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Abstract

Since 2016, with a strong push from the Government of India,
smartphone-based payment apps have become mainstream,
with over $50 billion transacted through these apps in 2018.
Many of these apps use a common infrastructure introduced
by the Indian government, called the Unified Payments In-
terface (UPI), but there has been no security analysis of this
critical piece of infrastructure that supports money transfers.
This paper uses a principled methodology to do a detailed
security analysis of the UPI protocol by reverse-engineering
the design of this protocol through seven popular UPI apps.
We discover previously-unreported multi-factor authentica-
tion design-level flaws in the UPI 1.0 specification that can
lead to significant attacks when combined with an installed
attacker-controlled application. In an extreme version of the
attack, the flaws could allow a victim’s bank account to be
linked and emptied, even if a victim had never used a UPI
app. The potential attacks were scalable and could be done
remotely. We discuss our methodology and detail how we
overcame challenges in reverse-engineering this unpublished
application layer protocol, including that all UPI apps undergo
a rigorous security review in India and are designed to resist
analysis. The work resulted in several CVEs, and a key attack
vector that we reported was later addressed in UPI 2.0.

1 Introduction

Payment apps have become a mainstream payment instrument
in India, with the Indian Government actively encouraging its
citizens to use electronic payment methods after a demonetiza-
tion of large currency notes in 2016 [29]. To facilitate digital
micro-payments at scale, the National Payments Corporation
of India (NPCI), a consortium of Indian banks, introduced the
Unified Payment Interface (UPI) to enable free and instant
money transfers between bank accounts of different users. As
of July 2019, the value of UPI transactions has reached about
$21 billion [45]. UPI’s open backend architecture that enables
easy integration and interoperability of new payment apps is a

significant enabler. Currently, there are about 88 UPI payment
apps and over 140 banks that enable transactions with those
apps via UPI [40, 41]. This paper focuses on vulnerabilities
in the design of UPI and UPI’s usage by payment apps.

We note that hackers are highly motivated when it comes to
money, so uncovering any design vulnerabilities in payment
systems and addressing them is crucial. For instance, a recent
survey states a 37% increase in financial fraud and identity
theft in 2019 in India [12]. Social engineering attacks to
extract sensitive information such as one-time passcodes and
bank account numbers are common [17, 23, 34, 57, 58].

Payment apps, including Indian payment apps, have been
analyzed before, with vulnerabilities discovered [9, 48], and
an Indian mobile banking service was found to have PIN
recovery flaws [47]. However, in these studies, mobile apps
did not share a common payment interface. As far as we are
aware, an analysis of a common interface used by multiple
payment apps has not been done before. Such an analysis
is important because security flaws in them can impact cus-
tomers of multiple banks and multiple apps, regardless of
other stronger security features used. We focus on the security
analysis of the unified payment interface used by many Indian
payment apps and its design choices.

In this work, we use a principled approach to analyze UPI
1.0, overcoming significant challenges. A key challenge is
that the protocol details are not available, though millions of
users in India use it. We also did not have access to the UPI
servers. We thus had to reverse-engineer the UPI protocol
through the UPI apps that used it and had to bypass various
security defenses of each app, including code obfuscation and
anti-emulation techniques. Though we build on techniques
used in the past for security analysis of apps [9, 21, 46, 48],
our approach to extract the protocol details varies based on the
defenses the apps use. We carefully examine each stage of the
UPI protocol to uncover the credentials required to progress
in each stage, find alternate workflows for authentication, and
discover leakage of user-specific attributes that could be useful
at a later stage.

We present results from the analysis of the UPI protocol,
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App Name Launched Versions Installs Rating UPI

BHIM Dec, 2016 1.3, 1.4, 1.5 10M+ 4.1 1.0
Ola Money Nov, 2015 1.8.1, 1.8.2, 1.9.0 1M+ 3.8 1.0
Phonepe Dec, 2015 3.0.6, 3.3.23 100M+ 4.5 1.0
SamsungPay Aug, 2016 2.8.49, 2.9.3 50M+ 4.7 1.0
Paytm Aug, 2010 8.2.12 100M+ 4.4 2.0
Google Pay (Tez) Sept, 2017 39.0.001 100M+ 4.4 2.0
Amazon Pay1 Feb 2019 18.15.2 2.0
1Amazon Pay is not available on Google Play store

Table 1: List of apps analyzed and their Google Play ratings

as seen by seven of the most popular UPI apps in India listed
in Table 1. Of the seven apps we analyze, four UPI apps—
Google Pay (Tez), PhonePe, Paytm, and BHIM—have a com-
bined market share of 88% [27] and are widely accepted at
many shopping sites. From a total of 88 UPI apps, many are
minor variations of BHIM, the flagship app released by NPCI
(also the designers of UPI). Close to 48 banks today issue a
bank-branded version of the BHIM app. Since Android owns
over 90% of the Indian mobile market share [13], we focused
on the Android versions of these apps.

Our threat model assumes that the user is careful to use
an authorized payment app on a non-rooted Android phone,
but has installed an attacker-controlled app with commonly
used permissions. We also do not rely on the success of social
engineering attacks, though they could simplify exploiting
some of the vulnerabilities we uncovered. We uncovered
several design choices in the UPI 1.0 protocol that lead to the
possibility of the following types of attacks:
• Attack #1: Unauthorized registration, given a user’s cell

number: This attack leaks private data such as the set
of banks where a user has bank accounts and the bank
account numbers.
• Attack #2: Unauthorized transactions on bank accounts

given a user’s cell number and partial debit card number:
Purchases using a debit card in India, whether in-store or
online, requires a user to authorize the payment by enter-
ing a secret PIN. In this attack, an attacker, by knowing
a user’s cell number and debit card information printed
on the card (last six digits and expiry date, without the
PIN), can do transactions on a bank account of a user
who has never used a UPI app for payments.
• Attack #3: Unauthorized transactions without debit card

numbers: This attack shows how an attacker that starts
out with no knowledge of a user’s authentication factors
can learn all the factors to do unauthorized transactions
on that user’s bank account.

Our work started over two years ago when NPCI released
UPI 1.0 and BHIM, which are the focus of our analysis. Given
the potential risks with releasing our findings, we waited to
publish until NPCI addressed a critical attack vector in the re-
cently released UPI 2.0. Our key contributions are as follows.

• We conduct the first in-depth security analysis of the

unpublished UPI 1.0 protocol that provides a common
payment interface to many popular mobile payment apps
in India and allows bank-to-bank transfers between users
of different apps.
• We show how to systematically reverse-engineer this

complex application layer protocol from the point-of-
view of an adversary with no access to UPI servers. We
use BHIM, the reference implementation for UPI apps re-
leased by the Indian government, for our initial analysis
and then confirm our findings on other UPI apps.
• We found subtle design flaws in the UPI protocol, which

can be exploited by an adversary using an attacker-
controlled app that leverages known flaws in Android’s
design, to construct scalable remote attacks. We show
how an adversary can carry out the attacks starting with
no knowledge of a user.
• As responsible disclosure, we reported the flaws to app

developers, CERT India, and CERT US, resulting in sev-
eral CVEs. A key attack vector we reported to NPCI and
CERT India was addressed in UPI 2.0.
• We present early findings from an ongoing analysis of

UPI 2.0, using BHIM, Google Pay, Amazon Pay, and
PayTM—four top-rated UPI 2.0 apps in India. Findings
indicate that some vulnerabilities remain.
• We discuss lessons learned and potential mitigation

strategies to consider when designing such protocols.

