
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

Fuzzing Error Handling Code using
Context-Sensitive Software Fault Injection

Zu-Ming Jiang and Jia-Ju Bai, Tsinghua University; Kangjie Lu,
University of Minnesota; Shi-Min Hu, Tsinghua University

https://www.usenix.org/conference/usenixsecurity20/presentation/jiang

Fuzzing Error Handling Code using Context-Sensitive Software Fault Injection

Zu-Ming Jiang, Jia-Ju Bai
Tsinghua University

Kangjie Lu
University of Minnesota

Shi-Min Hu
Tsinghua University

Abstract
Error handling code is often critical but difficult to test

in reality. As a result, many hard-to-find bugs exist in error
handling code and may cause serious security problems once
triggered. Fuzzing has become a widely used technique for
finding software bugs nowadays. Fuzzing approaches mutate
and/or generate various inputs to cover infrequently-executed
code. However, existing fuzzing approaches are very limited
in testing error handling code, because some of this code can
be only triggered by occasional errors (such as insufficient
memory and network-connection failures), but not specific in-
puts. Therefore, existing fuzzing approaches in general cannot
effectively test such error handling code.

In this paper, we propose a new fuzzing framework named
FIFUZZ, to effectively test error handling code and detect
bugs. The core of FIFUZZ is a context-sensitive software
fault injection (SFI) approach, which can effectively cover
error handling code in different calling contexts to find deep
bugs hidden in error handling code with complicated contexts.
We have implemented FIFUZZ and evaluated it on 9 widely-
used C programs. It reports 317 alerts which are caused by
50 unique bugs in terms of the root causes. 32 of these bugs
have been confirmed by related developers. We also compare
FIFUZZ to existing fuzzing tools (including AFL, AFLFast,
AFLSmart and FairFuzz), and find that FIFUZZ finds many
bugs missed by these tools. We believe that FIFUZZ can
effectively augment existing fuzzing approaches to find many
real bugs that have been otherwise missed.

1 Introduction

A program may encounter various errors and needs to handle
these errors at runtime. Otherwise, the program may suffer
from security or reliability issues. While error handing is
critical, itself is error-prone. Firstly, error handling code is
difficult to correctly implement [14, 23, 34, 54] because it
often involves special and complicated semantics. Secondly,
error handling code is also challenging to test [25, 28, 53, 61],

because such code is infrequently executed and often receives
insufficient attention. For these reasons, many bugs may exist
in error handling code, and they are often difficult to find in
real execution. Some recent works [8, 32, 37, 68] have shown
that many bugs in error handling code can cause serious secu-
rity problems, such as denial of service (DoS) and information
disclosure. In fact, many CVE-assigned vulnerabilities (such
as CVE-2019-7846 [19], CVE-2019-2240 [20], CVE-2019-
1750 [21] and CVE-2019-1785 [22]) stem from bugs in error
handling code.

Considering that error handling code is critical but buggy,
various tools have been proposed to detect bugs in error han-
dling code. Some approaches [28, 32, 33, 37, 53] use static
analysis, but they often introduce many false positives, due to
the lack of runtime information and inherent limitations with
static analysis. To reduce false positives, recent approaches [1,
6,7,13,15,26,27,29,30,38,45,50,50,51,59,60,64,65] instead
use fuzzing to test infrequently executed code. They gener-
ate effective program inputs to cover infrequently executed
code, according to the input specification or the feedback of
program execution. However, the input-driven fuzzing cannot
effectively cover error handling code, as some of this code
can be only triggered by non-input occasional errors, such
as insufficient memory and network-connection failures. As
a result, existing fuzzing approaches cannot effectively test
error handling code.

Testing error handing code is challenging by nature, as er-
rors are often hard to deterministically produce. An intuitive
solution to triggering error handling code is to use software
fault injection (SFI) [52]. SFI intentionally injects faults or
errors into the code of the tested program, and then executes
the program to test whether it can correctly handle the in-
jected faults or errors at runtime. Specifically, the faults are
injected into the sites that can fail and trigger error handling
code, and we call each such site an error site. In this way,
SFI can intentionally cover error handling code at runtime.
Existing SFI-based approaches [9–11, 18, 25, 39, 40, 55, 67]
have shown encouraging results in testing error handling code
and detecting hard-to-find bugs.

USENIX Association 29th USENIX Security Symposium 2595

However, existing SFI-based approaches suffer from a crit-
ical limitation: to our knowledge, they perform only context-
insensitive fault injection, which often stops testing from go-
ing deep. Specifically, they inject faults according to the lo-
cations of error sites in source code, without considering the
execution contexts of these error sites, i.e., the execution paths
reaching to the error sites. Thus, if a fault is constantly in-
jected into an error site, this error site will always fail when
being executed at runtime. However, an error site is typically
executed in different calling contexts, and real bugs can be
only triggered when this error site fails in a specific calling
context but succeeds in other calling contexts. In this case,
existing SFI-based approaches may miss these real bugs.

Figure 1 shows a simple example of this case. In the func-
tion main, the objects x and y are allocated, and then the func-
tions FuncA and FuncB are called. FuncA and FuncB both call
FuncP, but FuncB frees the argument object before calling
FuncP. In FuncP, the object z is allocated by calling malloc;
if this function call fails, the argument object is freed, and
the program exits abnormally by calling exit. If we perform
context-insensitive fault injection by just statically injecting
a fault into malloc in FuncP, the program will always exit
when FuncA is executed, without finding any bug. If we con-
sider calling context, and inject a fault into malloc in FuncP
only when FuncB calls FuncP, a double-free bug of the ob-
ject y can be triggered at runtime. Since such a case is fairly
common, it may incur a significant impact on detecting bugs
in error handling code.

int main() {
 x = malloc(...);
 y = malloc(...);

 FuncA(x);
 FuncB(y);

}

void FuncA(x) {
 FuncP(x);

}
void FuncB(y) {
 free(y);
 FuncP(y);

}

void FuncP(arg) {
 z = malloc(...)
 if (!z) {

 free(arg);
 exit(-1);

 }

}

Fault 1: main -> FuncA -> FuncP -> malloc exit abnormally...
Fault 2: main -> FuncB -> FuncP -> malloc double free!

Figure 1: Examples of function calls that can fail.

In this paper, to effectively detect bugs in error handling
code, we design a novel context-sensitive SFI-based fuzzing
approach. The approach takes execution contexts into ac-
count to effectively guide SFI to maximize bug finding. It
consists of six steps: 1) statically identifying the error sites in
the source code of the tested program; 2) running the tested
program and collecting runtime information about calling
contexts of each executed error site and code coverage; 3)
creating error sequences about executed error sites according
to runtime information, and each element of such a sequence
is differentiated by the location of the executed error site and
the information about its calling context; 4) after running the

program, mutating each created error sequence to generate
new sequences; 5) running the tested program and injecting
faults according to the mutated error sequences; 6) collect-
ing runtime information, creating new error sequences and
performing mutation of these error sequences again, which
constructs a fuzzing loop.

Based on our approach, we propose a new fuzzing frame-
work named FIFUZZ. At compile time, to reduce manual
work of identifying error sites, FIFUZZ performs a static anal-
ysis of the source code of tested programs, to identify possible
error sites. The user can select realistic error sites that can ac-
tually fail and trigger error handling code. Then, FIFUZZ uses
our context-sensitive SFI-based fuzzing approach in runtime
testing. To be compatible with traditional fuzzing process
for program inputs, FIFUZZ mutates the error sequences and
program inputs together by analyzing runtime information of
the tested program.

Overall, we make the following technical contributions:

• We perform two studies of error handling code in widely-
used applications and vulnerabilities found by existing
fuzzing tools, and find that: nearly 42% of sites that
can trigger error handling code are related to occasional
errors, but only few vulnerabilities found by existing
fuzzing tools are related to error handling code triggered
by occasional errors. Thus, it is important to improve
fuzzing to support the testing of error handling code.

• We propose a novel context-sensitive SFI-based fuzzing
approach, which can dynamically inject faults based on
both locations of error sites and their calling contexts, to
cover hard-to-trigger error handling code.

