main Memory

System Software

Applications

Remote Attestation
 Request

Figure 1: The trusted components of a TPM include the PCR
registers, crypto engine, and random number generator. Other
hardware components, system software, and applications are
considered untrusted.

application can use the TPM to securely store authentication
keys and to perform authentication without direct access to the
private key. TPM also supports remote attestation, in which
the TPM will generate a signature using an attestation key
which is normally derived from the device endorsement key.
The endorsement key is programmed into the TPM during
manufacturing. Later on, the signature and the public attesta-
tion key can be used by a remote party to attest to the integrity
of the system, and the public endorsement key can be used to
verify the integrity of the TPM itself.

Attacks on TPM: The traditional communication inter-
face between dedicated TPM hardware and the CPU is the
Low Pin Count (LPC) bus, which has been shown to be vul-
nerable to passive eavesdropping [33]. There exist attacks
to compromise the PCRs based on short-circuiting the LPC
pins [31, 55], software-based attacks on the BIOS and boot-
loader [11, 31], and attacks exploiting vulnerabilities related
to the TPM power management [24]. Nemec at al. devel-
oped the “Return of Coppersmith’s Attack” (ROCA), which
demonstrated passive RSA key recovery from the public key
resulting from the special structure of primes generated on
TPM devices manufactured by Infineon [41]. The remote tim-
ing attacks that we demonstrate are orthogonal to the key
generation issues responsible for ROCA. As originally sug-
gested by Spark. et al. [55], we demonstrate a class of remote
timing attack against TPM devices that are deployed within
hundreds of thousands of desktop/laptop computers.

2.2 Intel Management Engine

The Intel management engine (ME) provides hardware sup-
port for various technologies such as Intel Active Manage-
ment Technology (AMT), Intel SGX Enhanced Privacy ID
(EPID) provisioning and attestation, and platform trust tech-
nology (PTT) [64]. Intel ME is implemented as an embedded
coprocessor that is integrated into all Intel chipsets. This co-
processor runs modular firmware on a tiny microcontroller.
Since the Skylake generation, Intel has used the MINIX3

OS running on a 32-bit Quark x86 microcontroller3. These
firmware modules, and in particular the cryptographic module,
provide commonly used functions for a variety of services.
Previous reverse-engineering efforts have uncovered some
of the secrets of the Intel ME implementation [54], as well
as classical software flaws and vulnerabilities related to the
JTAG that can be abused to compromise Intel ME [18–20].

Intel PTT, which is essentially a firmware-based TPM, has
been implemented as a module that runs on top of the Intel
Management Engine (ME). Intel PTT executes on a general
purpose microcontroller, but since it executes independently
from the host processor components, it resembles a more se-
cure hybrid approach than the original Intel fTPM [48], which
executes on a TEE on the same core. The exact implemen-
tation of the cryptographic functions that are shared by Intel
PTT, EPID, and other cryptographically relevant services is
not publicly available.

2.3 Elliptic Curve Digital Signatures
The Elliptic Curve Digital Signature Algorithm
(ECDSA) [30] is an elliptic curve variant of the Digi-
tal Signature Algorithm (DSA) [22] in which the prime
subgroup in DSA is replaced by a group of points on an
elliptic curve over a finite field. The ECDSA key generation
process starts with the selection of an elliptic curve, specified
by the curve parameters and the base field Fq over which the
curve is defined, and a base point P ∈ E of cryptographically
large order n in the group operation.

ECDSA Key Generation:
1. Randomly choose a private key d ∈ Z∗n.
2. Compute the curve point Q = dP ∈ E .

The private, public key pair is (d,Q).

ECDSA Signing: To sign a message m ∈ {0,1}∗
1. Choose a nonce/ephemeral key k ∈ Z∗n.
2. Compute the curve point kQ, and compute the x coordi-

nate r = (kQ)x.
3. Compute s = k−1(H(m)+dr) mod n, where H(.) repre-

sents a cryptographic hash function such as SHA-256.
The signature pair is (r,s).

The Schnorr digital signature scheme [53] has been sim-
ilarly extended to support elliptic curves. Among multiple
different standards for Elliptic Curve Schnorr (ECSchnorr),
the TPM 2.0 is based on the ISO/IEC 14888-3 standard.

The key generation for ECSchnorr is similar to ECDSA.
The signing algorithm is defined as the following:

ECSchnorr Signing: To sign a message m ∈ {0,1}∗,
1. Choose an ephemeral key k ∈ Z∗n.
2. Compute the elliptic curve point kQ and compute the x

coordinate xR = (kQ)x.
3. Compute r = H(xR ||m) mod n.

3Quark microcontrollers have a working frequency of 32 MHz [28].

USENIX Association 29th USENIX Security Symposium 2059

4. Compute s = (k+dr) mod n.
The signature pair is (r,s).

In practice, elliptic curve signature schemes are imple-
mented for a small set of standard curves, which have been
vetted for security. The targeted elliptic curves that we will dis-
cuss in this paper are the p-256 [22] and bn-256 [4] curves,
as supported by TPM 2.0. bn-256 can optionally be used with
ECDSA and ECSchnorr schemes, but it is essential for the
elliptic-curve direct anonymous attestation (ECDAA) scheme,
since ECDAA requires a pairing-friendly curve like bn-256.
Since it is not relevant to our attack, we omit discussion of
ECDAA and signature verification.

2.4 Lattice and Timing Attacks

The Hidden Number Problem: Boneh and Venkatesan [8]
formulated the hidden number problem (HNP) as the follow-
ing: Let α ∈ Z∗p be an integer that is to remain secret. In the
hidden number problem, one is given a prime p, several uni-
formly and independently randomly chosen integers ti in Z∗p,
and also integers ui that represent the l most significant bits of
αti mod p. The ti and ui satisfy the property |αti−ui|< p/2l .
Boneh and Venkatesan showed how to recover the secret inte-
ger α in polynomial time using lattice-based algorithms with
probability greater than 1/2, if the attacker learns enough
samples from the l most significant bits of αti mod p.

Lattice Attacks: Researchers have applied lattice-based al-
gorithms for the HNP to attack the DSA and ECDSA signing
algorithms with partially known nonces [26, 42, 43, 49]. As a
direct consequence, implementation of these signature algo-
rithms in standard cryptographic libraries have been shown to
be vulnerable when the implementation leaks partial informa-
tion about the secret nonce through side channels [5,21,45,51].
Lattice attacks can also solve similar HNP instances to re-
cover private keys for other signature schemes such as EPID
in the presence of side channel vulnerabilities [14]. Ronen et
al. [50] connected padding oracle attacks to the HNP. While
there exist other variants of the HNP, such as the modular in-
version hidden number problem [7] and the extended hidden
number problem [25], our attack is based on the original HNP
where the attacker learns information about the most signifi-
cant bits of the nonce. A second family of algorithms for solv-
ing the HNP is based on Fourier analysis. Bleichenbacher’s
algorithm [6] was the first to make this connection. Bleichen-
bacher’s Fourier analysis techniques can be augmented with
lattice reduction for the first stage of the attack, as shown by
De Mulder et al. [15]. Bleichenbacher’s original algorithm
is targeted at a scenario where only a very small amounts of
information is leaked by each signature, and the attacker can
query for a very large number of signatres; the De Mulder
variant requires fewer signatures, but in this setting the above
lattice techniques are more efficient. We use lattice attacks
because they are more efficient for the amount of side-channel
information we obtain.

Timing Attacks: Kocher showed that secret-dependent
timing behavior of cryptographic implementations can be
used to recover secret keys [32]. Since then, constant-time
operation, or at least secret-independent execution time, has
become a common requirement for cryptographic implemen-
tations. For example, the Common Criteria evaluation of cryp-
tographic modules, which is common for standalone TPMs,
includes testing for timing leakage. Brumley et al. showed
that remote timing attacks can be feasible across networks by
mounting an attack against RSA decryption as it was imple-
mented in OpenSSL [10]. Similarly, the OpenSSL ECDSA
implementation was vulnerable to remote timing attacks [9].
In the latter work, they also showed how lattice attacks can be
used to recover private keys based on the nonce information.
However, the practicality of such attacks has been questioned
in the real world [66] due to noise and low timing resolution.

In comparison, we show that such timing attacks have a
greater impact on TPMs, because of the high-resolution tim-
ing information and their specific threat model of a system-
level attacker. Timing side channels have also been used to
attack the implementation of cryptographic protocols. For
example, both the Lucky 13 attack [1] and Bleichenbacher’s
RSA padding oracle attack [37] exploit remote timing.