2 Background

Early mobile payment apps in India were wallet-only apps.
They could withdraw money from a user’s bank account by
asking a user to enter a debit card number, but not deposit
money back into the bank account. Post demonetization (in
2016), to encourage cashless transactions, a consortium of
Indian banks called the National Payments Corporation of In-
dia (NPCI), backed by the Indian government, introduced the
Unified Payments Interface (UPI) that allows NPCI-certified
mobile apps to do free instant money transfers between bank
accounts of different users. UPI apps can inter-operate with
each other since they all share the same payment interface. A
user of BHIM, for instance, can transfer money instantly for
a small purchase from her bank account to the bank account
of a shopkeeper who uses Google Pay. Because of this, most
stores in India accept mobile payments through UPI apps.
Depending on the app, a user can do unlimited transactions
up to $1500 per transaction. Figure 1b shows the UPI money
transfer system when compared with the traditional Internet
banking system in Figure 1a.

2.1 User Registration on a UPI App

The UPI payment system requires Alice to register her pri-
mary cellphone (or cell) number with her bank account(s)
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(a) Internet (b) UPI-based

Figure 1: Internet vs. UPI-based Money Transfer

out-of-band to send or receive money. UPI uses the cell num-
ber (i) as a proxy for a user’s digital identity with the bank to
look up a bank account given a cell number; (ii) as a factor in
authentication via SMS one-time passcodes (OTP); and (iii)
to alert users on transactions. The Government of India re-
quires cellphone providers to get copies of government-issued
IDs, manually verify the IDs, and do biometric verification
before issuing a cell number 1.

To register for UPI services, Alice must set up her UPI user
profile, add a bank account, and enable transactions on that
bank account, as follows:

1. Set up a UPI user profile: Alice must first create a profile
with UPI via a UPI app installed on her bank-registered
cell phone. Alice must first give her cell number to UPI
through the UPI app for verification. How UPI collects
this information from a user may change with each app.
For instance, some apps read the cell number from the
device, while others ask the user to key-in the cell num-
ber. For instance, Figure 2, screenshot #3, shows how
BHIM reads Alice’s cell number(s) from her phone for
Alice to choose from. The UPI app then sends Alice’s
cell number to the UPI server for verification. Once ver-
ified, the UPI server issues a UPI ID for Alice on that
app. Figure 2, screenshot #4 shows how BHIM notifies
Alice when she is verified. If Alice uses multiple apps,
the UPI server issues a different UPI ID for each app.
The app then prompts Alice to set a passcode. The nature
of the passcode is again specific to the app. BHIM, for
instance, asks the user to set a 4-digit passcode, as shown
in Figure 2, screenshot #5.

2. Add a bank account: Once Alice’s profile is set up, she
must add the bank account that she wants to use for
withdrawals and deposits. Alice is given a list of bank
names that support UPI (Figure 2, screenshot #6), from
which she can now choose her bank. Alice may repeat
this step to add multiple bank accounts.

1A recent Indian Supreme Court ruling forbids Aadhar’s biometric verifi-
cation for issuing cell numbers. The impact of that ruling on UPI-based apps
and banks is yet to be seen, as it may make it easier for an attacker to do an
unauthorized transfer of a cell number and then take over an account. We do
not discuss this attack vector in this paper.

3. Enable transactions: For Alice to be able to transact on
an added bank account, she has to set up a UPI PIN for
that account before the first transaction. The UPI PIN is
Alice’s secret to authorize any future transactions. To set
the UPI PIN, Alice must furnish information printed on
the debit card— the last six digits of her bank’s ATM or
debit card number and expiration date. Alice must also
enter an OTP she receives from the UPI server. The UPI
PIN is a highly sensitive factor since the UPI server uses
it to prevent unauthorized transactions on Alice’s bank
account.

To transfer money to Bob, Alice first logs into a UPI app
using the passcode she set during user registration. Then, out-
of-band, Alice requests Bob to provide his UPI ID, which
is often Bob’s cell number. Alice chooses one of the bank
accounts she previously added to the app (Figure 2, screen-
shot #7), initiates the transaction to Bob, and authorizes it by
providing her UPI PIN. Internally, the UPI payment interface
directly transfers money from Alice’s chosen bank account to
Bob’s bank account linked with his UPI ID.

2.2 UPI Specs for User Registration
The UPI specifications released by NPCI [44] provide "broad
guidelines" on the client-server handshake between a UPI app
and the UPI server. We discuss the protocol details available
to us from the specification.

1. Set up a UPI user profile: Once a UPI app gets a user’s
cell number, the app must send an outbound encrypted
SMS from Alice’s phone to the UPI server. This pro-
cess is automated and does not involve the user in order
to guarantee a strong association between a user’s cell
phone and her device. According to UPI, this is the “most
critical security requirement” of the protocol since all
money transactions from a user’s device are first verified
based on this association. UPI calls this association of a
user’s device (identified by parameters such as Device
ID, App ID, and IMEI number) with her cell number as
device hard-binding. The combined cell number and de-
vice information (that represents this binding) is called
the device fingerprint, which per the UPI spec is the first
factor of authentication.
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Figure 2: BHIM User Registration Using 3FA

Passcode. The UPI spec considers application passcode
as optional and does not undertake responsibility for
passcode authentication. UPI leaves it up to a UPI app
vendor to authenticate the passcode. Thus, the respon-
sibility to completely authenticate a user is shared be-
tween two servers— the UPI server (that verifies device
fingerprint and UPI PIN), and a payment app server (that
verifies an app passcode).

2. Add a bank account: A user’s request to add a bank must
be from the device registered with UPI. Internally, UPI
fetches the chosen bank’s account number and IFSC
code based on a user’s cell number for later transactions
through the UPI app.

3. Enable transactions: UPI allows transactions to be done
either using a cell number or an account number and
IFSC code or any UPI ID. UPI spec mandates that all
transactions must at least be 2FA using a cell phone (the
device fingerprint) as one factor and the UPI PIN as
the second. The spec considers a cell phone as a “what
you have” factor, which allows UPI to provide “1-click
2-Factor Authentication” using the said two factors.

For apps that integrate with UPI, NPCI enforces application
security via a code review and certification process. All com-
munication with the UPI server is over a PKI-based encrypted
connection. Currently, UPI has become the de facto standard
for mobile transactions.

2.3 Threat Model
We assume a normal user, Alice, who installs payment apps
from official sources such as Google Play; none of the pay-
ment apps contain extraneous malicious code. Alice has a
properly configured phone with Internet facility and prevents
physical access to it by untrusted parties.

On the other hand, the attacker, Eve, uses a rooted phone.
Eve can use any tool at her disposal to reverse engineer the
payment apps. We assume that Eve releases an apparently use-
ful unprivileged app called Mally that requests the following

two permissions—android.permission.INTERNET and an-
droid.permission.RECEIVE_SMS. Alice finds the app useful
and installs it, granting it the necessary permissions.

The permissions requested for Mally are not unusual for
Android. Recent versions of Android automatically grant the
INTERNET permission without a user prompt [15]. SMS
permissions have legitimate uses on Android, and about 15%
of the Android apps request them [20]. RECEIVE_SMS per-
mission only grants the permission to read incoming SMS
messages, but not read previously received messages or send
SMS messages. This permission is used by many popular
social media apps such as Telegram and WhatsApp, SMS/-
call blocker apps, and also security apps such as Kaspersky
Mobile Security and BitDefender.

We consider our threat model to be realistic for the follow-
ing reasons. First, according to the Android security review
for the last two years, India is among the top three countries
with the highest rate of potentially harmful applications such
as trojans and backdoors, sometimes pre-installed on Android
devices [24, 25]. Google has also recently released a warning
stating that 53% of the major attacks are because of malicious
apps that come pre-installed on low-cost smartphones [19].

To simplify some attack descriptions, we describe Mally
with the READ_PHONE_STATE or accessibility permissions.
We do this to show the many ways an adversary can get a
user’s information, e.g., a user’s cell number. However, in
such cases, we also show other attack vectors that require
neither of these two permissions.

3 Security Analysis

3.1 Methodology

In this section, we describe how we reverse-engineer UPI,
a proprietary protocol, to learn its authentication handshake.
Since we do not have access to UPI’s servers, we choose to
reverse engineer this application layer protocol through the
payment apps that support it.