• Based on this approach, we develop a new fuzzing frame-
work named FIFUZZ, to effectively test error handling
code. To our knowledge, FIFUZZ is the first systematic
fuzzing framework that can test error handling code in
different calling contexts.

• We evaluate FIFUZZ on 9 well-tested and widely-used
C applications of the latest versions as of our evalua-
tion. It reports 317 alerts which are caused by 50 unique
bugs in terms of the root causes. 32 of these bugs have
been confirmed by related developers. We also com-
pare FIFUZZ to existing fuzzing tools (including AFL,
AFLFast, AFLSmart and FairFuzz) on 5 common pro-
grams in the Binutils toolset, and find that FIFUZZ
finds many bugs missed by these tools.

The rest of this paper is organized as follows. Section 2
introduces background and our two studies. Section 3 intro-
duces basic idea and our context-sensitive SFI-based fuzzing
approach. Section 4 introduces FIFUZZ in detail. Section 5
shows our evaluation. Section 6 makes a discussion about
FIFUZZ and its found bugs. Section 7 presents related work,
and Section 8 concludes this paper.

2596 29th USENIX Security Symposium USENIX Association

2 Background

In this section, we first introduce error handling code with
related bug examples, and then show our studies of error
handling code in widely-used applications and CVEs found
by existing fuzzing tools.

2.1 Error Handling Code
A program may encounter exceptional situations at runtime,
due to special execution conditions such as invalid inputs from
users, insufficient memory and network-connection failures.
We refer to such exceptional situations as errors, and the code
used to handle an error is called error handling code.

In fact, errors can be classified into two categories: input-
related errors and occasional errors. An input-related error
is caused by invalid inputs, such as abnormal commands and
bad data. Such an error can be triggered by providing spe-
cific inputs. An occasional error is caused by an exceptional
event that occasionally occurs, such as insufficient memory
or network-connection failure. Such an error is related to the
state of execution environment and system resources (such
as memory and network connection), but unrelated to inputs,
so it typically cannot be triggered by existing fuzzing that fo-
cuses on inputs. While this error occurs occasionally, they can
be reliably triggered in an adversarial setting. For example,
by exhaustively consuming memory, an attacker can reliably
result a function call to malloc() in returning a null pointer.
As such, bugs in error handing code can be as critical as the
ones in normal code.

2.2 Bug Examples in Error Handling Code
Figures 2 and 3 show two patches fixing bugs in error handling
code of the libav library in ffmpeg [24]. In Figure 2, the vari-
able sbr->sample_rate could be zero, but it is divided in the
code, causing a divide-by-zero bug. This bug is also reported
as CVE-2016-7499 [48]. To fix this bug, Patch A [46] checks
whether sbr->sample_rate is zero before this variable is di-
vided, and returns abnormally if so. The report of this bug [47]
mentions that this bug was found by AFL. On the other
hand, in Figure 3, the function av_frame_new_side_data
is used to allocate memory for new data, and it can fail
and return a null pointer when memory is insufficient. In
this case, the variable dst->side_data[i]->metadata is
freed after dst->side_data[i] is freed, which causes a
use-after-free bug. To fix this bug, PatchB [49] frees the
variable dst->side_data[i]->metadata before freeing
dst->side_data[i]. Because the report of this bug or the
patch does not mention any tool, the bug might be found by
manual inspection or real execution.

The bug in Figure 2 is caused by missing handling of an
input-related error, because the variable sbr->sample_rate
is related to the function argument sbr affected by inputs.

--- a/libavcodec/aacsbr.c
+++ b/libavcodec/aacsbr.c
@@ -334,6 +334,9
static int sbr_make_f_master(AACContext *ac,

SpectralBandReplication *sbr, ...) {
...

+ if (!sbr->sample_rate)
+ return -1;

// BUG: sbr->sample_rate may be zero
start_min = ... / sbr->sample_rate;
...

}

Figure 2: Patch A: fixing a divide-by-zero bug.

--- a/libavutil/frame.c
+++ b/libavutil/frame.c
@@ -383,8 +383,8
int av_frame_copy_props(...) {

...
AVFrameSideData *sd_dst = av_frame_new_side_data(...);
if (!sd_dst) {

for (i = 0; i < dst->nb_side_data; i++) {
av_freep(&dst->side_data[i]->data);

- av_freep(&dst->side_data[i]);
av_dict_free(&dst->side_data[i]->metadata);

+ av_freep(&dst->side_data[i]);
}

}
}

Figure 3: Patch B: fixing a use-after-free bug.

The bug in Figure 3 is instead caused by incorrect handling of
an occasional error, because av_frame_new_side_data fails
only when memory is insufficient, which occasionally occurs
at runtime.

2.3 Study of Error Handling Code

To understand the proportion of input-related errors and occa-
sional errors that can trigger error handling code in software,
we perform a manual study of the source files (.c and .h) of 9
widely-used applications (vim, bison, ffmpeg, nasm, catdoc,
clamav, cflow, gif2png+libpng, and openssl). Due to time con-
straints, if an application contains over 100 source files, we
randomly select 100 source files of this application to study.
Otherwise, we study all the source files of this application.
Specifically, we first manually identify the sites that can fail
and trigger error handling code by looking for if or goto state-
ments, which are often used as entries of error handling code
in C applications [33]. Then, we manually check whether the
identified sites are related to input-related errors or occasional
errors. Table 1 shows the study results.

We find that 42% of the sites that can fail and trigger error
handling code are related to occasional errors. Besides, in the
study, we also observe that about 70% of the identified error
sites are related to checking error-indicating return values of
function calls (such as the example in Figure 3). This observa-
tion indicates that manipulating the return values of specific
function calls can cover most error handling code, which has
been adopted by some existing SFI-based approaches [10,18].

USENIX Association 29th USENIX Security Symposium 2597

Application Studied file Error site Input-related Occasional
vim 100 1163 530 (46%) 633 (54%)
bison 100 184 96 (52%) 88 (48%)
ffmpeg 100 881 518 (59%) 363 (41%)
nasm 100 673 564 (84%) 109 (16%)
catdoc 29 91 43 (47%) 48 (53%)
clamav 100 1089 522 (48%) 567 (52%)
cflow 100 286 170 (59%) 116 (41%)
gif2png+libpng 95 830 556 (67%) 274 (33%)
openssl 100 989 571 (58%) 418 (42%)
Total 824 6,168 3,570 (58%) 2,616 (42%)

Table 1: Study results of error handling code.

Tool CVE Error handling Occasional error
AFL 218 85 3
Honggfuzz 57 17 3
AFLFast 8 2 0
CollAFL 93 15 4
QSYM 6 0 0
REDQUEEN 11 2 1
Total 393 121 11

Table 2: Study results of existing fuzzing tools.

2.4 Study of CVEs Found by Existing Fuzzing

To understand how existing fuzzing tools perform in detecting
bugs in error handling code, we further study the CVEs found
by some start-of-the-art fuzzing tools, including AFL [1],
Honggfuzz [30], AFLFast [13], CollAFL [26], QSYM [65]
and REDQUEEN [7]. We select these fuzzing tools because
CVEs found by them are publicly available. Specifically, for
AFL, a website [2] collects its found CVEs; for Honggfuzz,
the found CVEs are listed in its homepage; for AFLFast, Col-
lAFL, QSYM and REDQUEEN, the found CVEs are listed in
their papers as well. We manually read these CVEs and iden-
tify the ones related to error handling code, and also check
whether the identified CVEs are related to occasional errors.
Table 2 shows the study results.

We find that 31% of CVEs found by these fuzzing tools
are caused by incorrect error handling code, such as the bug
shown in Figure 2. Only 9% of these CVEs are related to oc-
casional errors. This proportion is far less than the proportion
(42%) of occasional error sites among all error sites (found in
Section 2.3). The results indicate that existing fuzzing tools
may have missed many real bugs in error handling code trig-
gered by occasional errors. Thus, it is important to improve
fuzzing to support the testing of error handling code.