3 Timing Attack and Leaky Nonces

Our timing attacks have three main phases:
Phase 1: The attacker generates signature pairs and tim-

ing information and uses this information to profile a given
implementation. The timing oracle can be based on a remote
source, for example the network round-trip time, or precise
local source, as discussed in Section 3.1. In this pre-attack
profile stage, the attacker knows the secret keys and can use
this to recover the nonces, and thus has perfect knowledge of
the correlation between timing and partial information about
the secret nonce k that is leaked through this timing oracle.
As explained in Section 3.3, in our case this bias is related to
the number of leading zero bits (LZBs) in the nonce, which is
revealed by the timing oracle. For the vulnerable TPM imple-
mentations in this paper, signing a message with a nonce that
has more leading zero bits is expected to take less time.

Phase 2: To mount a live attack, the attacker has access
to a secret-related timing oracle as above and collects a list
of signature pairs and timing information from a vulnerable
TPM implementation. The attacker uses the signature timing
information obtained during the profiling phase to filter out
signatures and only keep the signature pairs (ri, si) that have
a specific bias in the nonce ki.

Phase 3: The attacker applies lattice-based cryptanalysis
to recover the private key d from a list of filtered signatures
with biased nonces ki. In the noisier cases, e.g. with timings
collected remotely over the network, filtering may not work
perfectly and the lattice attack may fail. In these cases, the
attacker can randomly chose subsets of filtered signatures,

2060 29th USENIX Security Symposium USENIX Association

and repeatedly run the lattice attack with the hope of leaving
the noisy samples out.

This section describes our custom timing analysis tool, and
shows how a privileged adversary can exploit the OS kernel to
perform accurate timing measurement of the TPM, and thus
discover and exploit timing vulnerabilities in cryptographic
implementations running inside the TPM. We then report the
vulnerabilities we discovered related to elliptic curve digital
signatures. Later, in Section 5, we combine the knowledge
of these vulnerabilities with the lattice-based cryptanalysis
discussed in Section 4 to demonstrate end-to-end key recovery
attacks under various practical threat models4.

3.1 Precise Timing Measurement

The TPM device runs at a much lower frequency than the host
processor, as it is generally implemented based on a power-
constrained platform such as an embedded microcontroller. A
modern Intel core processor’s cycle count can be used as a
high-precision time reference to measure the execution time
of an operation inside the TPM device. In order to perform
this measurement on the host processor entirely from software
while minimizing noise, we need to make sure that we can
read the processor’s cycle count right before the TPM device
starts executing a security-critical function, and right after the
execution is completed.

The Linux kernel supports device drivers to interact with
the TPM that support various common communication stan-
dards. Our examination of the TPM kernel stack and different
TPM 2.0 devices on commodity computers suggests that In-
tel fTPM uses the command response buffer (CRB) [60], and
dedicated hardware TPM devices use the TPM Interface Spec-
ification (TIS) [59] to communicate with the host processor.
The Linux TPM device driver implements a push mode of
communication with these interfaces, where the OS sends the
user’s request to the device, and checks in a loop whether the
operation has been completed by the device or not. As soon
as the completed status is detected, the OS reads the response
buffer and returns the results to the user. The status check for
this operation initially waits for 20 milliseconds to perform
another status check, and it doubles the wait time every time
the device is in a pending state.

This push mode of communication makes timing measure-
ment of TPM operations from user space less efficient and
prone to noise. To mitigate the noise, we initially develop
a kernel driver that installs hooks into the CRB and TIS in-
terfaces to modify the described behavior, and measure the
timing of TPM devices as accurately as possible. Later, we
move to more realistic settings, i.e. noisy user level access
without root privileges, then to settings where the TPM is
accessed remotely over the network.

4The source code for our timing analysis tool, lattice attack scripts, and a
subset of the data set is available at github.com/VernamLab/TPM-Fail.

Table 1: The CRB control area: The CRB interface does not
prescribe a specific access pattern to the fields of the Control
Area. The Start and Status fields are used to start a TPM
command and check the status of the device, respectively.

Field Offset Description

Request 00 Power state transition control
Status 04 Status
Cancel 08 Abort command processing
Start 0c A command is available for processing
Interrupt Control 10 Reserved
Command Size 18 Size of the Command (CMD) Buffer
Command Address 1c Physical address of the CMD Buffer
Response Size 24 Size of the Response (RSP) Buffer
Response Address 28 Physical address of the RSP Buffer

3.1.1 CRB Timing Measurement

CRB supports a control area structure to interface with
the host processor. The control area, as shown in Table 1,
is defined as a memory mapped IO (MMIO) on the Linux
OS in which the TPM drivers communicate with the device
by reading from or writing to this data structure. We install
a hook on the crb_send procedure that is responsible for
sending a TPM command to the device over the CRB interface.
By default, the driver sets the Start field in the control area
after preparing the command size and address of the command
buffer to trigger the execution of the command by the device.
Later on, the device will clear this bit when the command is
completed. Listing 1 shows the modification of crb_send, in
which the Start field is checked in a tight loop after trigger.
As a result, the crb_send will only return upon completion
of the command, and cycle counts are measured as close to
the device interface as possible.

t = rdtsc () ;
iowrite32 (CRB_START_INVOKE, &g_priv−>regs_t−>ctrl_start);
while ((ioread32(&g_priv−>regs_t−>ctrl_start) &

CRB_START_INVOKE) == CRB_START_INVOKE);
tscrequest [requestcnt ++] = rdtsc () − t ;

Listing 1: CRB Timing Measurement

3.1.2 TIS Timing Measurement

Similarly, the TIS driver uses a MMIO region to commu-
nicate with the TPM device. The first byte of this mapped
region indicates the status of the device. To measure accu-
rate timing of the TPM over TIS, we install a hook on the
tpm_tcg_write_bytes procedure. In the modified handler
(Listing 2), we check if the write operation issued by the TIS
driver stack is related to the trigger for the command execu-
tion, TPM_STS_GO. If this is the case, we check the buffer for
TPM_STS_DATA_AVAIL status, indicating the completion of

USENIX Association 29th USENIX Security Symposium 2061

https://github.com/VernamLab/TPM-Fail

the command execution, in a tight loop. Similar to CRB, the
cycle counts are measured close to the device interface.

enum tis_status {TPM_STS_GO = 0x20,
TPM_STS_DATA_AVAIL = 0x10, ...};

int tpm_tcg_write_bytes_handler (struct tpm_tis_data ∗data ,
u32 addr , u16 len , u8 ∗value){

...
if (len == 1 && ∗value == TPM_STS_GO &&

TPM_STS(data−>locality) == addr) {
t = rdtsc () ;
iowrite8 (∗value , phy−>iobase + addr);
while (!(ioread8 (phy−>iobase + addr) &

TPM_STS_DATA_AVAIL));
tscrequest [requestcnt ++] = rdtsc () − t ;

} ...

Listing 2: TIS Timing Measurement

3.2 Timing Analysis of ECDSA

We profiled the timing behavior of the ECDSA signature
schemes using the NIST-256p curve. As shown in Table 2,
we report the average number of CPU cycles to compute the
ECDSA signatures for the aforementioned platforms. This
average cycle count for Intel fTPM is different for each config-
uration due to the CPU’s working frequency, but the average
execution time is similar in different configurations: for exam-
ple, we observe the highest cycle count on the Core i7-7700
machine, which is a desktop processor with base frequency
of 3.60 GHz. We can calculate the average execution time for
ECDSA on Intel fTPM as 4.7×108 cycles/3.6 GHz = 130ms.
As mentioned in Section 2.2, the working frequency of the
Intel fTPM device is relatively slow, which facilitates our ob-
servation of timing vulnerabilities on such platforms. As the
numbers for the dedicated hardware TPM chips suggest, there
is a significant difference in execution time between different
implementations among various manufacturers.

To test the ECDSA signature scheme, we generated a sin-
gle ECDSA key using the TPM device, and then measured
the execution time for ECDSA signature generation on the
device. As mentioned in Section 2.3, the security of ECDSA
signatures depends on the randomly chosen nonce. The TPM
device must use a strong random number generator to gener-
ate this nonce independently and randomly for each signing
operation to preserve the security of the ECDSA scheme [43].

Our analysis reveals that Intel fTPM and the dedicated TPM
manufactured by STMicroelectronics leak information about
the secret nonce in elliptic curve signature schemes, which
can lead to efficient recovery of the private key. As discussed
in Section 6, we also observe non-constant-time behavior by
the TPM manufactured by Infineon which does not appear
to expose an exploitable vulnerability. From our experimen-
tal observations, only the TPM manufactured by Nuvoton
exhibits constant-time behavior for ECDSA (Figure 21).