Protocol Analysis. To reverse-engineer UPI, we first un-
cover each step of the client-server authentication handshake

1502    29th USENIX Security Symposium USENIX Association



with the goal of (i) understanding how UPI does device fin-
gerprinting; and (ii) establishing the credentials required by a
user to set up an account and do transactions. Besides UPI’s
default authentication workflow, we also look for alternate
workflows or paths that could be leveraged to minimize the
credentials required by an attacker. Finally, we look for any
leaked user-specific attributes during protocol interactions
that could be leveraged later, if intercepted, by an adversary.
We triage our findings from different workflows to find plau-
sible attack vectors and to verify potential exploits.

The approach we use to extract protocol data varies based
on the specifications of an app and the security defenses they
use. Since UPI 1.0 specs only state broad security guidelines
rather than protocol details, we examine multiple apps to know
whether the protocol varies across different apps. We analyze
BHIM, the flagship app published by the same government
organization that maintains the UPI system and then confirm
our findings by analyzing additional apps.

App Reversing-Engineering. One approach to capture the
protocol data sent and received by an app is to run it in a sand-
box. Sandbox tools such as CuckooDroid [14] use an emulator
for dynamic analysis. Hence, to test if the UPI apps can run in
a sandbox, we manually run each app in Android SDK’s built-
in emulator on a Linux host. However, we find that these apps
do not run without a physical SIM card, which is unavailable
on an emulator. The apps also use anti-emulation techniques
that prevent them from running in an emulator.

Besides anti-emulation, we find that the payment apps also
use several other defenses. For instance, all of them detect
a rooted phone and deter a user from running the app on
a rooted phone. Some apps also look for the presence of
hooking libraries such as Xposed [28] that typically require
root access to modify system files. That apart, all apps are
obfuscated, use encrypted communication, enforce session
timeout and account lockout, avoid storing or transmitting
data in the clear, and avoid using hard-coded credentials or
keys. The extent of security defenses used by these apps shows
that app developers have designed the apps with security in
mind. This is unlike findings by Reaves et al. [48] that found
basic security flaws in Indian payment apps around 2015.

Our security assessments show that some apps, such as
BHIM, allow repackaging. We leverage this to instrument an
app’s code statically to learn specifics of the authentication
handshake, such as the name of the activity and method that
generated network traffic. Because such specifics help with
precise analysis, we first check whether the apps can be in-
strumented and repackaged. To instrument the app, we first
disassemble it using APKTool [4], insert debug statements,
and then repackage it with our signature.

One question that arises is where to instrument in an app’s
code as this requires knowledge of the methods of the app we
want to instrument. Since we do not know this a priori, we
manually reverse-engineer the apps using the JEB [30] disas-
sembler and decompiler. Some times, JEB fails to decompile

certain classes that are control-flow obfuscated. In such cases,
we use JDK’s javap command to read bytecode. We augment
our analysis with results from the static components of two
hybrid analyzers MobSF [21] and Drozer [26].

We could not repackage certain apps such as Google Pay. In
such cases, we intercept an app’s network traffic using a TLS
man-in-the-middle proxy called mitmproxy [36]. We install
the OpenVPN app on our Android phone and an OpenVPN
service on a Linux host and configure the host’s firewall rules
to route traffic to the mitmproxy. The setup also requires that
we install mitmproxy’s certificate on the phone. However,
we find that starting Android Nougat, Android does not trust
user-installed certificates, and setting up a system certificate
requires root access, an impediment. Hence we conduct our
analysis on Android Marshmallow and Lollipop devices.

3.2 Analysis of BHIM & UPI 1.0 Protocol
Bharat Interface for Money (BHIM) [5] is the Indian govern-
ment’s reference implementation of a payment app over UPI
and was launched along with UPI 1.0. We discuss findings
from our analysis of BHIM’s user registration process for a
user Alice whose UPI ID is her cell number. We instrument
BHIM to see the protocol data it exchanges with the UPI
server during registration. We show an example of how we
instrument BHIM in the Appendix.

3.3 BHIM User Registration Protocol
Steps 1-10 on the left of Figure 3 are the steps of the client-
server handshake between BHIM version 1.3 and the UPI 1.0
server, with minimal and relevant protocol data shown. The
screen numbers (circled) on the left indicate the screenshot of
the app in Figure 2 that generated the traffic. We describe the
ten steps of UPI’s default workflow below.

1. Step 1: When Alice starts BHIM, BHIM first requests
Alice permission to send SMS messages (for later use)
(Figure 2, #2). Once BHIM gets the permission, BHIM
sends Alice’s device details such as the device’s Android
version, device ID, make, manufacturer, and model to
the UPI server as an HTTPS message.

2. Step 2: UPI server sends Alice a 13-digit registration
token that identifies her device and waits to get the token
back from Alice as an SMS message.

3. Step 3: BHIM app sends the registration token as an
SMS message to the UPI server. BHIM waits for SMS
delivery confirmation using the sendTextMessage API’s
deliveryIntent.

4. Step 4: When the UPI server receives the SMS, it (i)
learns that Alice got the token; and (ii) gets her cell
number from the message. The UPI server uses this in-
formation to hard-bind Alice’s cell number to her device.

USENIX Association 29th USENIX Security Symposium    1503



UPI server also sends a confirmation to BHIM that it
received the SMS.

5. Step 5: BHIM requests a status of its device’s hard-
binding from the UPI server by sending the registration
token back to the server as an HTTPS message.

6. Step 6: The UPI server responds with a verification status
that includes Alice’s customer ID, a registration token,
etc. back to Alice. By now, the UPI server has verified
both Alice and her device (Figure 2, #4).

7. Step 7: BHIM asks Alice to set a passcode (Figure 2,
#5). The app concatenates the SHA-256 hash of Alice’s
passcode with her cell number and sends it as an HTTPS
POST request to the UPI server.

8. Step 8: The UPI server issues a login token to Alice
(BHIM), which confirms that her profile is setup.

9. Step 9: BHIM then shows Alice a list of banks that
support UPI (Figure 2, #6). When Alice chooses her
bank from this list, BHIM sends a bank ID to the UPI
server.

10. Step 10: The UPI server sends Alice’s bank account
details such as her masked account number, the hash of
the account number, bank name, IFSC code, etc. back to
BHIM (Figure 2, #7).

The protocol description until now has seen two factors—
a) cell phone (and hence a device fingerprint) as required by
the UPI spec; b) a secret passcode— both of which BHIM
sends to the UPI server during the handshake. For BHIM, this
means that the payment app server that authenticates a user’s
passcode and the UPI server that verifies a device’s fingerprint
is the same, a fact that is not surprising since the designers of
UPI also wrote BHIM.

Finally, to enable transactions, Alice sets a UPI PIN on
her bank account for which she needs her bank’s debit card
number and expiry date, as mentioned in Section 2.1.

Alternate Workflow1. In the default workflow described
above, BHIM sends the device registration token to the UPI
server as an SMS message for device hard-binding (Step 3).
In case the UPI server does not receive the SMS, thus failing
to hard-bind, BHIM provides an alternate workflow for hard-
binding, as shown in Figure 4a. BHIM prompts Alice to key-
in her cell number; BHIM sends the keyed-in cell number
along with the device registration token to the UPI server
as an HTTPS message. The UPI server sends an OTP to
Alice, which she must enter to complete device binding. The
remainder of the protocol proceeds as before.

Alternate Workflow2. If Alice, an already registered user,
changes her cell phone, then the UPI server has to re-bind her
cell number with the new cell phone. At the time of device
binding, the UPI server finds that an account for Alice already

Figure 3: BHIM User Registration Default+
+BHIM masks bank account number in step 10 of the handshake. The

authors masked the other info to safe-guard privacy.

exists and notifies BHIM of the same (accountExists flag in
Step 6). The UPI server prompts Alice for her passcode, and
once Alice is verified (Step 7), the server sends back Alice’s
bank account information that she previously added to BHIM
(Step 10). This workflow makes it convenient for Alice to
transfer her bank accounts to another phone, without going
through the hassle of adding all her bank accounts again.