3 Basic Idea and Approach

3.1 Basic Idea

To effectively test error handling code, we introduce SFI in
fuzz testing by “fuzzing” injected faults according to the run-
time information of the tested program. To achieve this idea,
we build an error sequence that contains multiple error points.
An error point represents an execution point where an error

can occur and trigger error handling code. When performing
fault injection, each error point in an error sequence can nor-
mally run (indicated as 0) or fail by injecting a fault (indicated
as 1). Thus, an error sequence is actually as 0-1 sequence that
describes the failure situation of error points at runtime:

ErrSeq = [ErrPt1,ErrPt2, ...,ErrPtx], ErrPti = {0,1} (1)

Similar to program inputs, an error sequence also affects
program execution. This sequence can be regarded as the
“input” of possibly triggered errors. A key problem here is
which error points in an error sequence should be injected
with faults to cover as much error handling code as possible.
Inspired by existing fuzzing that fuzz program inputs using
the feedback of program execution, our basic idea is to fuzz
error sequence for fault injection to test error handling code.

3.2 Error Sequence Model
Existing SFI-based approaches often use context-insensitive
fault injection. Specifically, they only use the location of each
error site in source code to describe an error point, namely
ErrPt = <ErrLoc>, without considering the execution context
of this error site. In this way, if an fault is injected into an
error site, this error site will always fail when being executed
at runtime. However, an error site can be executed in different
calling contexts, and some real bugs (such as the double-free
bug shown in Figure 1) can be triggered only when this error
site only fails in specific calling context and succeeds in other
calling contexts. Thus, existing SFI-based approaches may
miss these real bugs.

To solve this problem, we propose a context-sensitive soft-
ware fault injection (SFI) method. Besides the location of
each error site, our method also considers the calling context
of the error site to describe error points, namely:

ErrPt =< ErrLoc,CallCtx > (2)

To describe calling context of an error site, we consider
the runtime call stack when the error site is executed. This
runtime call stack includes the information of each function
call at the call stack (in order from caller to callee), including
the locations of this function call and called function. In this
way, a calling context is described as:

CallCtx = [CallIn f o1,CallIn f o2, ...,CallIn f ox] (3)

CallIn f o =<CallLoc,FuncLoc > (4)

Based on the above description, the information about each
error point can be hashed as a key, and whether this error point
should fail can be represented as a 0-1 value. Thus, an error
sequence can be stored as a key-value pair in a hash table:

KEY
VALUE

Hash(ErrPt1)
0 or 1

Hash(ErrPt2)
0 or 1

......

......
Hash(ErrPtx)

0 or 1

2598 29th USENIX Security Symposium USENIX Association

Note that the runtime call stack of an executed error site is
related to program execution. Thus, error points cannot be stat-
ically determined, and they should be dynamically identified
during program execution. Accordingly, when performing
fault injection using error sequences, the faults should be
injected into error points during program execution.

According to our method, when an error site is executed
in N different calling contexts, there will be N different error
points for fault injection, instead of just one error point iden-
tified by context-insensitive fault injection. Thus, our method
can perform finer-grained fault injection.

3.3 Context-Sensitive SFI-based Fuzzing
To effectively cover as much error handling code as possi-
ble, based on our context-sensitive SFI method, we propose
a novel context-sensitive SFI-based fuzzing approach to per-
form fault injection using the feedback of program execution.

As shown in Figure 4, our approach has six steps: 1) stati-
cally identifying the error sites in the source code of the tested
program; 2) running the tested program and collecting run-
time information about calling contexts of each executed error
site and code coverage; 3) creating error sequences about ex-
ecuted error sites according to runtime information; 4) after
running the program, mutating each created error sequence to
generate new sequences; 5) running the tested program and
injecting faults into error sites in specific calling contexts ac-
cording to the mutated error sequences; 6) collecting runtime
information, creating new error sequences and performing
mutation of these error sequences again, which constructs a
fuzzing loop. When no new error sequences are generated or
the time limit is reached, the fuzzing loop ends.

Fuzzing Loop N

Identify error sites

Run the tested program

Create error sequences

Mutate error sequences
Generate new

error sequences and
within time limit?

End

Collect runtime information

Run the tested program

Perform fault injection

Y

Figure 4: Procedure of our SFI-based fuzzing approach.

In our approach, mutating and generating error sequences
are important operations. Given a program input, our approach
considers code coverage in these operations and drops re-
peated error sequences. Initially such information is unavail-
able, and thus our approach performs a special initial mutation
for the first execution of the tested program. For subsequent

executions, it performs the subsequent generation and mu-
tation of error sequences. All the generated error sequences
that increase code coverage are stored in a pool, and they
are ranked by contribution to code coverage. Our approach
preferentially selects error sequences for mutation.

Initial mutation. Our approach first executes the tested pro-
gram normally, and creates an initial error sequence according
to runtime information. This error sequence contains executed
error points, and it is all-zero and used for the initial mutation.
The mutation generates each new error sequence by making
just one executed error point fail (0→1), as each error point
may trigger uncovered error handling code in related calling
context. Figure 5 shows an example of the initial mutation for
an error sequence, which generates four new error sequences.

Initial error sequence

First execution Initial mutation

Generated error sequences

ErrPta
0

ErrPtb
0

ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
0

ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
1

ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
0

ErrPtc
1

ErrPtd
0

ErrPta
0

ErrPtb
0

ErrPtc
0

ErrPtd
1

Tested
Program

Figure 5: Example of the initial mutation.

Subsequent generation and mutation. After executing the
tested program by injecting faults according to an original er-
ror sequence, some new error points may be executed, making
a new error sequence created. Our approach checks whether
the code coverage is increased (namely new basic blocks or
code branches are covered) during this execution. If not, the
original error sequence and the created error sequence (if it
exists) are dropped; if so, our approach separately mutates
the original error sequence and the created error sequence (if
it exists) to generate each new error sequence by changing
the value of just one error point (0→1 or 1→0). Then, our
approach compares these generated error sequences with ex-
isting error sequences, to drop repeated ones. Figure 6 shows
an example of this procedure for two error sequences, For
the first error sequence ErrSeq1, a new error point ErrPtx is
executed, and thus our approach creates an error sequence
containing ErrPtx. As the code coverage is increased, our
approach mutates the two error sequences and generates nine
new error sequences. However, one of them is the same with
existing error sequence ErrSeq2, thus this new error sequence
is dropped. For the second error sequence ErrSeq2, a new
error point ErrPty is executed, and thus our approach creates
an error sequence containing ErrPty. As the code coverage is
not increased, our approach drops the two error sequences.

Note that each error point in an error sequence is related to
runtime calling context, thus when injecting faults into this
error point during program execution, our approach needs
to dynamically check whether the current runtime calling
context and error sites match the target error point. If this
error point is not executed during program execution, our
approach will ignore this error point.

USENIX Association 29th USENIX Security Symposium 2599

Original error sequence

Mutation

Generated error sequences

ErrPta
1

ErrPtb
1

ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
1

ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
0

ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
1

ErrPtc
1

ErrPtd
0

ErrPta
1

ErrPtb
1

ErrPtc
0

ErrPtd
1

Tested
Program

Execution

Fault injection

Code coverage is increased!

ErrPta
1

ErrPtb
1

ErrPtx

0
ErrPtc
0

ErrPtd
0

A new error point is executed

Mutation

Created error sequence

ErrPta
1

ErrPtb
1

ErrPtx

0
ErrPtc
0

ErrPtd
1

ErrPta
1

ErrPtb
1

ErrPtx

0
ErrPtc
1

ErrPtd
0

ErrPta
1

ErrPtb
1

ErrPtx

1
ErrPtc
0

ErrPtd
0

ErrPta
1

ErrPtb
0

ErrPtx

0
ErrPtc
0

ErrPtd
0

ErrPta
0

ErrPtb
1

ErrPtx

0
ErrPtc
0

ErrPtd
0

Original error sequence

ErrPta
0

ErrPtb
1

ErrPtc
0

ErrPtd
0

Tested
Program

Execution

Fault injection

Code coverage is not increased!

Drop error sequences

A new error point is executed

Created error sequence

ErrPta
0

ErrPtb
1

ErrPty

0
ErrPtc
0

ErrPtd
0

Drop repeated error sequences

ErrSeq2

ErrSeq1

Figure 6: Example of the normal mutation.