Figure 2: Histogram of ECDSA (NIST-256p) signature gen-
eration timings on the STMicroelectronics TPM as measured
on a Core i7-8650U machine for 40,000 observations.

244 245 246 247 248 249 250 251 252 253 254 255 256

Bit Length

8.5

8.55

8.6

8.65

8.7

8.75

8.8

8.85

C
P

U
 C

y
c
le

s

10
7

Figure 3: Box plot of ECDSA (NIST-256p) signature genera-
tion timings by the bit length of the nonce. We observe a clear
linear relationship between the two for the STMicroelectron-
ics TPM. Each box plot indicates the median and quartiles of
the timing distribution.

3.3 Discovered Vulnerabilities

STMicroelectronics ECDSA Scalar Multiplication: Fig-
ure 2 shows an uneven distribution for the STMicroelectron-
ics TPM where there are more leading zero bits (LZBs) on
the left side of the distribution. We used the private key d
to compute each nonce ki for each profiled signature (ri,si)
by computing ki = s−1

i (H(m)+dri) mod n. Figure 3 shows
a linear correlation between the execution time and the bit
length of nonce. This shows that for each additional zero bit,
the cycle count differs by an average of 2×105 cycles. This
leakage pattern suggests a bit-by-bit scalar point multiplica-
tion implementation that skips the computation for the most
significant zero bits of the nonce. As a result, nonces with
more leading zero bits are computed faster.

Intel fTPM ECDSA Scalar Multiplication: Figure 4 shows
three clearly distinguishable peaks centered around 4.70,
4.74, and 4.78. Scalar multiplication algorithms to compute
r = (kQ)x are commonly implemented using a fixed-window

2062 29th USENIX Security Symposium USENIX Association

Table 2: Tested Platforms with Intel fTPM or dedicated TPM device.

Machine CPU Vendor TPM Firmware/Bios ECDSA (Cycle) RSA (Cycle)

NUC 8i7HNK Core i7-8705G Intel PTT (fTPM) NUC BIOS 0053 4.1e8 7.0e8
NUC 7i3BNK Core i3-7100U Intel PTT (fTPM) NUC BIOS 0076 3.2e8 5.4e8

Asus GL502VM Core i7-6700HQ Intel PTT (fTPM) Latest OEM 3.5e8 5.9e8
Asus K501UW Core i7 6500U Intel PTT (fTPM) Latest OEM 3.4e8 5.8e8
Dell XPS 8920 Core i7-7700 Intel PTT (fTPM) Dell BIOS 1.0.4 4.7e8 8.0e8

Dell Precision 5510 Core i5-6440HQ Nuvoton rls NPCT NTC 1.3.2.8 4.9e8 1.8e9
Lenovo T580 Core i7-8650U STMicro ST33TPHF2ESPI STMicro 73.04 8.7e7 9.2e8

NUC 7i7DNKE Core i7-8650U Infineon SLB 9670 NUC BIOS 0062 1.4e8 5.1e8

Figure 4: Histogram of ECDSA (NIST-256p) signature gen-
eration timings on Intel fTPM as measured on a Core i7-7700
machine for 40K observations.

algorithm that iterates window by window over the bits of the
nonce to compute the product kQ of the scalar k and point
Q. In some implementations, the most significant window
(MSW) starts at the first non-zero window of most significant
bits of the scalar, which may leak the number of leading zero
bits of the scalar [14]. With respect to the observed leakage
behavior (Figure 4), we expect that:
• The slowest signatures clustered in the rightmost peak

represent those with full length k, or in other words, those
that have a non-zero most significant window.
• The faster signatures clustered in the second peak may

represent signatures computed using nonces ki that have
a full zero MSW but a non-zero second MSW.
• The faster signatures clustered in the third peak may

represent signatures computed using nonces ki that have
two full zero MSWs.
• The fastest signatures on the left peak are generated by

nonces with three full MSWs of zero bits.
In addition, the relative sizes of the peaks suggest that the

implementation we tested uses a 4-bit fixed window (Figure 5).
This demonstrates clear leakage of the length of the nonce,
which can easily be exploited using a lattice attack. To summa-
rize, Algorithm 1 matches the observed timing behavior of the
scalar multiplication inside the Intel fTPM. This observation

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Bit Length

4.7

4.75

4.8

4.85

C
P

U
 C

y
c
le

s

10
8

Figure 5: Box plot of ECDSA (NIST-256p) signature genera-
tion timings depending on the nonce bit length shows a clear
step-wise relationship between the execution time and the bit
length of the nonce for Intel fTPM.

also aligns with previous vulnerabilities [65] which affected
earlier versions of Intel IPP cryptography library [27].

Intel fTPM ECSchnorr Scalar Multiplication: The EC-
Schnorr algorithm also uses a secret nonce and scalar mul-
tiplication as the first operation of signature generation. We
performed a similar experiment as above, this time using the
tpm2_quote command of the TPM 2.0 device. tpm2_quote
generates a signature using the configured key, but the sig-
nature is computed over the PCR registers rather than an
arbitrary message. The timing observations suggest that EC-
schnorr executes about 1.4 times faster than ECDSA, which
implies an independent implementation, but one that is still
vulnerable to the same class of timing leakage5 (Figure 18).

Intel fTPM BN-256 Curve Scalar Multiplication: As men-
tioned earlier, TPM 2.0 also supports the pairing friendly
BN-256 curve, which is used as part of the ECDAA signature
scheme. To simplify our experiment and verify that ECDAA
is also vulnerable, we configured ECDSA to operate using the
BN-256 curve rather than attacking the ECDAA scheme. The
timing observation of ECDSA is almost doubled by using the

5The vendor acknowledged this as a separate vulnerability during the bug
bounty program. CVE-2019-11090 has been assigned for all issues.

USENIX Association 29th USENIX Security Symposium 2063

Algorithm 1 Fixed Window Scalar Multiplication

1: T ← (O,P,2P, . . . ,(2w−1)P)
2: procedure MULPOINT(window size w, scalar k repre-

sented as (km−1, . . . ,k0)2w)
3: R← T [(k)2w[m−1]]
4: for i← m−2 to 0 do
5: for j← 1 to w do
6: R← 2R
7: end for
8: end for
9: return R

10: end procedure

BN-256 curve. It is also vulnerable, as it leaks the leading
zero bits of the secret nonce 5 (Figure 19).

4 Lattice-Based Cryptanalysis

Now that we have established that our targeted implementa-
tions leak information about the nonces used for elliptic curve
signatures, we show how to use standard lattice techniques to
recover the private signing key from this information.

4.1 Lattice Construction

The hidden number problem lattice attacks allow us to re-
cover ECDSA nonces and private keys as long as the nonces
are short. Since the nonces are uniformly selected from Z∗n,
the ki will follow an exponentially decreasing distribution of
lengths, i.e. half will have a zero in the the most significant bit
(MSB), a quarter will have the most significant two bits zero,
etc. We will refer to this event as two leading zero bits or 2
LZBs for short. Clearly, a randomly selected set of nonces
ki will not be likely to be short, and the lattice attack will
not be expected to work. This is where side channels prove
invaluable to the attacker. Given some side information that
reveals the number of MSBs of ki that are zero, one can filter
out the signatures with short nonces, yielding a set of signa-
tures where the ki are all short [8, 66]. This is why having
constant-time implementations of DSA and ECDSA schemes
is crucial.

To mount an attack on ECDSA, we follow the approach of
Howgrave-Graham and Smart [26] and Boneh and Venkate-
san [8] in reducing ECDSA key recovery to solving the Clos-
est Vector Problem (CVP) in a particular lattice. We can then
follow the strategy outlined by Benger et al. [5] and embed
this lattice into a slightly larger lattice in which the desired
vector will appear as a short vector that can be found using
standard lattice basis reduction algorithms like LLL [34] or
BKZ [52]. Our first step is to define the target lattice from
ECDSA signature samples ri,si and mi. Consider a set of t
signature samples si = k−1

i (H(mi)+dri) mod n; rearranging

slightly, these define a set of linear relations

ki− s−1
i rid− s−1

i H(mi)≡ 0 mod n

where the nonces ki and the secret key d are unknowns; we
thus have t linear equations in t + 1 unknowns. Let Ai =
−s−1

i ri mod n and Bi =−s−1
i H(mi) mod n; we thus rewrite

our t relations in the form ki +Aid +Bi = 0 mod n. Let K
be an upper bound on the ki. Now we consider the lattice
generated by integer linear combinations of the rows of the
following basis matrix

M =

n
n

. . .
n

A1 A2 . . . At K/n
B1 B2 . . . Bt K

(1)

The first t columns correspond to each of the t relations
we have generated, with the modulus n on the diagonal of
each of these columns; the weighting factors of K/n and K
in the last two columns have been chosen so that the desired
short vector containing the secret key will have coefficients
all of approximately the same (small) size, and therefore be
more likely to be found than an unbalanced vector. In par-
ticular, this lattice has been constructed so that the vector
vk = (k1,k2, . . . ,kt ,Kα/n,K) is a relatively short vector in this
lattice; by construction it is d times the second-to-last row
vector of the basis, plus the last vector, with the appropriate
integer multiple of n subtracted from each column correspond-
ing to the modular reduction in each of the t relations. If this
vector vk can be found, the secret key d can be recovered from
the second-to-last coefficient of this vector.