3.3.1 Potential security holes—initial analysis

Before we describe the attacks on the UPI protocol, we first
discuss three potential security holes that we observe:

1. Potential Security Hole #1: For an attacker Eve to take
over Alice’s account, one of the first barriers to overcome
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(a) BHIM Alternate Handshake (b) BHIM Attack Overview (c) Overlay Attack

Figure 4: BHIM Alternate Handshake & Attack

is UPI’s device binding mechanism that binds Alice’s
cell number with her cell phone. For Eve to break the
binding, Eve must able to bind her cell phone with Al-
ice’s cell number. Though the default workflow makes
this hard, the alternate workflow1 provides a potential
fallback that allows Eve to send Alice’s cell number as
an HTTPS message from Eve’s phone.

2. Potential Security Hole #2: The alternate workflow1
uses OTP verification for device-binding. If Alice, say,
enters a friend Bob’s cell number on her phone, the UPI
server will send the OTP to Bob’s phone. If Bob shares
that OTP with Alice, then Alice can confirm the OTP
to the UPI server, which will hard-bind Alice’s phone
to Bob’s cell number. As a result, Bob will receive all
future SMS messages sent by the UPI server to Alice.

3. Potential Security Hole #3: In UPI’s default workflow,
Alice at no point provides a secret that she shares with
her bank to confirm her identity. Nevertheless, the UPI
server reveals an existing user Alice’s account details in
the alternate workflow2.

None of the security holes by themselves are exploits as
yet. Below we discuss the potential attacks as a result of these
holes.

3.3.2 Attack #1: Unauthorized registration, given a vic-
tim’s cell number

In this attack, we show how a remote attacker, Eve, can set up
a UPI account, given a victim’s cell number. For the attack to
succeed, Eve requires only one thing: the victim’s cell phone
to have Mally app installed.

The attack setup is as follows. Eve on her phone has a
repackaged version of BHIM that has client-side security
checks disabled. Eve sets up a command and control (C&C)
server, puts out Mally as a potentially useful app on various

app stores, and waits for unsuspecting users to install Mally.
As discussed in the Threat Model (Section 2.3), Mally has
RECEIVE_SMS permission. An unsuspecting user Alice,
uses a legitimate version of BHIM on a non-rooted phone, as
is the best practice for Android.

For attacks to happen, Eve must have a way to discover a
victim’s cell number. To simplify the attack description, we
assume that Mally also has READ_PHONE_STATE permis-
sion, which it uses to get the cell number from the victim’s
phone (almost 35% of the apps use this permission [60]). We
show in Section 3.3.6 how Eve can discover a victim’s cell
number without the READ_PHONE_STATE permission.

Below we show how Eve can register with the UPI server
as Alice, after Alice unwittingly installs Mally on her phone.

1. Mally: I am installed! Mally, once installed on Alice’s
phone, reports to Eve’s C&C server over the Internet
(Android automatically grants INTERNET permission).
Mally reports Alice’s cell number to Eve as a way for Eve
(i) to discover Alice’s cell number; and (ii) to associate
the instance of Mally with Alice, which is essential for
Eve to scale the attacks to many users.

2. Eve: Use the cell number for hard binding: Eve exploits
Potential Security Hole #1 in BHIM’s workflow to bind
her device to Alice’s cell number as shown in Figure 4b.
Eve starts by putting her cell phone in airplane mode
while remaining connected to the Internet through Wi-
Fi. BHIM app on Eve’s phone starts the handshake by
sending Eve’s device details. The UPI server responds
with a device registration token for Eve. Ideally, Eve’s
BHIM must relay the token back to the UPI server via
SMS. However, since Eve has turned off SMS messag-
ing, the SMS containing the token fails to deliver. BHIM
prompts Eve to key-in a cell number and Eve keys-in
Alice’s cell number. BHIM now sends Eve’s device reg-
istration token and Alice’s cell number to the UPI server
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as an HTTPS message for hard-binding. The UPI server
then sends an OTP to Alice.

3. Mally: Intercept the OTP. On Alice’s phone, Mally in-
tercepts the incoming OTP message because its RE-
CEIVE_SMS permission allows it. Mally then sends
the OTP to the attacker’s C&C server as an HTTPS mes-
sage, along with Alice’s cell number. (The cell number
here is not strictly required. It merely allows the C&C
server to associate each OTP with a victim and thus re-
duce some guesswork, in case it receives OTPs from
other Mally installations.)

4. Eve: Acknowledge the OTP. The C&C server sends
an SMS message containing the OTP to the attacker’s
phone. Note that the BHIM app normally checks the ori-
gin of the OTP message it receives and accepts the OTP
only if it is from a known UPI server. However, Eve dis-
abled this safeguard before the attack in the repackaged
version of BHIM on her phone, thus exploiting Potential
Security Hole #2

5. Eve: New BHIM user? Create BHIM’s Passcode: BHIM
on Eve’s phone will ask for BHIM’s 4-digit passcode.
Now Eve does not know if Alice is a new user of BHIM
or a registered user. However, Eve can determine this
from Step 6 of the handshake where the UPI server sets
a flag called accountExists to false for a new user. Eve
can proceed to set a new passcode for a new user Alice.
We discuss the workaround for the attack on an existing
BHIM user in Attack #1′.

6. Eve: Select the bank from the bank list. Eve next se-
lects each bank one-by-one on BHIM’s bank selection
screen until she finds one that the UPI server accepts.
The UPI server will accept a bank if Alice has an account
at that bank and has her cell number registered with that
account.

The UPI server does not appear to restrict brute-forcing—
an error just brings the user back to the bank selection
screen. In any case, brute-forcing is difficult to prevent
since the list of banks is relatively short, and Eve can
try out some of the larger banks where most people are
likely to have an account with such as the State Bank of
India or ICICI Bank.

Eve can repeat Attack #1 until she discovers all of Alice’s
bank accounts and registers with them.

3.3.3 Attack #1′: Eve: overcoming BHIM’s passcode
check for existing BHIM user

Attack #1 on a registered user Alice stalls when BHIM
prompts the attacker Eve for Alice’s BHIM passcode. We
present three solutions to overcome the passcode barrier.

The first workaround is for Eve to wait for Mally to inter-
cept and leak the new passcode. We found that Mally can
do this as follows. Mally waits for Alice to launch BHIM.
Mally detects BHIM’s login activity to draw an overlay on
it (see Figure 4c, keys demarcated for clarity). To draw the
overlay, Mally exploits a toast overlay vulnerability CVE-
2017-0752 [39] that requires no additional permissions from
the user. Once Mally intercepts the passcode, it forwards the
passcode to the C&C server.

The second workaround is for Mally to request and use
Android’s accessibility permission, which enables Mally to
observe user interactions and intercept the passcode.

An attacker may, at this point, choose to reset the user’s
passcode. We find that BHIM’s passcode reset workflow re-
quires a user’s bank account number instead of the debit card
number. On the surface, it seems unlikely that Eve will know
Alice’s bank account number, and this, in isolation, may have
been a reasonable passcode reset process. However, as de-
scribed in Potential Security Hole #3, recall that the default
UPI workflow reveals a user’s bank account number. Eve can
use the bank account number to reset Alice’s BHIM passcode,
courtesy of the UPI server.