4 FIFUZZ Framework

Based on our context-sensitive SFI-based fuzzing approach,
we design a new fuzzing framework named FIFUZZ, to effec-
tively test error handling code. We have implemented FIFUZZ
using Clang [16]. FIFUZZ performs code analysis and code
instrumentation on the LLVM bytecode of the tested program.
To be compatible with traditional fuzzing process, FIFUZZ
mutates the error sequences and program inputs together. Fig-
ure 7 shows its architecture, consisting of six parts:

• Error-site extractor. It performs an automated static
analysis of the source code of the tested program, to
idenfity possible error sites.

• Program generator. It performs code instrumention on
the program code, including identified error sites, func-
tion calls, function entries and exits, code branches, etc.
It generates an executable tested program.

• Runtime monitor. It runs the tested program with gen-
erated inputs, collects runtime information of the tested
program, and performs fault injection according to gen-
erated error sequences.

• Error-sequence generator. It creates error sequences,
and mutates error sequences to generate new error se-
quences, according to collected runtime information.

• Input generator. It performs traditional fuzzing process
to mutate and generate new inputs, according to collected
runtime information.

• Bug checkers. They check the collected runtime infor-
mation to detect bugs and generate bug reports.

Based on the above architecture, FIFUZZ consists of two
phases, which are introduced as follows.

Source Files of the
tested program

Program
Generator

Runtime
Monitor

Executable
Program

Error-Sequence
Generator

Input
Generator

Runtime Information

Error Sequences

Program Inputs

Recommended
Error Sites

Bug Checkers

Error-Site
Extractor

Original
Program Inputs

Runtime Information

Bug Reports

Figure 7: Overall architecture of FIFUZZ.

4.1 Compile-Time Analysis

In this phase, FIFUZZ performs two main tasks:
Error-site extraction. For SFI-based approaches, the in-

jected errors should be realistic. Otherwise, the found bugs
might be false positives. To ensure that injected errors are real-
istic, many SFI-based approaches [18, 40, 55] require the user
to manually provide error sites, which requires much manual
work and cannot scale to large programs. To reduce manual
work, the error-site extractor uses a static analysis against the
source code of the tested program, to identify possible error
sites, from which the user can select realistic ones.

Our analysis focuses on extracting specific function calls as
error sites, because our study in Section 2.3 reveals that most
of error sites are related to checking error-indicating return
values of function calls. Our analysis has three steps:

S1: Identifying candidate error sites. In many cases, a func-
tion call returns a null pointer or negative integer to indicate a
failure. Thus, our analysis identifies a function call as a candi-
date error site if: 1) it returns a pointer or integer; and 2) the
return value is checked by an if statement with NULL or zero.
The function call to av_frame_new_side_data in Figure 3 is
an example that satisfies the two requirements.

S2: Selecting library functions. A called function can be
defined in the tested program or an external library. In most
cases, a function defined in the tested program can fail, as it
calls specific library functions that can fail. If this function
and its called library functions are both considered for fault
injection, repeated faults may be injected. To avoid repetition,
from all the identified function calls, our analysis only selects
those whose called functions are library functions.

S3: Performing statistical analysis. In some cases, a func-
tion can actually fail and trigger error handling, but the return
values of several calls to this function are not checked by if
statements. To handle such cases, our analysis use a statistical
method to extract functions that can fail from the identified
function calls, and we refer to such a function as an error
function. At first, this method classifies the selected func-
tion calls by called function, and collects all function calls
to each called function in the tested program code. Then, for
the function calls to a given function, this method calculates
the percent of them whose return values are checked by if

2600 29th USENIX Security Symposium USENIX Association

statements. If this percent is larger than a threshold R, this
method identifies this function as an error function. Finally,
this method extracts all function calls to this function are
identified error sites. For accuracy and generality, if there are
multiple tested programs, this method analyzes the source
code of all the tested programs together.

In our analysis, the value of the threshold R in the third step
heavily affects the identified error functions and identified
error sites (function calls). For example, less error functions
and error sites can be identified, as R becomes larger. In this
case, more unrealistic error functions and error sites can be
dropped, but more realistic ones may be also missed. We
study the impact of the value of R in Section 5.2.

 int *FuncA() {
 int *p;
 p = FuncB();
 (*p)++;
 return p;

 }

 int *FuncB() {
 int *q;
 q = malloc(...);
 if (!q) {

 return NULL;
 }
*q = 100;
return q;

 }

int *FuncA() {
+ FuncEntry(FuncA);

 int *p;
+ CallEntry(FuncB);

 p = FuncB();
+ CallExit(FuncB);

 (*p)++;
+ FuncExit(FuncA);

 return p;
 }

int *FuncB() {
+ FuncEntry(FuncB);

 int *q;
+ ErrorPointCollect(...);
+ if (ErrorPointFail(...) == TRUE)
+ q = NULL;
+ else

 q = malloc(...); // error site
 if (!q) {

+ FuncExit(FuncB);
 return NULL;

 }
 *q = 100;

+ FuncExit(FuncB);
 return q;

 }

Instrument

Figure 8: Example of code instrumentation.

Code instrumentation. The code instrumentation serves
for two purposes: collecting runtime information about error
sites and injecting faults. To collect the information about run-
time calling context of each error site, the program generator
instruments code before and after each function call to each
function defined in the tested program code, and at the entry
and exit in each function definition. Besides, on the other
hand, to monitor the execution of error sites and perform fault
injection into them, the program generator instruments code
before each error site. During program execution, the runtime
calling context of this error site and its location are collected
to create an error point. Then, if this error point can be found
in the current error sequence, and its value is 1 (indicating this
error point should fail for fault injection) a fault is injected
into the error point. In this case, the function call of related
error site is not executed, and its return values is assigned to
a null pointer or a random negative integer. If the value of
this error point in the error sequence is 0, the function call
of related error site is normally executed. Figure 8 shows an
example of instrumented code in the C code. Note that code
instrumentation is actually performed on the LLVM bytecode.

Program Description Version LOC
vim Text editor v8.1.1764 349K
bison Parser generator v3.4 82K
ffmpeg Solution for media processing n4.3-dev 1.1M
nasm 80x86 and x86-64 assembler v2.14.02 94K
catdoc MS-Word-file viewer v0.95 4K
clamav Antivirus engine v0.101.2 844K
cflow Code analyzer of C source files v1.6 37K
gif2png+libpng File converter for pictures v2.5.14+v1.6.37 59K
openssl Cryptography library v1.1.1d 415K

Table 3: Basic information of the tested applications.

4.2 Runtime Fuzzing
In this phase, with the identified error sites and instrumented
code, FIFUZZ performs our context-sensitive SFI-based
fuzzing approach, and uses traditional fuzzing process of
program inputs referring to AFL [1].

The runtime fuzzer executes the tested program using the
program inputs generated by traditional fuzzing process, and
injects faults into the program using the error sequences gen-
erated by our SFI-based fuzzing approach. It also collects run-
time information about executed error points, code branches,
etc. According to the collected runtime information, the error-
sequence generator creates error sequences and performs mu-
tation to generate new error sequences; the input generator
performs coverage-guided mutation to generate new inputs.
Then, FIFUZZ combines these generated error sequences and
inputs together, and use them in runtime fuzzer to execute the
tested program again. To detect bugs, the bug checkers ana-
lyze the collected runtime information. These bug checkers
can be third-party sanitizers, such as ASan [4] and MSan [41].

5 Evaluation

5.1 Experimental Setup
To validate the effectiveness of FIFUZZ, we evaluate it on
9 extensively-tested and widely-used C applications of the
latest versions as of our evaluation. These applications are
used for different purposes, such as text editor (vim), media
processing (ffmpeg), virus scan (clamav) and so on. The in-
formation of these applications are listed in Table 3 (the lines
of source code are counted by CLOC [17]). The experiment
runs on a regular desktop with eight Intel i7-3770@3.40G
processors and 16GB physical memory. The used compiler is
Clang 6.0 [16], and the operating system is Ubuntu 18.04.