Because this target vector vk is short, we hope that a lat-
tice reduction algorithm like LLL or BKZ might find it, thus
revealing the secret key. The inner workings of these lat-
tice basis reduction algorithms are complex; for the pur-
poses of our attack, we use them as a black box and the
only fact that is required is that the LLL algorithm is guar-
anteed in polynomial time to produce a lattice vector of
length |v| ≤ 2(dimL−1)/4(detL)1/dimL; this is an exponential
approximation for the shortest vector in the lattice. In prac-
tice on random lattices, the LLL algorithm performs some-
what better. It has been observed to find vectors of length
1.02dimL(detL)1/dimL [44]. For the lattices of relatively small
dimension we deal with here, the approximation factor does
not play a large role in the analysis, but for large dimensional
lattices, the BKZ algorithm achieves a better approximation
factor at the cost of an increased running time. See Boneh
and Venkatesan [8] and Nguyen and Shparlinksi [42, 43] for
a formal analysis and bounds on the effectiveness of this
algorithm.

There are two optimizations of this lattice construction
that are useful for a practical attack. The first offers only a

2064 29th USENIX Security Symposium USENIX Association

minor practical improvement; we can eliminate the variable
d by, for example, scaling the first relation by s0r−1

0 s−1
i ri

and subtracting it from the ith equation to obtain t−1 linear
relations in t unknowns ki, 0≤ i < t:

ki− s0r−1
0 s−1

i rik0− s−1
i H(mi)+ r−1

0 s−1
i riH(mi)≡ 0 mod n

This has the effect of reducing the lattice dimension by one.
Otherwise, the lattice construction is the same, except that we
replace the K/n scaling factor in the second-to-last row of the
basis matrix with a 1. The second practical optimization is to
note that since the ki are always positive, we can increase the
bias by one bit by recentering the nonces around 0. That is, let
k′i = ki−K/2; if 0≤ ki ≤ K, we now have−K/2≤ k′i ≤ K/2.
This has the effect of increasing the bias by one bit, which is
significant in practice. We give empirical results applying this
attack to our scenario in Section 5.

4.1.1 Modification of the Lattice for ECSchnorr

We formulate the problem as in Equation 1 by writing

Ai =−r−1
0 ri mod n and Bi = s−1

i + s0r−1
0 ri mod n.

At that point, we apply the lattice-based algorithm exactly as
in Section 4.1.

5 ECDSA Key Recovery on TPMs

We put the components of our attacks together to demonstrate
end-to-end key recovery attacks in the TPM threat model. We
order the presentation of our attacks from weakest to strongest
threat model: 1) We begin with the strongest adversary, who
has system-level privileges with the ability to load Linux
kernel modules (LKMs). This adversary uses our analysis
tool to collect accurate timing measurements. 2) We reduce
the privileges of the adversary to the user-level scenario in
which the execution time of the kernel interface can only be
measured from user space. 3) We show how key recovery is
still possible with an adversary who can simply measure the
network round-trip timings to a remote vicitim.

In all our experiments, we initially programmed the TPM
devices with known keys in order to unblind the nonces and
facilitate our analysis. We have also verified the success of
attacks on ST TPM and Intel fTPM using unknown keys gen-
erated by each device. For this, we used the TPM to internally
generate secret keys that remained unknown to us, exported
the public key, ran the experiments, and finally verified the
recovered secret key using the exported public key.

5.1 Threat Model I: System-Level Adversary
In this first attack, we used administrator privileges to col-
lect 40,000 ECDSA signatures and precise timings as shown

20 30 40 50 60 70 80 90 100

Latice Dimension

0

20

40

60

80

100

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 4-bit
 8-bit
 12-bit

Figure 6: System Adversary: Key recovery success probabil-
ities plotted by lattice dimension for 4-, 8-, and 12-bit biases
for ECDSA (NIST-256p) with administrator privileges.

in the histogram in Figure 4, and filtered the samples to se-
lect those with short nonces. We used the execution time to
classify these samples into three conjectured nonce length
categories based on the observed 4-bit fixed window: those
with four, eight, or twelve most significant bits set to zero. We
then recovered the nonces and secret keys using the attacks
described in Section 4.1, implemented in Sage 8.4 [61] using
the BKZ algorithm with block size 30 for lattice basis reduc-
tion. We verified the candidate ECDSA private keys using the
public key.

Figure 6 summarizes the key recovery results for a system-
level attacker, using samples obtained via simple threshold-
ing with the filter ranges for 12, 8, and 4 LZBs, as shown
in Figure 4. For example, to recover samples with 4 LZBs,
we filtered signatures that took anywhere from 4.75×108 to
4.8× 108 cycles to generate. For the 4-bit bias we need 78
signatures to reach a 92% key recovery success probability.
For the 8-bit and 12-bit cases, we can reach 100% success
rate with only 35 and 23 signatures, respectively. However,
we need to collect more signatures in total in order to gen-
erate enough signatures with many LZBs. The optimal case,
with respect to the total number of signature operations, turns
out to be using nonces with a 4-bit bias. Although we need
78 signatures to carry out the attack for the 4-bit bias, since
each one occurs with probability of 1/16, it takes only about
1,248 signing operations to have these samples. In our setup
on the i7-7700 machine, our collection rate is around 385
signatures/minute. Therefore, we can collect enough samples
in under four minutes. In the 8-bit case, we need to perform
about 8,784 ECDSA signing operations to obtain the 34 suit-
able signatures necessary for a successful lattice attack. In
total it takes less than 23 minutes to collect 8,784 signatures.
Once the data is collected, key recovery with lattice reduc-
tion takes only 2 to 3 seconds for dimension 30, and about
a minute for dimension 70. The running time of lattice basis
reduction can increase quite dramatically for larger lattice
dimensions, but the lattice reduction step is not the bottleneck

USENIX Association 29th USENIX Security Symposium 2065

for these attack parameters.

Intel fTPM ECSchnorr Key Recovery: We carried out a
similar attack against ECSchnorr by modifying the the lattice
construction, as described in Section 4.1.1. We were able
to recover the key with 40 samples with 8 LZBs. A total
of 10,240 signatures were required to perform this attack,
which can be collected in about 27 minutes. We also were
able to recover the key for the 4-bit case with 65 samples. We
obtained these 4-bit samples from 1,040 signing operations
that took 1.5 minutes to collect.

STMicroelectronics TPM ECDSA Key Recovery: We also
tested our approach against the dedicated STMicroelectron-
ics TPM chip (ST33TPHF2ESPI) in the system-level adver-
sary threat model. This target is Common Criteria certified
at EAL4+ for the TPM protection profiles and FIPS 140-2
certified at level 2 [57]. It is thus certified to be resistant to
physical leakage attacks, including timing attacks [56].

We measured the execution times for ECDSA (NIST-
256p) signing computations on a Core i7-8650U machine
for 115,000 observations. The machine is equipped with the
ST33TPHF2ESPI manufactured by STMicroelectronics. The
administrative privileges allowed us to run our custom driver
and collect samples with a high resolution. Following the
vulnerability discussion in Section 3.3, we began by filtering
out any data with execution time below 8× 108 cycles to
eliminate noise. We then sorted the remaining signatures by
their execution times. We were able to recover the ECDSA
key after generating 40,000 signatures. We recovered the key
using the fastest 35 signatures and running a lattice attack
assuming a bias of 8 most significant zero bits in the nonces.
The required 40,000 samples can be collected in about 80
minutes on this target platform. We are also able to recover
the key from 24 samples by assuming 12 LZBs. However,
this required generating 219,000 total signatures.

5.2 Threat Model II: User-Level Adversary
We now move to a less restrictive model, that is, from a system-
level adversary to a user-level adversary where only a user
API with user-level privileges is provided to perform the sig-
nature operations and measure the execution time. Without
the installed kernel measurement tool, we obtain the distribu-
tion of signing times shown in Figure 7. The noise makes it
impossible to precisely distinguish the samples according to
the number of leading zero bits in the nonces. However, we
observe that we have a biased Gaussian distribution, and by
choosing signatures that have a short execution times, we can
still recover the ECDSA key.