Impact of Attack #1 and #1′. Eve cannot do transactions
on the linked bank accounts after a successful registration.
This attack, however, leaks private data such as the set of
banks where Alice has bank accounts as well as Alice’s bank
account numbers. We also noticed that the UPI server sends
a device registration token, a customer identifier, a login to-
ken, a hash of the account number, and the bank’s account
number back to BHIM (client) during the protocol handshake
(see Figure 3). BHIM masks the bank account number but,
nevertheless, the UPI server sends it, and Eve can get to it
using the repackaged BHIM on Eve’s phone. The Attack #1
is also a precursor to Attack #2 or Attack #3, which are more
devastating. Note that the use of accessibility is only helpful
in simplifying the attack; we do not require it for Attack #1.

3.3.4 Attack #2: Unauthorized transactions on bank ac-
counts given cell number and partial debit card
number

In this attack, which follows Attack #1, Eve extends the pre-
vious attack to enable transactions on a bank account of a
user Alice that does not use any UPI apps. For the attack to
succeed, Eve requires additional knowledge about Alice: the
last six digits of Alice’s debit card number and expiry date.
Debit cards are carelessly given to unknown people in stores
and restaurants in India at the time of checkout (often with
cell numbers, as cashiers routinely collect cell numbers to
send discount offers or give reward points). The majority of
debit cards in India also carry the bank name. Using a debit
card for purchases in stores or online in India requires the user
to key-in a secret PIN. In this attack, even without the debit
card PIN from Alice, with access to the debit card information
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alone, Eve can set a UPI PIN to enable transactions on the
associated bank account.

Impact. Losing or sharing one’s debit card information
along with the cell number (not the actual card, the actual cell,
or the debit card PIN) can enable an attacker to set a UPI PIN
and do transactions on one’s bank account. Eve does not need
bank account numbers or any of Alice’s passcodes. The attack
appears to be less scalable than Attack #1, however, since Eve
needs to harvest debit card numbers along with associated
cell numbers. For users who lose the two pieces of data to Eve
and also install Mally, the impact is devastating. Eve could
empty their account, with money transferred to any user in
India. The attack does not even require a victim to have ever
used a UPI app previously. To reset the UPI PIN, Eve requires
the last six digits of the debit card number, expiry date, and
an OTP, all of which she has.

3.3.5 Attack #3: Unauthorized transactions without
debit card numbers

This attack follows from Attack #1′ for an existing user Alice.
Such a user would have previously set up a passcode to log
in to BHIM and UPI PIN to authorize transactions. Unfor-
tunately, Mally can intercept the UPI PIN using either toast
overlays or by requesting accessibility permission. As an al-
ternative to intercepting UPI PIN, Eve can attempt to reset
the UPI PIN (recall that Eve has already registered with the
bank account in Attack #1′). As we described in the previous
attack, resetting the UPI PIN requires debit card information,
which reduces this attack to Attack #2. In short, either Mally
intercepting UPI PIN or Eve possessing Alice’s debit card in-
formation appears to be required. Eve now has all the factors
to do transactions from her phone as Alice.

Impact: Eve can transfer money out to arbitrary UPI-based
accounts in India. Note that for an attack on an existing user,
Eve does not require any knowledge about Alice except for
two things that Mally intercepts— an SMS message and the
UPI PIN.

3.3.6 Eliminating the need for READ_PHONE_STATE
permissions

The attacks we described so far relied on Mally knowing the
victim’s cell number and sending it to the C&C server, as a
precursor to all the attacks. Now, we describe how Eve can
associate a victim’s cell number with an instance of Mally
without Mally needing the READ_PHONE_STATE permis-
sion.

Given a set C of all targeted cell numbers (which is any
list of cell numbers — valid or invalid), the following steps
precede Attack #1:
(i) For each cell number in C, send an SMS to that number
with the following content: [receiver’s cell number, “SMS

TEST”] (or any such message).
(ii) Consider a subset SC of phones C that have Mally in-
stalled. Mally looks for the string “SMS TEST” and saves the
cell number in the SMS as the victim’s cell number.
All instances of Mally that receive such an SMS message can
thus learn their victim’s cell number and report back to the
C&C server to initiate the user registration protocol.

3.3.7 Whose problem: Android or UPI?

There is a potential question as to whether the attacks we
discovered are primarily due to limitations of Android’s per-
mission model or due to flaws in the UPI design (and who
should fix them). We think there are problems with both. We
note that no bank-related credentials are required for an ad-
versary to get a user’s bank account number, given the user’s
cell number (in any of the handshakes– default or alternate).
Attack #2 uses the last six digits of a debit card number and
expiry date, a weaker threshold than for online and in-store
purchases using debit cards where the entire number and the
PIN is typically required in India. Alternate workflows in the
UPI protocol contribute significantly to enabling our attacks.
We, of course, leverage Android’s security limitations as well,
just as any good attacker would be expected to. We further
discuss this issue in Section 5.

3.4 Other UPI 1.0 Apps

We now discuss whether the attacks on BHIM apply to the
users of other UPI 1.0 apps. Our findings from testing three
apps popular at the time of the study— PhonePe, Ola Wallet,
and Samsung Pay—suggest yes. As shown in Figure 5, at the
time of UPI 1.0, BHIM and PhonePe were the most popular
UPI apps. PhonePe is also one of India’s oldest payment apps.
We did not include Google Pay (called Tez then) since it was
not widely used, and Paytm was popular more for its wallet
features. Below we discuss the attacks and its nuances under
the same threat model.

First, these apps differ from BHIM because they are “third-
parties” that integrate with UPI. Each third-party app uses its
own factors for user profile setup. Hence, as discussed in the
UPI specs Section 2.2, for third-party apps, their payment app
server does the passcode-based authentication of a user while
the UPI server verifies the device fingerprint and UPI PIN.

NPCI requires third-party apps to use NPCI’s interface
(libraries) for device fingerprinting and entering UPI PIN.
We confirm that these apps internally use a common NPCI
library to interface with the UPI server at the time of manual
inspection. The UPI interface is accessible to a third-party app
only after the user authenticates with the third-party payment
app server. Thus, device binding and UPI PIN set up is done
with the UPI server only after the user’s passcode is set up
with the payment app server.
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Figure 5: Popular UPI apps and disclosure timelines

Attack #1, unauthorized registration of a new user, can now
be done by an adversary by setting up a user profile with
the third-party app server and then exploiting the potential
security holes of Section 3.3.1. Third-party apps make it easy
for an attacker Eve to set up a profile. Eve can do it in two
ways— Eve can either create a profile from her phone using
her cell number (which is straight-forward) or create a profile
from her phone using Alice’s cell number. As an example of
the latter, PhonePe provides an option to key-in a cell number
at the time of user profile setup. Eve can use this option to key-
in Alice’s cell number in the app. For Eve to set a passcode
on behalf of Alice, Eve needs an OTP the PhonePe server
sends Alice. However, Eve can get the OTP through Mally
on Alice’s phone, given Mally’s RECEIVE_SMS permission.
The rest of Attack #1 continues as before, and Attack #2
follows from Attack #1.

For Attack #1′ on an existing user, an adversary can exploit
any authentication workflow flaws on the third-party app or
app server. Once logged in, Eve can exploit the potential
security holes (Section 3.3.1). For Eve to log in as an existing
user, Eve either has to get Alice’s password or has to reset
Alice’s password. To get Alice’s password, Mally can either
use the toast overlay attacks or the accessibility permission.
A straightforward approach, however, is to exploit the app’s
passcode reset mechanism. On PhonePe, for instance, the
passcode reset relies only on an OTP. On Ola Money, passcode
reset requires a secret that is set up at the time the user creates
a profile (which we could intercept). We note that once Eve
logs in as Alice on Eve’s phone, PhonePe logs Alice out from
her phone. In Ola Money, however, Alice will not receive
any notification since the app by design permits login from
many devices. The rest of Attack #1′ continues as before, and
Attack #3 follows from Attack #1′.