5.2 Error-Site Extraction
Before testing programs, FIFUZZ first performs a static anal-
ysis of their source code to first identify error functions that
can fail, and then to identify error sites. We set R = 0.6 in
this analysis, and perform the third step of this analysis for
the source code of all the tested programs. After FIFUZZ
produces identified error sites, we manually select realistic

USENIX Association 29th USENIX Security Symposium 2601

Program Function call Identified Realistic
vim 67,768 1,589 (2.3%) 283 (17.8%)
bison 11,861 966 (8.1%) 145 (15.0%)
ffmpeg 459,986 2,157 (0.5%) 190 (8.8%)
nasm 10,246 429 (4.2%) 44 (10.3%)
catdoc 1,293 103 (8.0%) 45 (43.7%)
clamav 52,830 2,183 (4.1%) 816 (37.4%)
cflow 4,049 149 (3.7%) 88 (59.1%)
gif2png+libpng 11,209 303 (2.7%) 54 (17.8%)
openssl 158,625 1916 (1.2%) 157 (8.2%)
Total 777,867 9,795 (1.3%) 1,822 (18.6%)

Table 4: Results of error-site extraction.

ones that can actually fail and trigger error handling code, by
reading related source code. Table 4 shows the results. The
first column presents the application name; the second column
presents the number of all function calls in the application;
the third column presents the number of error sites identified
by FIFUZZ; the last column presents the number of realistic
error sites that we manually select.

In total, FIFUZZ identifies 287 error functions, and identi-
fies 9,795 function calls to these error functions as possible
error sites. Among them, we manually select 150 error func-
tions as realistic ones, and 1,822 function calls to these error
functions that are considered as realistic error sites are auto-
matically extracted from the source code. Thus, the accuracy
rates of FIFUZZ for identifying realistic error functions and
error sites are 52.3% and 18.6%. The manual confirmation is
easily manageable and not hard. The user only needs to scan
the definition of each error function, to check whether it can
trigger an error by returning an error number or a null pointer.
One master student spent only 2 hours on the manual selection
of error functions for the 9 tested applications. Considering
there are over 600K function calls in the tested programs, FI-
FUZZ is able to drop 99% of them, as they are considered not
to be fail and trigger error handling code according to their
contexts in source code. We find that many of the selected er-
ror functions and error sites are related to memory allocation
that can indeed fail at runtime, and nearly half of the selected
error functions and error sites are related to occasional errors.
The results show that FIFUZZ can dramatically help reduce
the manual work of identifying realistic error sites.

0

50

100

150

200

250

300

350

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Identified error functions
Realistic error functions

Value of the threshold R

N
u

m
b

e
r

o
f

e
rr

o
r

fu
n

ct
io

n
s

Figure 9: Variation of results affected by the value of R.

As described in Section 4.1, the value of R = 0.6 in the
static analysis heavily affects the identified error functions.
The above results are obtained with R = 0.6. To understand
the variation caused by R, we test R from 0.5 to 1 with 0.05

step. Figure 9 shows the results. We find that the number
of identified error functions and realistic error functions are
both decreased when R becomes larger. In this case, more
unrealistic error functions are dropped, but more realistic ones
are also missed. Thus, if R is too small, many unrealistic error
functions will be identified, which may introduce many false
positives in bug detection; if R is too large, many realistic
error functions will be missed, which may introduce many
false negatives in bug detection.

5.3 Runtime Testing

Using the 1,822 realistic error sites identified with R = 0.6, we
test the 9 target applications. We fuzz each application with a
well-know sanitizer ASan [4] and then without ASan (because
it often introduces much runtime overhead), for three times.
The time limit of each fuzzing is 24 hours. For the alerts
found by fault injection, we count them by trigger location
and error point (not error site). Table 5 shows the fuzzing
results with ASan and without ASan. The columns “Error
sequence” and “Input” show the results about generated error
sequences and inputs; in these columns, the columns “Gen”
show the number of generated ones, and the columns “Useful”
show the number of ones that increase code coverage. From
the results, we find that:

Error sequence. FIFUZZ generates many useful error se-
quences for fault injection to cover error handling code. In
total, 3% and 2% of generated error sequences increase code
coverage by covering new code branches, with and without
ASan, respectively. These proportions are larger than those
(0.02% with ASan and 0.007% without ASan) for generated
program inputs. To know about the variation of useful error
sequences and program inputs increasing code coverage, we
select vim as an example to study. Figure 10 shows the results.
We find that the number of useful error sequences increases
quickly during earlier tests, and then tends to be stable in the
later tests. This trend is quite similar to program inputs.

(a) With ASan

(b) Without ASan

Figure 10: Variation of error sequences and inputs for vim.

2602 29th USENIX Security Symposium USENIX Association

Program
With ASan Without ASan

Error sequence Input Reported alert Error sequence Input Reported alert
Gen Useful Gen Useful Null MemErr Assert All Gen Useful Gen Useful Null MemErr Assert All

vim 9,199 772 504,736 338 27 5 0 32 44,322 1,664 2,355,965 451 55 3 0 58
bison 1,450 221 1,995,831 1,168 11 0 0 11 8,692 289 14,602,760 1,207 11 0 0 11
ffmpeg 591 311 139,543 758 13 13 3 29 3,060 516 4,817,284 1,766 14 18 3 35
nasm 5,316 65 2,571,182 2,748 8 0 0 8 38,667 78 17,326,673 4,203 8 0 0 8
catdoc 84 34 4,721,501 158 1 1 0 2 798 38 40,357,609 234 2 0 0 2
clamav 482 339 98,352 26 7 106 0 113 482 325 331,930 34 7 96 0 103
cflow 1,623 159 4,551,244 724 0 0 0 0 12,209 217 29,909,026 1,235 1 0 0 1
gif2png+libpng 781 9 15,019,720 320 0 1 0 1 1,498 6 29,717,956 409 0 0 0 0
openssl 73,200 626 369,613 13 59 0 0 59 82,214 671 428,447 15 80 0 0 80
Total 92,726 2,536 29,971,722 6,253 126 126 3 255 191,942 3,804 139,847,650 9,554 178 117 3 298

Table 5: Fuzzing results.

Type Null MemErr Assert All / Error handling
Unique alert 182 132 3 317 / 313
Found bug 36 13 1 50 / 46
Confirmed bug 26 6 0 32 / 32

Table 6: Summary of reported alerts and found bugs.

Reported alerts. With ASan, FIFUZZ reports 255 alerts,
including 126 null-pointer dereferences, 126 memory errors
(such as use-after-free and buffer-overflow alerts) and 3 asser-
tion failures. Among these alerts, 114 are reported by ASan,
and 82 are found due to causing crashes. Without ASan,
FIFUZZ reports 298 alerts, including 178 null-pointer deref-
erences, 117 memory errors and 3 assertion failures. All these
alerts are found due to causing crashes. Indeed, ASan can find
memory errors that do not cause crashes. Thus, with ASan,
FIFUZZ finds more memory errors. However, due to monitor-
ing memory accesses, ASan often introduces over 2x runtime
overhead [5]. Thus, with ASan, FIFUZZ executes less test
cases within given time and some null-pointer dereferences
causing crashes are missed.

Alert summary. In Table 6, we summarize the alerts found
by FIFUZZ with and without ASan, and identify 317 unique
alerts, including 182 null-pointer dereferences, 132 memory
errors and 3 assertion failures. 313 of them are related to
incorrect error handling caused by occasional errors, and only
4 alerts are caused by program inputs. Section Appendix
shows 50 randomly-selected alerts.

Found bugs. In Table 6, we check the root causes of the
317 reported alerts, and identify 50 new and unique bugs in
terms of their root causes. Specifically, 313 alerts are related
to incorrect error handling, which are caused by 46 bugs. The
remaining 4 alerts are caused by four bugs that are not in error
handling code. We have reported all these bugs to related
developers. 32 of them have been confirmed, and we are still
waiting for the response of remaining ones.