We start our analysis by noting that in the system-level
adversary setting shown in Figure 4, the largest peak is at
4.82×108 cycles, while in Figure 7 the largest peak is around
4.97×108. This is expected since we incur additional latency
by measuring the delay from user space. This noise is indepen-

Figure 7: User Adversary: Histogram of ECDSA (NIST-
256p) signature computation times on the Core i7-7700 ma-
chine for 40,000 observations. The measurements were col-
lected by a user without administrator privileges.

dent from the bias and therefore we set our filtering thresholds
by assuming the entire histogram is shifted by moving the
profiling measurements to user space. We collected a total
of 219,000 samples. The probability of obtaining a signature
sample with 8 LZBs is 1/256, which means that we expect
about 855 such signatures among our samples. However, due
to the measurement noise we set a more conservative filtering
threshold of 4.76× 108 cycles, and obtained only 53 high
quality signatures. Experimentally, we observed that it took
34 signatures to recover the key with 100% success rate. Run-
ning BKZ with block size 30 for the lattice of this size took 2
to 3 seconds on our experimental machine. After obtaining
the key, we recovered the nonces and verified that most of
them had the eight MSBs set to zero6. If we had used the
entire distribution we would need about 256× 34 = 8,704
signatures. We use the empirical numbers from our experi-
ments to estimate the likelihood of obtaining such samples
in our experimental setup given our choice of thresholds and
the noise we experienced; in this case the probability of ob-
taining such a sample is 53/855. The estimated total number
of signatures required to carry out the attack is then 140,413,
which takes about 163 minutes to collect. In the 4-bit case, the
thresholds we used to filter the samples were those between
4.8× 108 and 4.81× 108 cycles. With 77 signatures we re-
cover the key with overwhelming probability. This translates
to 77×16 = 1,232 signatures. But we also need to account
for filtering from a narrower range, which results in 1,121
samples out of the 13,687 expected signatures with 4 LZBs
from our total of 219,000 samples. In this case, we estimated
that in total 15,042 signatures are required for the attack,
which takes approximately 18 minutes to collect. The key
recovery success rate is shown in Figure 8.

6There were few samples with 12 zero MSBs in the analysis

2066 29th USENIX Security Symposium USENIX Association

20 30 40 50 60 70 80 90 100

Latice Dimension

0

20

40

60

80

100
S

u
c
c
e

s
s
 P

ro
b

a
b

ili
ty

 user 4-bit
 user 8-bit
 remote-udp 4-bit
 remote-udp 8-bit

Figure 8: User-Level Adversary and Remote UDP Attack:
Key recovery success probabilities by lattice dimension for
4-bit and 8-bit cases for ECDSA (NIST-256p) with timings
collected from the user space in one scneario, and over the
network from a remote client in another scenario.

5.3 Threat Model III: Remote Adversary

In this section, we demonstrate the viability of over the net-
work attacks from clients targeting a server assisted by an
on-board TPM. Specifically, we target StrongSwan, an open-
source IPsec Virtual Private Network (VPN) software server.
To this end, we first profile a custom synthesized UDP clien-
t/server setup where we can minimize noise. This allows to
gauge processing and networking timings. We later analyze
the timing leakage as observed by a remote client from a
server running StrongSwan VPN software.

5.3.1 Remote UDP Attack

We created a server application that uses the Intel fTPM to
perform signing operations. The server receives a request for
a signature and returns the signature to the user over a sim-
ple protocol based on UDP. The client (the attacker) sends
requests to the server and collects the signatures, while timing
the request/response round-trip time. Figure 9 shows the col-
lected timing information for 40,000 requests. Although there
is some noise in the measurement, we can still distinguish
signatures that are generated using short nonces. Figure 8
shows our key recovery results.

The experimental results match our expectations outlined
earlier, since the TPM takes around 200 milliseconds to gener-
ate a signature, which is a large enough window to leak timing
information over the network. We filtered 8-bit samples by
thresholding at 4.93× 108 cycles and for 4-bit samples at
4.97×108 cycles measured on the client. For the case of 4-
bit bias, we need 78 signatures above our timing threshold
to recover the key, which corresponds to 1,248 signature op-
erations by the server. This can be collected in less than 4
minutes. For the case of 8-bit bias we recover the key using 47
signatures with high probability, which requires 31 minutes
of signing operations. These results demonstrate that remote

Figure 9: Histogram of ECDSA (NIST-256p) signature com-
putation times over the network for 40,000 observations. A
server application running on our Core i7-8705G machine
is performing signing operations over a simple UDP-based
protocol. The client measures the request/response round-trip
time to receive a new signature after each request.

attacks on fTPM are viable. Next we explore this direction
further by targeting the StrongSwan VPN product.

5.3.2 Remote Timing Attack against StrongSwan

StrongSwan is an open-source IPsec Virtual Private Network
(VPN) implementation that is supported by modern OSes,
including Linux and Microsoft Windows. VPNs can use the
IPSec protocol for encryption and authentication. The IPsec
key negotiation happens via the IKE protocol, which can use
either pre-shared secrets or digital certificates for authenti-
cation. StrongSwan further supports IKEv2 with signature-
based authentication using a TPM 2.0 supported device [58].
Here, we attack a StrongSwan VPN Server that is config-
ured to use the TPM for digital signature authentication by
measuring the IKE authentication handshake.
IKEv2 Interleaved Authentication with TPM signatures:
We configure our server to use the standard IKEv2 signature
authentication with interleaved handshakes where the authen-
tication is performed by an IKE_SA_INIT and a IKE_AUTH
exchange between the client and server. Figure 10 shows
these two handshakes, where the second handshake triggers
the TPM device to sign the authentication message. The
first exchange of the IKE session, IKE_SA_INIT, negotiates
security parameters, sends nonces and performs the Diffie-
Hellman Key exchange. After the first exchange, the second
exchange, IKE_AUTH, can be encrypted using the shared
Diffie-Hellman (DH) key. In the second exchange, the two
parties verify each others’ identities by signing each others’
nonces. We generated a unique ECDSA attestation key (AK)
using the Intel fTPM device on the VPN server. The TPM
device only exposes the public portion of the AK. Then we
generated a self-signed attestation identity key (AIK) certifi-
cate and stored the ECDSA AIK certificate in the non-volatile
memory of the TPM device. During the second exchange, the

USENIX Association 29th USENIX Security Symposium 2067

t

Time the Auth
 handshake

IKE_INIT [Proposal , gx, nI , ...]

IKE_INITresponse [Proposal , gy , nR , ...]

sshared secret ← PRFh(gxy)

IKE_AUTH [SignskI (nR , ...)]

IKE_AUTHresponse [SignskR (nI , ...)]

skR

TPM_Sign [nI , ...]

TPMresponse [SignskR (nI , ...)]

TPMVPN ServerVPN Client

Figure 10: Steps of IKE_SA_INIT and IKE_AUTH exchange
between the client and server running StrongSwan VPN.

server asks the TPM device holding the private AK to sign
the client’s nonce and return the signature to the client. When
the client receives the signature, she can verify that her nonce
is signed with the legitimate server’s AK corresponding to
the AIK certificate. However, a malicious remote client, or a
local user who can exploit the timing behavior to recover the
private AK can forge valid signatures, and act as a legitimate
VPN server.

StrongSwan VPN Key Recovery:
As a malicious client, we perform the following steps to

collect timing measurement and recover the secret AK:
1. The malicious client performs the first handshake with

the server to exchange security parameters, nonces, and
completes a Diffie-Hellman exchange.

2. The malicious client starts a timer and initiates the sec-
ond handshake. After the server signs the client’s nonce
and other security parameters using the TPM device, the
malicious client will receive the signature and measure
the total handshake time. The TPM signature timing vul-
nerability we discovered may delay this exchange based
on the nonce used in signature generation, leaving an
observable effect on network packet timings.

3. The malicious client stores the network timing and the
received signature pairs and simply discards the session
by sending an IKE_INFORMATION packet to the server,
and it repeats this process starting from the first step to
collect enough time measurements and signatures.