Samsung Pay (SPay) is slightly different in that its secu-
rity measures make use of a Trusted Execution Environment
(TEE) [52] implementation called KNOX. To use SPay, a
user must have a Samsung account configured at the time
of setting up the phone and additionally configure her fin-
gerprint or a SPay PIN. SPay does not integrate with UPI;
instead, it integrates with two UPI apps—Paytm and MobiK-
wik. Hence a user can choose one of the two apps that come
with SamsungPay (they are also available for download sepa-
rately on Google Play). Since both Paytm and MobiKwik app
servers do not integrate with KNOX, they cannot use KNOX’s
hardware-based security features for device hard-binding at
the time of user registration. The user’s fingerprint or SPay

PIN is used to authenticate a user with the device; neither the
payment app servers nor the UPI server uses it for user regis-
tration. We test SamsungPay using MobiKwik. Mobikiwk’s
workflow is the same as Ola Money except that its passcode
reset workflow uses a passcode and OTP, both of which we
can intercept. This makes SPay prone to attacks that result
from integrating with third-party UPI apps.

3.5 UPI 1.0 Responsible Disclosures
We reported the vulnerabilities of BHIM to NPCI, CERT-IN,
and CERT-US, with the initial disclosure to CERT-IN in June
2017. We followed up with our disclosures again in Oct 2017
(timelines in Figure 5). Subsequently, we reported the vulnera-
bilities to CERT-US and got the following CVEs: CVE-2017-
9818, CVE-2017-9819, CVE-2017-9820, CVE-2017-9821 for
BHIM. We also got CVEs for our disclosures to other app ven-
dors from CERT-US (CVE-2018-15660, CVE-2018-15661,
CVE-2018-17400, CVE-2018-17401, CVE-2018- 17402,
CVE-2018-17403) and a $5k bounty from Samsung (CVE-
2018-17083) for a sensitive data leak. The original CVEs
disclosed relied on accessibility permission, though we later
determined that the attacks can be carried out without it.

3.6 Preliminary Analysis of UPI 2.0 Protocol
In August 2018, UPI made the first update to the UPI speci-
fication, UPI 2.0, over a year after we first reported the vul-
nerabilities to them. Based on our disclosures, UPI 2.0 does
prevent our attacks in the current form. We present our pre-
liminary findings; a detailed analysis of UPI 2.0 is currently
ongoing. We follow the same approach we employed for
UPI 1.0 and reverse-engineered the UPI 2.0 protocol using
UPI 2.0 versions of four popular apps— BHIM, Google Pay,
Paytm, and Amazon Pay. Google Pay (GPay) and Paytm are
the leaders in the market, each with a 36% market share.

Some of our findings are as follows. We evaluate the UPI
2.0 version of BHIM (which is also used by many banks as
their official UPI app under their own brand, e.g., BHIM SBI
Pay and BHIM PNB). We found that NPCI now forces an
update on BHIM to its latest version. In UPI 2.0, in addition to
the device information we saw in UPI 1.0, BHIM also sends
the device’s IMEI number, SIM number, network type, etc.,
to the UPI server for device hard-binding. In BHIM’s latest
update, NPCI removed the alternate workflow1, and hence the
Potential Security Hole #1 that we exploited for our attacks, a
positive change. However, the other vulnerabilities persist as
detailed below.

On GPay, we can set up a user’s profile similar to how we
did for Attack #1 and Attack #1′ in third-party UPI 1.0 apps.
From GPay’s traffic, we find that GPay authenticates with
Gmail servers using OAuth2. Thus an adversary Eve can set
up a GPay account as follows. Eve can use her own Gmail ID
on her phone and can key-in Alice’s cell number at the time of
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login to GPay. Google sends an OTP to Alice’s cell number,
which Mally can intercept (given Mally’s RECEIVE_SMS
permission). For Eve to proceed, GPay must send an SMS
message containing Alice’s device registration token back to
the UPI server from Alice’s phone.

In the absence of the alternate workflow1 that previously
enabled the attacks, we explored SMS spoofing as a means for
Eve to send an SMS message to the UPI server. For the attack
to work, the UPI server must get the spoofed SMS message
from Alice’s cell number. For proof-of-concept, we tested
SMS spoofing with several services that claim to provide non-
anonymous SMS spoofing. However, it did not work for a test
number we own in India. While we can send SMS messages
either anonymously or using a default number provided by
the SMS spoofing service, we are unable to control the sender
number of the SMS message, a must for the attacks to work.
We are currently exploring this and other SMS related attack
vectors noted in prior research [49]. Alternatively, Mally can
request SEND_SMS permission and send the SMS message
from Alice’s phone.

On Paytm, we studied the handshake by instrumenting the
app with debug statements at the bytecode level. Below is a
snippet of the bank account information that Paytm receives
during the handshake. The authors mask all the details below
for privacy. We note that just as before, UPI sends back the
bank account details without requiring a user to provide any
credentials shared with the bank. We confirm the same on
Amazon Pay as well. Amazon Pay uses Amazon credentials
and the default cell number set in a user’s Amazon account. To
create a profile, an adversary Eve can set Alice’s cell number
in her Amazon credentials.

1 "name":"956785XXXX@paytm",
2 "defaultCredit":{"bank":"State Bank Of India",
3 "ifsc":"SBIN0008626",
4 "account":"000000379085XXXXX",
5 "accountType":"SAVINGS",
6 "name":"BXXXXXX TXXXX",
7 "branchAddress":"AMXXXXXXXXX"

Thus, we have confirmed that sensitive information leaks
(similar to those in Attack #1) still exist. An open question
remains on the possibility of other attacks, such as performing
unauthorized transactions.

4 Lessons Learned

Below, we summarize the problems in the design of the UPI
1.0 protocol that enabled potential attacks.

1. The UPI protocol reveals bank account details of a user
in any handshake (default or alternate), given the user’s
cell number and no bank-related credentials.

2. Device hard-binding, the first factor, relies on data that
is easily harvested from a device. UPI does not use any
secrets for this step.

3. A weak device binding mechanism allows a user (or an
adversary) to bind her cell phone with a cell number
registered to the bank account of another user.

4. Setting the UPI PIN, the second factor, requires partial
debit card information printed on the card, which is not
a secret. The debit card PIN, a secret a user shares with
the bank, is never used. This is a lower bar as online, and
in-store purchases require the entire card number and
the debit card PIN.

5. When transferring an existing user’s UPI account to a
new phone, UPI does not require the user to provide any
bank-related credentials or the printed debit card infor-
mation to authorize transactions from the new phone.
The UPI protocol relies on the UPI PIN alone.

6. On third-party apps, the passcode, the third factor, is
managed by the third-party app server and hence easy
to bypass. An attacker can bypass the passcode require-
ment by setting up an attacker-controlled profile (using
attacker credentials) with the app. In this case, UPI ef-
fectively relies only on two factors— device binding and
UPI PIN.

7. The bank account number leaked from the default work-
flow of any of the third-party apps is enough to reset a
user’s passcode on another app (such as BHIM).

We note that though UPI 2.0 closes the weak device binding
mechanism #3 above, the other issues persist. The overall
weakness in UPI is that user registration requires only the
knowledge of a cell number and the ability to receive one
SMS message from that number.

Attacks only require Mally to do two things: provide the
OTP during registration and, for attacks on existing users of
UPI, steal their UPI PIN. Need for Mally can be circumvented
in two ways— unauthorized transfer of a user’s cell number to
the attacker or by social engineering attacks. Both are feasible,
and social engineering attacks are scalable in India, given the
cheap labor cost. For non-users of UPI, getting them to reveal
an OTP during registration is sufficient.

There are significant risks associated with relying on cell
numbers as the only means of user identification. Banks in
India accept any cell number that the user registers with their
accounts—there is no cross-check to verify if the cell number
given actually belongs to the user. It is not uncommon, for
example, for members of a family to provide the same cell
number to the bank for their individual bank accounts. Thus,
a person with access to family members’ debit card numbers
can add all their bank accounts to the same app for transac-
tions. One may view this either as a convenience or a security
and privacy risk, depending on one’s perspective.