Error handling bugs. The 46 found bugs related to incor-
rect error handling are caused by only 18 error sites but in
different calling contexts. Most of the error sites are related
to occasional errors of memory allocation. Figure 11 shows
such examples of four bugs found in bison, and these bugs
have different root causes according to our manual check-
ing. Additionally, the developer fixes each of these bugs by

FILE: bison/src/reader.c

711. void reader(void) {

714. symbols_new();

745. }

FILE: bison/src/uniqstr.c

159. void uniqstrs_new(void) {
160. uniqstrs_table = hash_initialize(...);

165. }

FILE: bison/src/muscle-tab.c

125. void muscle_init(void) {

129. muscle_table = hash_initialize(...);

134. }

FILE: bison/src/main.c

61. int main(...) {

86. uniqstrs_new();
87. muscle_init();

104. reader();

254. }

Bug2

Bug1

Bug3 + Bug4

Bug3

Bug1

Bug2

Bug4

Bug3

Bug3: main -> reader(104) -> symbols_new(714) -> hash_initialize(776) -> calloc(626)
Bug4: main -> reader(104) -> symbols_new(714) -> hash_initialize(781) -> calloc(626)

Bug2: main -> muscle_init(87) -> hash_initialize(129) -> calloc(626)
Bug1: main -> uniqstrs_new(86) -> hash_initialize(160) -> calloc(626)

Bug4

FILE: bison/lib/hash.c

597. Hash_table *hash_initialize(...) {

626. table->bucket = calloc(...);
627. if (table->bucket == NULL)
628. goto fail;

646. }

FILE: bison/src/symtab.c

775. void symbol_new(void) {
776. symbol_table = hash_initialize(...);

781. type_table = hash_initialize(...);

786. }

Figure 11: Example bugs caused by the same error site.

adding separate error handling code. The text in each line
presents the call stack of error site, including the function
name and code line number of function call. The four bugs
are all caused by the failures of the function call to calloc in
hash_initialize, but the failures occur in different calling
contexts. Besides, the call stacks of Bug 3 and Bug 4 are the
same except for the different calls to hash_initialize in
symbols_new. If a fault is injected into the call to calloc
without considering calling context, Bug 3 can be found, but
Bug 4 will be missed. The results confirm the advantages of
context-sensitive SFI over traditional context-insensitive one.

Bug features. Reviewing the bugs found by FIFUZZ, we
find two interesting features. Firstly, among the 46 found bugs
related to incorrect error handling, only 4 are triggered by two
or more error points’ failures, and the remaining 42 bugs are
triggered by only one error point’s failure. The results indicate
that error-handling bugs are often triggered by just one error.
Secondly, most of found bugs are caused by the case that an
error is correctly handled in the function containing related er-
ror site but incorrectly handled in this function’s ancestors in
the call stack. For example in Figure 11, the failure of the func-
tion call to calloc is correctly handled in hash_initialize,
and hash_initialize returns a null pointer. In this case,
the functions calling hash_initialize make some global
variables become NULL, but these global variables are still
dereferenced in subsequent execution. Indeed, developers can
often implement correct error handling code in current func-
tions, but often make mistakes in error propagation due to
complex calling contexts of error sites.

USENIX Association 29th USENIX Security Symposium 2603

Bug type Crash/DoS Memory
corruption

Arbitrary
read

Memory
overread

Null pointer dereference 36 0 0 0
Double free 0 5 0 0
Use after free 0 1 2 2
Buffer overflow 0 0 0 1
Free invalid pointer 2 0 0 0
Assertion failure 1 0 0 0
Total 39 6 2 3

Table 7: Security impact classified by bug type.

FILE: clamav/libclamav/matcher-ac.c

572. void cli_ac_free(struct cli_matcher *root) {

577. for (i = 0; i < root->ac_patterns; i++) {
// ''patt'' can be ''new'' given specific ''i''

578. patt = root->ac_pattable[i];

580. mpool_free(root->mempool, patt->virname) // use after free
581. if (patt->special) // use after free

620. }

2413. int cli_ac_addsig(struct cli_matcher *root, ...) {

2835. if ((ret = cli_ac_addpatt(root, new))) {

2839. mpool_free(root->mempool, new); // free ''new''
2840. return ret;
2841. }

2857. }

Figure 12: Two use-after-free bugs found in clamav.

5.4 Security Impact of Found Bugs
We manually review the 50 found bugs to estimate their secu-
rity impact. The results are shown in Table 7, classified by bug
type, including double-free, use-after-free, buffer-overflow
and free-invalid-pointer bugs. The results show that many
found bugs can cause serious security problems, such as mem-
ory corruption and arbitrary read.

Figure 12 shows two use-after-free bugs reported in clamav.
When the program starts, the function cli_ac_addsig is ex-
ecuted, and it calls cli_ac_addpatt that can fail and trig-
ger error handling code. In this code, mpool_free is called
to free the pointer new. When the program exits, the func-
tion cli_ac_free is called, and it executes a loop to handle
each element patt in the pointer array root->ac_pattable.
When i is a specific value, patt is an alias of new which
has been freed in cli_ac_addsig, and then patt is used to
access patt->virname (a pointer) and patt->special (a
condition variable), causing two use-after-free bugs. Once
these bugs are triggered, the attacker can exploit them to con-
trol the values of patt->virname and patt->special, and
thus to corrupt memory and switch the control flow between
the branches of the if statement in line 581.

5.5 Comparison to Context-Insensitive SFI
In FIFUZZ, our context-sensitive SFI method is an impor-
tant technique of covering error handling code in different
calling contexts. To show the value of this technique, we
modify FIFUZZ by replacing it with a context-insensitive
SFI method, which builds error sequences using error sites,

Program
FIFUZZ_insensitive FIFUZZ

Useful error
sequence Alert Bug Useful error

sequence Alert Bug

vim 689 1 1 1,664 58 12
bison 108 3 3 289 11 6
ffmpeg 5 0 0 516 35 12
nasm 7 2 1 78 8 1
catdoc 29 2 2 38 2 3
clamav 29 1 1 325 103 6
cflow 105 1 1 217 1 1
gif2png+libpng 4 0 0 6 0 1
openssl 18 0 0 671 80 8
Total 994 10 9 3,804 298 50

Table 8: Results of sensitivity analysis.

without considering their calling contexts. We evaluate the
resulting tool on the 9 tested applications in Table 3, without
using any sanitizer. Each application is also tested for three
times, and the time limit of each testing is 24 hours. Table 8
shows the results of the resulting tool (FIFUZZ_insensitive)
and FIFUZZ.

Compared to FIFUZZ, the resulting tool generates less
useful error sequences that increase code coverage. Indeed,
some error handling code is only triggered when related error
sites fail in specific calling contexts and succeed in other
calling contexts, but the resulting tool always makes these
error sites fail and cannot cover such code. The results indicate
that our context-sensitive SFI method is effective in covering
hard-to-trigger error handling code.

Besides, the resulting tool finds 9 bugs (including 8 null-
pointer dereferences and 1 memory error). All these bugs
are also reported by FIFUZZ, but 41 bugs found by FIFUZZ
are missed by this tool, because it does not consider calling
contexts of error sites. The results indicate that our context-
sensitive SFI method is effective in finding deep bugs in
different calling contexts.

5.6 Comparison to Existing Fuzzing Tools
Many fuzzing approaches have proposed to test infrequently
executed code and shown promising results in bug detection.
Among them, we select four state-of-the-art and open-source
fuzzing tools to make detailed comparison, including AFL [1],
AFLFast [13], AFLSmart [50] and FairFuzz [38]. Meanwhile,
to validate the generality of FIFUZZ, we select 5 common
programs (including nm, objdump, size, ar and readelf) in the
Binutils toolset [12] of an old version 2.26 (release in Jan-
uary 2016) as tested programs, instead of the 8 applications of
the lasted versions in the above experiments. We use FIFUZZ
and the four fuzzing tools to fuzz each program without us-
ing any sanitizer for three times, and the time limit of each
fuzzing is 24 hours. For the alerts or crashes reported by these
tools, we also check their root causes to count unique bugs.