To determine if there is any exploitable leakage observed over
the network, we collected both remote timings on the client
and local timings on the server running a StrongSwan VPN
software on our Core i7-8705G machine, where ECDSA sig-
natures are computed by an Intel fTPM. The histograms for
40,000 timing measurements observed both locally and on the
server are shown in Figure 4 and Figure 11. The clearly identi-
fiable separate peaks corresponding to 4-bit and 8-bit leakage
in Figure 4 are no longer observable with measurements col-
lected over the noisy network in Figure 11. Still, the relative
location of the peaks in the local timings histogram can be

Figure 11: Histogram of ECDSA (NIST-256p Curve) signing
computation times over the network for 40K observations.
The server is running StrongSwan VPN software equipped
with Intel fTPM. The client application measures the re-
quest/response round-trip time.

used as a template to design filters to be applied on the remote
timings. For this, we need to account for the change in clock
frequencies. As a simple heuristic, we scale the filter ranges
in Figure 4 by the ratio of the time when the largest peaks
are observed, i.e. 3.41/4.82. We also adjusted the filters to
account for the additional delay due to remote measurements.
Finally we reduced the widths to cover the left half of the dis-
tributions, since they yield cleaner samples. For 8-bit samples
we filter between 3.32× 108 and 3.34× 108, and for 4-bit
3.35×108 and 3.36×108, obtaining 153 8-bit and 222 4-bit
samples. We then applied the lattice attacks from Section 4.1
to these samples using our Sage implementation and BKZ-2.0
reduction with block size 30 over many iterations. The results
are shown in the graph in Figure 12. For both the 4-bit and
8-bit cases, we recover the key with high probability after
dimensions 34 and 80, respectively. In the 4-bit case we used
222 out of the expected 1/16×198K = 12,375 4-bit samples.
To end up with 80 4-bit samples we would need to samples
80×16 = 1,280 samples. However since we are filtering for
high quality samples within the nonces with 4-bit bias with
probability 222/12,375 we need to also take that into account.
This means we need about 1,280×12,375/222= 71,351 sig-
natures. In the 8-bit case used 153 out of the 774 expected
8-bit samples. This means we need about 34×256 = 8,704
samples. Accounting for filtering with probability 153/774,
we need about 8,704×774/153 = 44,032 signatures. In this
case, targeting the nonces with 8-bit bias turns out to be more
efficient, as the noise introduced by measuring remotely on
the client side has rendered 4-bit samples harder to distinguish,
and therefore these require more aggressive filtering. We can
collect about 139 signatures per minute from StrongSwan.
This means we can collect enough samples in about 5 hours
16 minutes.

In our attack, we queried the VPN server directly to collect
the signatures and timings. This attack can also be performed
by an active man-in-the-middle (MiTM) adversary who hi-

2068 29th USENIX Security Symposium USENIX Association

20 30 40 50 60 70 80 90 100

Latice Dimension

0

10

20

30

40

50

60

70
S

u
c
c
e

s
s
 P

ro
b

a
b

ili
ty

 4-bit
 8-bit

Figure 12: Remote StrongSwan Attack: Key recovery suc-
cess probabilities by lattice dimension for the 4-bit and 8-bit
cases for ECDSA (NIST-256p) with samples collected on the
client.

jacks a DH key exchange. However, there is no additional
benefit to be gained over the malicious client since the at-
tacker is active in both scenarios. A passive attack would not
be possible, since the signatures are encrypted with the shared
secret between the client and the server. Another important
factor that affects the viability of the attack is networking
noise. Depending on the type and traffic of the network, e.g.
networks with high bandwidth, or local organizational net-
works and local private networks on the cloud, the success
rate of the attack will vary. Typically in cloud environments,
network connections between cloud nodes tend to have higher
bandwidth and more stable connections, and thus will have
less timing noise.

6 Discussion

Infineon ECDSA Timing Behavior: Figure 13 shows that
the TPM manufactured by Infineon experiences non-constant-
time behavior for ECDSA. We performed similar analysis by
observing the correlation of LZBs in the nonce and timing
(Figure 20), and we did not observe any exploitable bias based
on the timings. We also performed other intuitive tests such as
looking at the correlation between the timing behavior and the
occurence of 1s. None of our tests were successful in finding
time-dependent bias in the nonce.

RSA Timing Behavior: Using the methodology described
in Section 3.1, we also profiled the timing behavior of the
RSA signature scheme. In Table 2, we report the average
number of CPU cycles to compute RSA signatures for five
configurations that support Intel fTPM and three different
configurations with a dedicated TPM chip. For this test, we
generated 40,000 valid 2048-bit RSA keys, programmed the
TPM with these keys one at a time, and measured timings for
RSA signing operations on the TPM.

The timing distributions for the dedicated TPM devices
manufactured by Infineon and STMicroelectronics are fairly

Table 3: Summary of our key recovery results.

Threat Model TPM Scheme #Sign. Time

Local System ST TPM ECDSA 39,980 80 mins
Local System fTPM ECDSA 1,248 4 mins
Local System fTPM ECSchnorr 1,040 3 mins
Local User fTPM ECDSA 15,042 18 mins
Remote SSwan fTPM ECDSA 44,032 ∼5 hrs

uniform, as shown in Figure 16 and Figure 17. In contrast,
the distributions in Figure 14 and Figure 15 show that RSA
signature generation is not constant time on Intel fTPM and the
dedicated Nuvoton TPM; rather, it has a logarithmic timing
distribution that depends on the key bits.

This type of key-dependent timing behavior has previously
been observed for the RSA implementation of Intel’s IPP
Cryptography library [65]. This implementation is based on
the Chinese Remainder Theorem (CRT) [17], and the tim-
ing variation is due to the modular inversion operation’s use
of the recursive Extended Euclidean Algorithm (EEA)7. Af-
ter the CRT components of the signature are computed, the
EEA is employed to compute the modular inverses that are
needed to reconstruct the final signature. EEA performs mod-
ular reductions using division and recurses according to the
Euclidean algorithm until the remainder is zero. In this case,
the observed timing behavior leaks the number of divisions.
Although we observe key-dependent leakage, the EEA algo-
rithm operates serially, and we may only recover a few initial
bits of independent RSA keys. This does not seem to leak
enough information to recover the full RSA keys using lattice-
based or similar methods, which require a larger proportion of
known bits of the secret key for full RSA key recovery. [13]

7 Countermeasures

Software-based countermeasures can be temporarily deployed
to mitigate the user and network attacks we discuss. The
OS can add a pre-determined delay to the TPM interface
for TPM commands to ensure that it is executed in constant
time. However, this requires precise estimation of an upper
bound for the execution time for these operations. This is
not trivial, since the execution times vary among different
TPMs. An intrusion detection (IDS) system may also be able
to detect such attacks by inspecting API calls and/or network
traffic. However, IDS rules can be avoided in many cases
by determined adversaries, and they may suffer from false
positives. For example, an adversary can introduce random
delay between requests or combine the malicious requests
with benign ones to circumvent detection.

Constant-time implementation techniques are known, but

7During disclosure Intel also confirmed that a version of the Intel IPP
Cryptography library was running in Intel fTPM.

USENIX Association 29th USENIX Security Symposium 2069

these incur additional development and execution costs. The
standard defense is to deploy these techniques as firmware
and software patches, or to replace the vulnerable TPM when
patching is not feasible. Intel has promised patches for Intel
fTPM, which is executed as part of the Intel Management
Engine. We have also shared our tools and techniques with ST,
and they are evaluating new versions of their products based
on our findings. It is important that these countermeasures
do not compromise the randomness and uniformity of the
ECDSA nonce [67].

8 Conclusions

Since TPMs act as a root of trust, most physical TPMs have
undergone validation through FIPS 140-2, which includes
physical protection, as well as the more rigorous certification
based on Common Criteria up to levels of EAL 4+. This certi-
fication is intended to ensure protection against a wide range
of attacks, including physical and side-channel attacks against
its cryptographic capabilities. However, this is the second time
that the CC evaluation process has failed to provide expected
security guarantees [41]. This clearly underscores the need
to reevaluate the CC process. Given the rapid proliferation
of side-channel attacks, it would be advisable to switch to a
continuously evolving evaluation process. We also note that
another potentially vulnerable trusted platform is a Hardware
Security Module (HSM). Recent works have already demon-
strated that HSMs have more severe vulnerabilities [29]. We
expect HSMs to have similar security issues, since most have
not even been certified or tested by an external authority.