Finally, we would like to clarify that our claim is not that
all the high-level lessons learned are new; most security prin-
ciples are well-known by now. Nevertheless, we want to con-
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textualize the lessons learned from the perspective of a widely
adopted financial protocol. We note that both the designers of
Android and UPI contribute to the flaws we discovered, which
made getting app vendors to do fixes difficult. App vendors
often blame it on Android design or users, who should not
be granting dangerous permissions to apps. At the same time,
UPI protocol designers could have factored in the current
state of Android and security-awareness among users in India
and made the protocol more secure.

It is well-known by now that security by obscurity does
not help. We think the risks could have been better addressed
had UPI published the protocol details once it was internally
vetted, thus allowing the research community to analyze it fur-
ther. We show how protocol analysis from the point-of-view
of an adversary trying to uncover unpublished workflows and
secrets, though important, is often overlooked for application-
level protocols.

Limitations of our study: A limitation of our study is that
we only studied seven UPI apps to analyze the security of the
UPI protocol. Automated analysis techniques could not be
used given the number of security defenses these apps use.
Prior research by Reaves et al. [48] also reverse-engineered
seven apps that resisted automated analysis. However, we
consider seven to be a reasonable number for our work since
our focus was on uncovering flaws with the UPI protocol that
is common across the apps. Also, the apps we analyzed have
88% of the market share combined, and of the 88 UPI apps, a
majority of them are minor variations of BHIM, which we an-
alyzed. Nevertheless, a larger study could provide additional
insights into the security of the payment ecosystem in India
and will also be useful to other countries that decide to use a
common payment interface.

5 Mitigation

We discuss possible mitigation strategies against the attacks
and their pros and cons below.

UPI mitigations. We discuss steps the government can take
to address some of the issues we have raised.

Minimizing protocol data: Our attacks show how proto-
col data revealed during the default workflow was used to
exploit an alternate workflow. This was possible because the
UPI server sent more data than the client needed to see. For
instance, while the masked bank account number is useful to
display on the screen, bank-specific details such as the bank
name, account number and IFSC code, sent in the clear can
be excluded from the handshake.

Secure alternate workflows: We leveraged two alternate
workflows in our attacks, as summarized in Section 4. Though
UPI 2.0 closes one of the flows, the other alternate flows
are either unsecured or secured using weak credentials. For

instance, an alternate workflow allowed a user to bind her cell
phone with a cell number registered to the bank account of
another user, even without providing any secrets pertaining to
the other user.

Mandate opt-in into UPI apps: Currently, as we are
aware, UPI services are by default available to users of a
bank that is integrated with UPI; the UPI guidelines do not
require users to opt-in with their bank. An opt-in requirement
would increase risk awareness as well as cut down security
risks for non-UPI users such as credit card users, cash users,
or users of wallet apps. Alternatively, a user could be required
to do an in-person verification with their local bank branch
to register for UPI services on their cell phone. This can pre-
vent unauthorized registrations of a user, which automatically
eliminates the other attacks.

Provide opt-out option: As a follow-up on the previous
mitigation, non-users and users wanting to discontinue UPI
services must be allowed to opt-out for security and privacy
reasons. The downside of making UPI optional is the negative
impact it may have on UPI adoption.

Use debit card number + something user knows: Debit
cards in India are Chip+PIN cards, and doing transactions
with them always requires entering a PIN. In contrast, doing
transactions via the UPI apps requires neither—only the in-
formation that is printed on the card—resulting in a weaker
authentication path. Fixes to this are unfortunately difficult
if Mally is powerful enough to intercept PIN entry. However,
assuming user interactions can be secured on Android (e.g.,
see [18]), UPI guidelines requiring the user to enter a secret
shared with the bank to enable transactions will be useful.

Require strong device binding: The UPI specification
could require payment apps to do a stronger device-to-cell
number binding. Since binding is one of the most critical
steps of the protocol, the bank may issue a one-time secret
to the user out-of-band, say, when the user visits the bank for
UPI activation. The user has to enter this secret the first time
she uses the UPI app on her phone. Additionally, the UPI
server must verify that the UPI app it is communicating with
is an official app running on a non-rooted phone. If the UPI
server can somehow establish that, then an attacker may not
be able to use a repackaged version of a UPI app to register
an account. Unfortunately, this is tricky to enforce.

Android mitigations. In the attacks we describe, the attack
starts when Mally on a user’s phone gets the user’s cell num-
ber as an SMS from the attacker. A possible defense would be
for Android to have a policy that prevents SMS permissions
from being requested by apps. Google is already moving in
that direction. As of January 2019, Google announced that
apps could not request SMS permissions unless they are the
default SMS handler and get explicit approval from Google.
How effective this policy is, remains to be studied. We note
that this does not make the attack impossible. It would merely
require Mally not just to be installed but also accepted as
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the default SMS handler (or get approved as an exception
by Google). Also, the policy is specific to the Google Play
store—apps from other stores could still introduce risks. Many
popular carriers in India support alternate app stores such as
Aircel and Airtel that allow SMS-triggered downloads [43].

User mitigations. Since Eve requires a user’s cell number
to initiate the attack, using a private cell number for bank
accounts may slow down an attack. Unfortunately, it does
not entirely prevent it. If the user has installed Mally, Mally
suffices to detect the user’s cell phone number (Section 3.3.6.
Thus, users would also need to be careful to never install apps
with read or receive SMS permissions on phones they use for
banking.

6 Related Work

Panjwani et al. did one of the first studies on an Indian pay-
ment system called EKO, a mobile service provider [47]. They
show PIN recovery attacks that could result in a user imperson-
ation attack. Reaves et al. [48] first analyzed 47 mobile apps
from 28 countries for SSL vulnerabilities and then manually
reverse-engineer seven branchless banking apps, including
three Indian payment apps (Airtel Money, Oxigen Wallet,
and MobileOnMoney). They discover that an attacker can
bypass authentication because of the use of an insecure chan-
nel, the use of weak crypto, or the use of weak passwords.
A follow-up work by Castle et al [9] studies 197 payment
apps, including some from Southern Asia (the apps they study
is not listed). Castle et al. point out that payment apps have
sufficient safeguards to prevent attacks, and the vulnerabilities
pointed out by Reaves et al. are either because of regulatory
constraints or from using old Android phones. They corrobo-
rate their findings with developer interviews with participants
from well-established organizations.

Payment apps have been studied in other countries, as well.
Yang et al. [62] notes implementation weaknesses in the third-
party SDKs included by Chinese financial apps that can result
in integrity attacks on financial transactions. Jung et al. [31]
studies repackaging attacks on seven different banking apps
in Korea. Their attacks could bypass integrity checks and anti-
virus checks of banking apps. Yacouba et al. [33] launched
a DDoS attack on a banking server through a repackaged
banking app. Roland et al. demonstrates an NFC relay attack
on the Google Wallet payment system [50].

Research has pointed out several vulnerabilities in financial
applications. Taylor et al. [56] did a static analysis of financial
apps on Google Play. They discover weaknesses such as the
creation of world-readable and writable files, the use of unse-
cured content providers, and the use of weak random number
generators. Bojjagani et al. [7] perform static and dynamic
analysis on banking apps to discover 356 exploitable vulner-
abilities, details unknown, from an unknown set of samples.

AlJudaibi et al. [3] discuss 11 significant threats faced by mo-
bile devices such as insecure data storage, weak server-side
control in third-party apps, use of a rooted device, and lack
of security in software and kernel. Chothia et al. [11], Stone
et al. [55] and Bojjagani et al. [6] analyze both Android and
iPhone apps for lack of hostname verification when an SSL
certificate is pinned. Their results show how popular bank-
ing apps with these vulnerabilities are prone to phishing and
man-in-the-middle attacks.