Figure 13 plots the covered code branches of each tested
program during fuzzing. Compared to AFL and AFLFast,
FIFUZZ covers more code branches in all the tested programs,
by covering much more error handling code. Compared to

2604 29th USENIX Security Symposium USENIX Association

0 4 8 12 16 20 24
Time (hour)

0

1000

2000

3000

4000

5000

C
ov

er
ed

 b
ra

nc
he

s

nm

0 4 8 12 16 20 24
Time (hour)

0

1600

3200

4800

6400

8000

C
ov

er
ed

 b
ra

nc
he

s

objdump

0 4 8 12 16 20 24
Time (hour)

0

1000

2000

3000

4000

5000

C
ov

er
ed

 b
ra

nc
he

s

size

0 4 8 12 16 20 24
Time (hour)

0

1000

2000

3000

4000

5000

C
ov

er
ed

 b
ra

nc
he

s

ar

0 4 8 12 16 20 24
Time (hour)

0

2000

4000

6000

8000

10000

C
ov

er
ed

 b
ra

nc
he

s

readelf

FIFUZZ AFL AFLFast AFLSmart FairFuzz

Figure 13: Code coverage of FIFUZZ and the four fuzzing tools.

Program AFL AFLFast AFLSmart FairFuzz FIFUZZ
Null MemErr All Null MemErr All Null MemErr All Null MemErr All Null MemErr All

nm 0 1 1 0 1 1 0 1 1 0 1 1 4 1 5
objdump 0 1 1 0 1 1 1 1 2 0 1 1 2 1 3
size 0 0 0 0 0 0 0 0 0 0 1 1 2 0 2
ar 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4
readelf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 0 2 2 0 2 2 1 2 3 0 3 3 12 2 14

Table 9: Results of bug detection for comparison.

AFLSmart and FairFuzz, FIFUZZ covers more code branches
in nm, size and ar, but covers less code branches in objdump
and readelf. The main reason is that the fuzzing process of
program inputs in FIFUZZ is implemented by referring to
AFL, while AFLSmart and FairFuzz use some techniques
to improve mutation and seed selection of fuzzing program
inputs compared to AFL. For this reason, AFLSmart and
FairFuzz can cover more infrequently executed code related
to inputs than FIFUZZ, though they still miss much error
handling code covered by FIFUZZ. We believe that if we
implement their fuzzing process of program inputs in FIFUZZ,
it can cover more code branches than AFLSmart and FairFuzz
in all the tested programs.

Table 9 shows the results of bug detection. Firstly, the two
bugs found by AFL and AFLFast are also found by AFLSmart,
FairFuzz and FIFUZZ. Secondly, AFLSmart and FairFuzz re-
spectively find one bug missed by AFL, AFLFast and FIFUZZ.
The one extra bug found by AFLSmart is different from that
found by FairFuzz, as they improve mutation and seed selec-
tion for program inputs in different ways. Finally, FIFUZZ
finds 14 bugs, and 12 of them related to error handling code
are missed by AFL, AFLFast, AFLSmart and FairFuzz.

6 Discussion

6.1 False Positives of Error-Site Extraction
Our static analysis in Section 4.1 describes how to identify
possible error sites from the tested program code. However,
as shown in Section 5.2, our static analysis still has some false
positives in identifying error sites, due to two main reasons:

Firstly, some functions that return pointers or integers never
cause errors, even though their return values are often checked

in the code. The functions strcmp and strstr are examples.
However, our static analysis still considers that such func-
tions can cause error, and identifies the function calls to them
as possible error sites, causing false positives. To solve this
problem, we plan to analyze the definition and call graph of
each such function, to check whether it can indeed return an
erroneous value that represents an error.

Secondly, a function can indeed fail and trigger error han-
dling code, but some function calls to this function never fail
considering their code contexts. This case can occur for some
function calls that can cause input-related errors, when all
possible inputs may have been changed into valid data before
these function calls are used. However, our static analysis still
identifies these function calls as possible error sites, causing
false positives. To solve this problem, we plan to use sym-
bolic execution [36] to analyze code context and calculate the
constraints for each identified function call.

6.2 False Negatives of Bug Detection

FIFUZZ may miss real bugs in error handling code due to
three possible reasons:

Firstly, as described in Section 4.1, to avoid injecting re-
peated faults, we only consider library functions for fault
injection. However, some functions defined in the tested pro-
gram can also fail, and they do not call any library function.
Thus, FIFUZZ does not cover the error handling code caused
by the failures of the calls to such functions.

Secondly, some error sites are executed only when specific
program inputs and configuration are provided. In the evalua-
tion, FIFUZZ cannot provide all possible program inputs and
configuration. As a result, some error sites may not be exe-
cuted, and thus their error handling code cannot be covered.

USENIX Association 29th USENIX Security Symposium 2605

Thirdly, we only detect the bugs causing crashes and those
reported by ASan. We can use other checkers to detect other
kinds of bugs, such as MSan [41] which detects uninitialized
uses, UBSan [57] which detects undefined behaviors, and
TSan [56] which detects concurrency bugs.

6.3 Manual Analyses
FIFUZZ requires two manual analyses in this paper. Firstly,
we perform a manual study in Section 2.3. This manual study
is required for gaining the insights into building the automated
static analysis, and we believe that the manual study provides
the most representative and comprehensive results that help
estimate the causes of errors. Secondly, in Section 5.2, we
manually select realistic error sites from the possible error
sites identified by FIFUZZ. This manual selection is required,
as the static analysis of identifying possible error sites still
has many false positives. For example, as shown in Table 4,
we manually check the possible error sites identified by the
static analysis, and find that only 18.6% of them are real. We
believe that improving the accuracy of this static analysis can
help reduce such manual work.

6.4 Performance Improvement
The performance of FIFUZZ can be improved in several ways:

Dropping useless error sequences. As shown in Table 5,
FIFUZZ generates many useless error sequences that fail to
increase code coverage. However, they are still used in fault
injection to execute the tested program, reducing the fuzzing
efficiency. We believe that static analysis can be helpful to
dropping these useless error sequences. For example, after
an original error sequence mutates and generates new error
sequences, a static analysis can be used to analyze the code of
the tested program, and infer whether each new error sequence
can increase code coverage compared to the original error
sequence. If not, this error sequence will be dropped, before
being used in fault injection to execute the tested program.

Lightweight runtime monitoring. As shown in Figure 8,
to collect runtime calling context, FIFUZZ instruments each
function call to the function defined in the tested program
code and each function definition. Thus, obvious runtime
overhead may be introduced. To reduce runtime overhead,
FIFUZZ can use some existing techniques of lightweight
runtime monitoring, such as hardware-based tracing [3, 31]
and call-path inferring [42].

Multi-threading. At present, FIFUZZ works on simple
thread. Referring to AFL, to improve efficiency, FIFUZZ
can work on multiple threads. Specifically, after an original
error sequence mutates and generates new error sequences,
FIFUZZ can use each new error sequence for fault injection
and execute the tested program on a separate thread. When
synchronization is required, all the execution results and gen-
erated error sequences can be managed in a specific thread.

6.5 Exploitability of Error Handling Bugs

To detect bugs in error handling code, FIFUZZ injects errors
in specific orders according to calling context. Thus, to ac-
tually reproduce and exploit a bug found by FIFUZZ, two
requirements should be satisfied: (1) being able to actually
produce related errors: (2) controlling the occurrence order
and time of related errors.

For the first requirement, different kinds of errors can be
produced in different ways. We have to manually look into the
error-site function to understand its semantics. However, most
of the bugs found in our experiments are related to failures of
heap-memory allocations. Thus, an intuitive exploitation way
is to exhaustively consume the heap memory, which has been
used in some approaches [58, 66] to perform attacks.

For the second requirement, as we have the error sequence
of the bug, we can know when to and when not to produce the
errors. A key challenge here is, when errors are dependent to
each other, we must timely produce an error in a specific time
window. Similar to exploiting use-after-free bugs [62, 63], if
the window is too small, the exploitation may not be feasible.

7 Related Work

7.1 Fuzzing

Fuzzing is a promising technique of runtime testing to detect
bugs and discover vulnerabilities. It generates lots of program
inputs in a specific way to cover infrequently executed code.
A typical fuzzing approach can be generation-based, mutation-
based, or the hybrid of them.