The vulnerabilities discovered in this paper apply to a wide
range of computing devices. The vulnerable Intel fTPM is
used by many PC and laptop manufacturers, including Lenovo,
Dell, and HP. Many new laptop manufacturers prefer using
the integrated Intel fTPM rather than adding extra hardware.
The Intel fTPM is somewhat comparable to a hardware TPM
since it isolates execution in an isolated 32-bit microcontroller.
It is also widely used by the Intel IoT platform. Our results
on the ST TPM, however, show that even OEMs making a
conservative choice and trusting CC-certified hardware TPMs
may fall victim to side-channel key recovery attacks. More
specifically, we demonstrated vulnerabilities in Intel fTPM
and STMicroelectronics TPM devices. We found additional
non-constant execution timing leakage in Infineon and Nu-
voton TPMs. Concretely, we managed to recover ECDSA
and ECSchnorr keys by collecting signature timing data with
and without administrative privileges. Further, we managed to
recover ECDSA keys from a fTPM-endowed server running
StrongSwan VPN over a noisy network as measured by a
client. The fact that a remote attack can extract keys from a
TPM device certified as secure against side-channel leakage
underscores the need to reassess remote attacks on crypto-
graphic implementations, which had been considered a solved
problem.

Acknowledgments
We thank Lejla Batina and the anonymous reviewers for their
valuable comments for improving the quality of this paper.

This work was supported by the National Science Foun-
dation under grants no. CNS-1513671, CNS-1651344, and
CNS-1814406. Additional funding was provided by a gener-
ous gift from Intel. Heninger performed some of this research
while visiting Microsoft Research New England.

References
[1] N. J. Al Fardan and K. G. Paterson. Lucky Thirteen: Breaking the TLS

and DTLS Record Protocols. In 2013 IEEE Symposium on Security
and Privacy, pages 526–540, May 2013.

[2] A ARM. Security technology building a secure system using trustzone
technology (white paper). ARM Limited, 2009.

[3] Sundeep Bajikar. Trusted Platform Module (TPM) based security on
notebook pcs-white paper. Mobile Platforms Group Intel Corporation,
1:20, 2002.

[4] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic
Curves of Prime Order. In Bart Preneel and Stafford Tavares, editors,
Selected Areas in Cryptography, pages 319–331, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[5] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom.
“Ooh Aah... Just a Little Bit” : A Small Amount of Side Channel
Can Go a Long Way. In Lejla Batina and Matthew Robshaw, editors,
Cryptographic Hardware and Embedded Systems – CHES 2014, pages
75–92, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[6] Daniel Bleichenbacher. Experiments with dsa. CRYPTO 2005–Rump
Session, 2005.

[7] Dan Boneh, Shai Halevi, and Nick Howgrave-Graham. The modular
inversion hidden number problem. In International Conference on the
Theory and Application of Cryptology and Information Security, pages
36–51. Springer, 2001.

[8] Dan Boneh and Ramarathnam Venkatesan. Hardness of Computing
the Most Significant Bits of Secret Keys in Diffie-Hellman and Related
Schemes. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO

’96, pages 129–142, Berlin, Heidelberg, 1996. Springer Berlin Heidel-
berg.

[9] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks Are
Still Practical. In Vijay Atluri and Claudia Diaz, editors, Computer
Security – ESORICS 2011, pages 355–371, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[10] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701 – 716, 2005. Web Security.

[11] John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy Herzog.
Bios chronomancy: Fixing the core root of trust for measurement. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 25–36, New York, NY, USA,
2013. ACM.

[12] David Challener. Trusted Platform Module, pages 1332–1335. Springer
US, Boston, MA, 2011.

[13] Don Coppersmith. Small solutions to polynomial equations, and low
exponent rsa vulnerabilities. Journal of Cryptology, 10(4):233–260,
1997.

[14] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin,
Nadia Heninger, Ahmad Moghimi, and Yuval Yarom. Cachequote:
Efficiently recovering long-term secrets of sgx epid via cache attacks.
IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, pages 171–191, 2018.

2070 29th USENIX Security Symposium USENIX Association

[15] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson.
Using Bleichenbacher’s solution to the hidden number problem to
attack nonce leaks in 384-bit ECDSA: extended version. Journal of
Cryptographic Engineering, 4(1):33–45, Apr 2014.

[16] Bert den Boer, Kerstin Lemke, and Guntram Wicke. A DPA attack
against the modular reduction within a CRT implementation of RSA.
In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 228–243. Springer, 2002.

[17] Pei Dingyi, Salomaa Arto, and Ding Cunsheng. Chinese remainder
theorem: applications in computing, coding, cryptography. World
Scientific, 1996.

[18] Mark Ermolov and Maxim Goryachy. How to hack a turned-off com-
puter, or running unsigned code in intel management engine. Black
Hat Europe, 2017.

[19] Mark Ermolov and Maxim Goryachy. Where There’s a JTAG, There’s
a way: Obtaining full system access via USB. White Paper, 2017.
Accessed: November 13, 2019.

[20] Mark Ermolov and Maxim Goryachy. Intel VISA: Through the Rabbit
Hole. Black Hat Asia, 2019.

[21] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking OpenSSL
Implementation of ECDSA with a Few Signatures. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 1505–1515, New York, NY, USA, 2016. ACM.

[22] Patrick Gallagher. Digital signature standard (DSS). Federal Informa-
tion Processing Standards Publications, volume FIPS, pages 186–3,
2013.

[23] Google. Shielded VM. https://cloud.google.com/security/
shielded-cloud/shielded-vm#vtpm, 2019. Accessed: November
13, 2019.

[24] Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun Kim.
A Bad Dream: Subverting Trusted Platform Module While You Are
Sleeping. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1229–1246, Baltimore, MD, August 2018. USENIX Association.

[25] Martin Hlaváč and Tomáš Rosa. Extended Hidden Number Problem
and Its Cryptanalytic Applications. In Eli Biham and Amr M. Youssef,
editors, Selected Areas in Cryptography, pages 114–133, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

[26] Nick A Howgrave-Graham and Nigel P. Smart. Lattice attacks on digi-
tal signature schemes. Designs, Codes and Cryptography, 23(3):283–
290, 2001.

[27] Intel. Developer Reference for Intel Integrated Performance
Primitives Cryptography. https://software.intel.com/en-us/
ipp-crypto-reference, 2019. Accessed: November 13, 2019.

[28] Intel. Intel Quark Microcontrollers. https://www.intel.com/
content/www/us/en/embedded/products/quark/overview.
html, 2019. Accessed: November 13, 2019.

[29] Gabriel Campana Jean-Baptiste Bedrune. Everybody be Cool, This is
a Robbery! Black Hat USA, 2019.

[30] Don Johnson, Alfred Menezes, and Scott Vanstone. The Elliptic Curve
Digital Signature Algorithm (ECDSA). International Journal of Infor-
mation Security, 1(1):36–63, Aug 2001.

[31] Bernhard Kauer. OSLO: Improving the Security of Trusted Computing.
In USENIX Security Symposium, pages 229–237, 2007.

[32] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Neal Koblitz, editor, Advances in
Cryptology — CRYPTO ’96, pages 104–113, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[33] Klaus Kursawe, Dries Schellekens, and Bart Preneel. Analyzing trusted
platform communication. In In: ECRYPT Workshop, CRASH – CRyp-
tographic Advances in Secure Hardware, page 8, 2005.

[34] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials
with rational coefficients. MATH. ANN, 261:515–534, 1982.

[35] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks: Revealing the secrets of smart cards, volume 31. Springer
Science & Business Media, 2008.

[36] Thomas S. Messerges, Ezzat A. Dabbish, and Robert H. Sloan. Exam-
ining Smart-Card Security Under the Threat of Power Analysis Attacks.
IEEE Trans. Comput., 51(5):541–552, May 2002.

[37] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Se-
bastian Schinzel, and Erik Tews. Revisiting SSL/TLS Implementations:
New Bleichenbacher Side Channels and Attacks. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 733–748, San Diego,
CA, August 2014. USENIX Association.

[38] Microsoft. How Windows 10 uses the Trusted Platform Mod-
ule. https://docs.microsoft.com/en-us/windows/security/
information-protection/tpm/how-windows-uses-the-tpm,
2019. Accessed: November 13, 2019.

[39] Microsoft. Support for generation 2 VMs (preview) on
Azure. https://docs.microsoft.com/en-us/azure/
virtual-machines/windows/generation-2, 2019. Accessed:
November 13, 2019.

[40] Chris Mitchell. Trusted computing, volume 6. Iet, 2005.

[41] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek
Matyas. The Return of Coppersmith’s Attack: Practical Factorization of
Widely Used RSA Moduli. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17,
pages 1631–1648, New York, NY, USA, 2017. ACM.

[42] Nguyen and Shparlinski. The Insecurity of the Digital Signature Algo-
rithm with Partially Known Nonces. Journal of Cryptology, 15(3):151–
176, Jun 2002.

[43] Phong Q. Nguyen and Igor E. Shparlinski. The Insecurity of the Ellip-
tic Curve Digital Signature Algorithm with Partially Known Nonces.
Designs, Codes and Cryptography, 30(2):201–217, Sep 2003.