Protocol flaws that result in attacks on payment cards that
use chip and PIN (EMV) [8, 35, 38, 51] and 3 Domain Secure
2.0 [2], an authentication protocol for web-based payments,
are also studied before. Many issues concerning financial
inclusion for developing countries such as Brazil and Africa
have been extensively studied [22, 42, 61]. Weaknesses in
financial systems as a result of excessive reliance on OTPs [10,
37, 49, 59] and its implication on Internet-based services are
also well-known [1, 16, 32, 37, 53, 63].

Prior studies on Indian payments apps were done before the
Indian government launched the Unified Payment Interface, a
first of its kind. To the best of our knowledge, we are the first
to conduct a study on UPI.

7 Conclusion

In this paper, we used a principled approach to analyze the
UPI 1.0 protocol and uncovered core design weaknesses in
its unpublished multi-factor authentication workflow that can
severely impact a user. We showed attacks that have devastat-
ing implications and only require victims to have installed an
attacker-controlled app, regardless of whether they use a UPI
app or not. All the vulnerabilities identified were responsibly
disclosed. A subsequent software update to UPI 2.0 prevents
the discussed attack vectors for an exploit. Unfortunately, sev-
eral underlying security flaws remain that suggest a need for
further vetting and security analysis of UPI 2.0, given the
protocol’s importance for mobile payments in India. We dis-
cussed the lessons learned and potential mitigation strategies.
Finally, we expect our findings to be useful to other countries
that look to implement a common backend infrastructure for
financial apps.
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9 Appendix

9.1 BHIM Code Instrumentation
We provide a brief discussion of one example instrumentation
of BHIM with the goal of determining the workflow of the
UPI protocol. BHIM version 1.3 consists of about 516K lines
of obfuscated smali code. Some apps such as Paytm are even
larger than BHIM, posing a significant reverse engineering
challenge.

After searching through the BHIM code, we located
the snippet below that belongs to the NPCI library
and is integrated with the BHIM app. We found that
NPCI had not obfuscated the name of the package as
shown in line #1 in/org/npci/upiapp/utils. However, the
method names are obfuscated as indicated by the method
name at line #19 called a. The third-party libraries used
by NPCI are not obfuscated as is seen by the class
org.apache.http.impl.client.DefaultHttpClient at line #17.

We instrumented different portions of the BHIM app to de-
termine the control-flow of the program. We found that when
using automated tools such as Soot [54] to instrument the app,
we got unexpected failures such as the app hanging indefi-
nitely (we did get Soot to work for smaller test programs). We
were unable to root-cause why BHIM’s instrumentation with
Soot did not work. Hence, we resorted to a careful smali code
instrumentation of BHIM.

Listing 1 shows the method that performs HTTP GET.
Since the methods are all static methods, by Android (and
Java) convention, the first parameter is stored in the register
p0, the second in register p1 etc. The registers v0, v1 etc. are
registers local to a method body. Listing 2 contains code that
prints the parameters to the GET request contained in the
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parameter p1. We inserted the code in Listing 2 after line
#38, right at the beginning of the function (after the function
prologue at line #35). The inserted code snippet prints the
parameters using the System.out.print API call. The printed
debug statements appear in Android logcat logs. We did a
similar instrumentation for HTTP POST methods.

Some of the apps such as Paytm, that contain several DEX
files (with each DEX file containing a maximum of 65536
methods), were even more challenging to instrument, as
they obfuscate the calls to most of the third-party libraries
they use. In such cases, further experimentation and analysis
was required to discover the calls. That apart, the security
defenses used by these apps may also change across app
revisions. For instance, while older versions of Paytm
could be repackaged, the latest version of the app resists
repackaging.

1 .class public Lin/org/npci/upiapp/utils/RestClient;
2 .super Ljava/lang/Object;
3 .source "RestClient.java"
4

5 # annotations
6 .annotation system Ldalvik/annotation/MemberClasses;
7 value = {
8 Lin/org/npci/upiapp/utils/

RestClient$UnsuccessfulRestCall;
9 }

10 .end annotation
11

12 # static fields
13 .field private static final a:Ljava/lang/String;
14

15 .field private static b:Lorg/apache/http/impl/client/
DefaultHttpClient;

16

17 .field private static c:Lorg/apache/http/impl/client/
DefaultHttpClient;

18

19 .method public static a(Landroid/content/Context;Ljava/
lang/String;Ljava/util/ Map;)Lin/org/npci/upiapp/
models/ApiResponse;)

20 .locals 6
21 .annotation system Ldalvik/annotation/Signature;
22 value = {
23 "(",
24 "Landroid/content/Context;",
25 "Ljava/lang/String;",
26 "Ljava/util/Map",
27 "<",
28 "Ljava/lang/String;",
29 "Ljava/lang/String;",
30 ">;)",
31 "Lin/org/npci/upiapp/models/ApiResponse;"
32 }
33 .end annotation
34

35 .prologue
36 const/16 v5, 0x130
37

38 .line 404
39 new-instance v2, Lorg/apache/http/client/methods/

HttpGet;
40

41 invoke -direct {v2}, Lorg/apache/http/client/methods/
HttpGet;-><init >()V

42

43 .line 405
44 ...
45 move -result -object v2
46 const -string v3, " . Response Code: "
47

48 invoke -virtual {v2, v3}, Ljava/lang/StringBuilder;->
append(Ljava/lang/String;)Ljava/lang/
StringBuilder;

49

50 move -result -object v2
51 invoke -interface {v0}, Lorg/apache/http/HttpResponse

;->getStatusLine()Lorg/apache/http/StatusLine;
52

53 move -result -object v0
54 invoke -interface {v0}, Lorg/apache/http/StatusLine;->

getStatusCode()I
55

56 move -result v0
57 ...
58 .end method

Listing 1: BHIM code snippet
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1 sget -object v0, Ljava/lang/System;->out:Ljava/io/
PrintStream;

2

3 new-instance v1, Ljava/lang/StringBuilder;
4 invoke -direct {v1}, Ljava/lang/StringBuilder;-><init >()V
5

6 const -string/jumbo v2, "Log_debug_upi_str0: "
7 invoke -virtual {v1, v2}, Ljava/lang/StringBuilder;->

append(Ljava/lang/String;)Ljava/lang/StringBuilder;
8

9 move -result -object v1
10 invoke -virtual {v1, p1}, Ljava/lang/StringBuilder;->

append(Ljava/lang/String;)Ljava/lang/StringBuilder;
11

12 move -result -object v1
13 invoke -virtual {v1}, Ljava/lang/StringBuilder;->toString

()Ljava/lang/String;
14

15 move -result -object v1
16 invoke -virtual {v0, v1}, Ljava/io/PrintStream;->println(

Ljava/lang/String;)V
17

18

19 sget -object v0, Ljava/lang/System;->out:Ljava/io/
PrintStream;

20

21 new-instance v1, Ljava/lang/StringBuilder;
22 invoke -direct {v1}, Ljava/lang/StringBuilder;-><init >()V
23

24 const -string/jumbo v2, "Log_debug_upi_restclient_map0: "
25 invoke -virtual {v1, v2}, Ljava/lang/StringBuilder;->

append(Ljava/lang/String;)Ljava/lang/StringBuilder;
26

27 move -result -object v1
28 invoke -virtual {p2}, Ljava/lang/Object;->toString()Ljava/

lang/String;
29

30 move -result -object v2
31 invoke -virtual {v1, v2}, Ljava/lang/StringBuilder;->

append(Ljava/lang/String;)Ljava/lang/StringBuilder;
32

33 move -result -object v1
34 invoke -virtual {v1}, Ljava/lang/StringBuilder;->toString

()Ljava/lang/String;
35 move -result -object v1
36 invoke -virtual {v0, v1}, Ljava/io/PrintStream;->println(

Ljava/lang/String;)V

Listing 2: HTTP GET Instrumentation Code
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