[44] Phong Q. Nguyen and Damien Stehlé. LLL on the average. In Florian
Hess, Sebastian Pauli, and Michael Pohst, editors, Algorithmic Num-
ber Theory, pages 238–256, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[45] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. Make
Sure DSA Signing Exponentiations Really Are Constant-Time. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1639–1650, New York, NY,
USA, 2016. ACM.

[46] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al. vTPM: virtu-
alizing the trusted platform module. In Proc. 15th Conf. on USENIX
Security Symposium, pages 305–320, 2006.

[47] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Anal-
ysis (EMA): Measures and Counter-measures for Smart Cards. In
Isabelle Attali and Thomas Jensen, editors, Smart Card Programming
and Security, pages 200–210, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[48] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah
Cox, Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser,
Dennis Mattoon, Magnus Nystrom, David Robinson, Rob Spiger, Stefan
Thom, and David Wooten. fTPM: A Software-Only Implementation of
a TPM Chip. In 25th USENIX Security Symposium (USENIX Security
16), pages 841–856, Austin, TX, August 2016. USENIX Association.

[49] Tanja Römer and Jean-Pierre Seifert. Information leakage attacks
against smart card implementations of the elliptic curve digital signature
algorithm. In International Conference on Research in Smart Cards,
pages 211–219. Springer, 2001.

USENIX Association 29th USENIX Security Symposium 2071

https://cloud.google.com/security/shielded-cloud/shielded-vm#vtpm
https://cloud.google.com/security/shielded-cloud/shielded-vm#vtpm
https://software.intel.com/en-us/ipp-crypto-reference
https://software.intel.com/en-us/ipp-crypto-reference
https://www.intel.com/content/www/us/en/embedded/products/quark/overview.html
https://www.intel.com/content/www/us/en/embedded/products/quark/overview.html
https://www.intel.com/content/www/us/en/embedded/products/quark/overview.html
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/generation-2

[50] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong,
and Yuval Yarom. The 9 Lives of Bleichenbacher’s CAT: New Cache
ATtacks on TLS Implementations. In IEEE Symposium on Security
and Privacy, 2019.

[51] Keegan Ryan. Return of the Hidden Number Problem. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages
146–168, 2019.

[52] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53(2-3):201–224, August 1987.

[53] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, Jan 1991.

[54] Igor Skochinsky. Intel ME Secrets. Code Blue, 2014.

[55] Evan R Sparks and Evan R Sparks. A security assessment of trusted
platform modules computer science technical report TR2007-597.
Dept. Comput. Sci., Dartmouth College, Hanover, NH, USA, Tech. Rep.,
TR2007-597, 2007.

[56] ST Microelectronics. CC for IT security evaluation: Trusted Platform
Module ST33TPHF2E mode TPM2.0. https://www.ssi.gouv.fr/
uploads/2018/10/anssi-cible-cc-2018_41en.pdf, 2019. Ac-
cessed: November 13, 2019.

[57] ST Microelectronics. ST33TPHF2ESPI Product Brief. https:
//www.st.com/resource/en/data_brief/st33tphf2espi.pdf,
2019. Accessed: November 13, 2019.

[58] strongSwan. Trusted Platform Module 2.0 - strongSwan. https://
wiki.strongswan.org/projects/strongswan/wiki/TpmPlugin,
2019. Accessed: November 13, 2019.

[59] PC TCG. Client Specific-TPM Interface Specification (TIS) Version
1.2. Trusted Computing Group, 2005.

[60] PC TCG. TPM 2.0 Mobile Command Response Buffer Interface.
Trusted Computing Group, 2014.

[61] The Sage Developers. SageMath, the Sage Mathematics Software
System (Version 8.4), 2019. https://www.sagemath.org.

[62] Trusted Computing Group. Protection Profile PC Client Specific TPM.
https://trustedcomputinggroup.org/wp-content/uploads/
TCG_PP_PCClient_Specific_TPM2.0_v1.1_r1.38.pdf, 2019.
Accessed: November 13, 2019.

[63] Trusted Computing Group. TPM 2.0 Library Specifica-
tion. https://trustedcomputinggroup.org/resource/
tpm-library-specification/, 2019. Accessed: November
13, 2019.

[64] Vassilios Ververis. Security evaluation of Intel’s active management
technology, 2010.

[65] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. Microwalk: A framework for finding side channels in binaries.
In Proceedings of the 34th Annual Computer Security Applications
Conference, pages 161–173. ACM, 2018.

[66] David Wong. Timing and Lattice Attacks on a Remote ECDSA
OpenSSL Server: How Practical Are They Really? IACR Cryptol-
ogy ePrint Archive, 2015:839, 2015.

[67] Yubico. Security Advisory 2019-06-13 – Reduced initial ran-
domness on FIPS keys. https://www.yubico.com/support/
security-advisories/ysa-2019-02/, 2019. Accessed: November
13, 2019.

A Additional Timing Analysis Figures

Figure 13: Histogram of ECDSA (NIST-256p) signature gen-
eration timings a dedicated Infineon TPM as measured on a
Core i7-8650U machine for 40,000 observations.

Figure 14: Histogram of RSA-2048 signature generation tim-
ings on Intel fTPM as measured on a Core i7-7700 machine
for 40,000 observations.

Figure 15: Histogram of RSA-2048 signature generation tim-
ings on a dedicated Nuvoton TPM as measured on a Core
i5-6440HQ machine for 40,000 observations.

2072 29th USENIX Security Symposium USENIX Association

https://www.ssi.gouv.fr/uploads/2018/10/anssi-cible-cc-2018_41en.pdf
https://www.ssi.gouv.fr/uploads/2018/10/anssi-cible-cc-2018_41en.pdf
https://www.st.com/resource/en/data_brief/st33tphf2espi.pdf
https://www.st.com/resource/en/data_brief/st33tphf2espi.pdf
https://wiki.strongswan.org/projects/strongswan/wiki/TpmPlugin
https://wiki.strongswan.org/projects/strongswan/wiki/TpmPlugin
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PP_PCClient_Specific_TPM2.0_v1.1_r1.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PP_PCClient_Specific_TPM2.0_v1.1_r1.38.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://www.yubico.com/support/security-advisories/ysa-2019-02/
https://www.yubico.com/support/security-advisories/ysa-2019-02/

Figure 16: Histogram of RSA-2048 signature generation tim-
ings on a dedicated STMicroelectronics TPM as measured on
a Core i7-8650U machine for 40,000 observations.

Figure 17: Histogram of RSA-2048 signature generation tim-
ings on a dedicated Infineon TPM as measured on a Core
i7-8650U machine for 40,000 observations.

Figure 18: Histogram of ECSchnorr (NIST-256p) signature
generation times on Intel fTPM as measured on a Core i7-7700
machine for 34,000 observations.

Figure 19: Histogram of ECDSA (BN-256) signature gen-
eration times on Intel fTPM as measured on a Core i7-7700
machine for 15,000 observations. Using the BN-256 curve
approximately doubles the execution time of ECDSA, which
makes the multiplication windows even more distinguishable.

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Bit Length

1.43

1.44

1.45

1.46

1.47

1.48

1.49

1.5

1.51
C

P
U

 C
y
c
le

s

10
8

Figure 20: Histogram of ECDSA (NIST-256p) signature gen-
eration timings a dedicated Infineon TPM as measured on a
Core i7-8650U machine for 40,000 observations.

Figure 21: Histogram of ECDSA (NIST-256p) signature gen-
eration timings a dedicated Nuvoton TPM as measured on a
Core i5-6440HQ machine for 40,000 observations.

USENIX Association 29th USENIX Security Symposium 2073

	Introduction
	Our Contribution
	Experimental Setup
	Coordinated Disclosure

	Background
	Trusted Platform Module
	Intel Management Engine
	Elliptic Curve Digital Signatures
	Lattice and Timing Attacks

	Timing Attack and Leaky Nonces
	Precise Timing Measurement
	CRB Timing Measurement
	TIS Timing Measurement

	Timing Analysis of ECDSA
	Discovered Vulnerabilities

	Lattice-Based Cryptanalysis
	Lattice Construction
	Modification of the Lattice for ECSchnorr

	ECDSA Key Recovery on TPMs
	Threat Model I: System-Level Adversary
	Threat Model II: User-Level Adversary
	Threat Model III: Remote Adversary
	Remote UDP Attack
	Remote Timing Attack against StrongSwan

	Discussion
	Countermeasures
	Conclusions
	Additional Timing Analysis Figures