Generation-based fuzzing approaches [15,27,59,64] gener-
ate inputs according to the specific input format or grammer.
Csmith [64] is a randomized test-case generator to fuzz C-
language compilers. According to C99 standard, Csmith ran-
domly generates a large number of C programs as inputs for
the tested compiler. These generated programs contain com-
plex code using different kinds of C-language features free of
undefined behaviors. LangFuzz [29] is a black-box fuzzing
framework for programming-language (PL) interpreters based
on a context-free grammar. Given a specific language gram-
mer, LangFuzz generates many programs in this language as
inputs for the tested language interpreter. To improve possi-
bility of finding bugs, LangFuzz uses the language grammer
to learn code fragments from a given code base.

Mutation-based fuzzing approaches [1, 7, 13, 26, 30, 38,
51, 65] start from some original seeds, and perform muta-
tion of the selected seeds, to generate new inputs, without
requirement of specific format or grammer. To improve code
coverage, these approaches often mutate existing inputs ac-
cording to the feedback of program execution, such as code
coverage and bug-detection results. AFL [1] is a well-known
coverage-guided fuzzing framework, which has been widely-
used in industry and research. It uses many effective fuzzing

2606 29th USENIX Security Symposium USENIX Association

strategies and technical tricks to reduce runtime overhead
and improve fuzzing efficiency. To improve mutation for in-
puts, FairFuzz [38] first identifies the code branches that are
rarely hit by previously-generated inputs, and then uses a new
lightweight mutation method to increase the probability of
hitting the identified branches. Specifically, this method ana-
lyzes the input hitting a rarely hit branch, to identify the parts
of this input that are crucial to satisfy the conditions of hitting
that branch; this method never changes the identified parts of
the input during mutation.

Some approaches [6, 45, 50, 60] combine generation-based
and mutation-based fuzzing to efficiently find deep bugs.
AFLSmart [50] uses a high-level structural representation
of the seed file to generate new files. It mutates on the file-
structure level instead of on the bit level, which can com-
pletely explores new input domains without breaking file va-
lidity. Superion [60] is a grammar-aware and coverage-based
fuzzing approach to test programs that process structured in-
puts. Given the grammar of inputs, it uses a grammar-aware
trimming strategy to trim test inputs using the abstract syn-
tax trees of parsed inputs. It also uses two grammar-aware
mutation strategies to quickly carry the fuzzing exploration.

Existing fuzzing approaches focus on generating inputs to
cover infrequently executed code. However, this way cannot
effectively cover error handling code triggered by non-input
occasional errors. To solve this problem, FIFUZZ introduces
software fault injection in fuzzing, and fuzzes injected faults
according to the feedback of program execution. In this way,
it can effectively cover error handling code.

7.2 Software Fault Injection

Software fault injection (SFI) [52] is a classical and widely-
used technique of runtime testing. SFI intentionally injects
faults or errors into the code of the tested program, and then
executes the program to test whether it can correctly handle
the injected faults or errors during execution. Many existing
SFI-based approaches [9–11,18,25,39,40,55,67] have shown
promising results in testing error handling code.

Some approaches [9, 10, 55] inject single fault in each test
case to efficiently cover error handling code triggered by just
one error. PairCheck [9] first injects single fault by corrupt-
ing the return values of specific function calls that can fail
and trigger error handling code, to collect runtime informa-
tion about error handling code. Then, it performs a statistical
analysis of the collected runtime information to mine pairs
of resource-acquire and resouce-release functions. Finally,
based on the mined function pairs, it detects resource-release
omissions in error handling code.

To cover more error handling code, some approaches [11,
18,25,39,40,67] inject multiple faults in each test case. Some
of them [25, 39, 40] inject random faults, namely they inject
faults on random sites or randomly change program data.
However, some studies [35, 43, 44] have shown that random

fault injection introduces much uncertainty, causing that the
code coverage is low and many detected bugs are false. To
solve this problem, some approaches [11, 18, 67] analyze pro-
gram information to guide fault injection, which can achieve
higher code coverage and detect more bugs. ADFI [18] uses
a bounded trace-based iterative generation strategy to reduce
fault scenario searching, and uses a permutation-based replay
mechanism to ensure the fidelity of runtime fault injection.

To our knowledge, existing SFI-based approaches perform
only context-insensitive fault injection. Specifically, they in-
ject faults based on the locations of error sites in source code,
without considering the execution contexts of these error sites.
Thus, if an fault is constantly injected into an error site, this
error site will always fail when being executed at runtime.
However, some error handling code is only triggered when
related error site fails in a specific calling context but succeeds
in other calling contexts. In this case, existing SFI-based ap-
proaches cannot effectively cover such error handling code,
and thus often miss related bugs.

7.3 Static Analysis of Error Handling Code
Static analysis can conveniently analyze the source code of the
target program without actually executing the program. Thus,
some existing approaches [28, 32, 33, 37, 53] use static analy-
sis to detect bugs in error handling code. EDP [28] statically
validates the error propagation through file systems and stor-
age device drivers. It builds a function-call graph that shows
how error codes propagate through return values and function
parameters. By analyzing this call graph, EDP detects bugs
about incorrect operations on error codes. APEx [33] infers
API error specifications from their usage patterns, based on a
key insight that error paths tend to have fewer code branches
and program statements than regular code.

Due to lacking exact runtime information, static analysis
often reports many false positives (for example, the false
positive rate of EPEx is 22%). However, static analysis could
be introduced in FIFUZZ to drop useless error sequences,
which can improve its fuzzing efficiency.

8 Conclusion

Error handling code is error-prone and hard-to-test, and ex-
isting fuzzing approaches cannot effectively test such code
especially triggered by occasional errors. To solve this prob-
lem, we propose a new fuzzing framework named FIFUZZ, to
effectively test error handling code and detect bugs. The core
of FIFUZZ is a context-sensitive software fault injection (SFI)
approach, which can effectively cover error handling code in
different calling contexts to find deep bugs hidden in error
handling code with complicated contexts. We have evaluated
FIFUZZ on 9 widely-used C applications. It reports 317 alerts,
which are caused by 50 new and unique bugs in terms of their
root causes. 32 of these bugs have been confirmed by related

USENIX Association 29th USENIX Security Symposium 2607

developers. The comparison to existing fuzzing tools shows
that, FIFUZZ can find many bugs missed by these tools.

FIFUZZ can be still improved in some aspects. Firstly, the
static analysis of identifying possible error sites still has many
false positives. We plan to reduce these false positives us-
ing the ways mentioned in Section 6.1. Secondly, we plan
to improve FIFUZZ’s performance in some ways, such as
dropping useless error sequences, performing lightweight run-
time monitoring and exploiting multi-threading mentioned
in Section 6.4. Finally, we only use FIFUZZ to test C pro-
grams at present, and we plan to test the program in other
programming languages (such as C++ and Java).

Acknowledgment

We thank our shepherd, Deian Stefan, and anonymous review-
ers for their helpful advice on the paper. This work was mainly
supported by the China Postdoctoral Science Foundation un-
der Project 2019T120093. Kangjie Lu was supported in part
by the NSF award CNS-1931208. Any opinions, findings,
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NSF. Jia-Ju Bai is the corresponding author.

References

[1] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.

[2] A collection of vulnerabilities discovered by the AFL
fuzzer. https://github.com/mrash/afl-cve.

[3] ARM System Trace Macrocell (STM). https://commu-
nity.arm.com/tools/b/blog/posts/introduction-to-arm-s-
system-trace-macrocell.

[4] ASan: address sanitizer. https://github.com/google/san-
itizers/wiki/AddressSanitizer.

[5] ASan performance. https://github.com/google/sanitizers/
wiki/AddressSanitizerPerformanceNumbers.

[6] ASCHERMANN, C., FRASSETTO, T., HOLZ, T.,
JAUERNIG, P., SADEGHI, A.-R., AND TEUCHERT,
D. NAUTILUS: fishing for deep bugs with grammars.
In Proceedings of the 26th Network and Distributed
Systems Security Symposium (NDSS) (2019).

[7] ASCHERMANN, C., SCHUMILO, S., BLAZYTKO, T.,
GAWLIK, R., AND HOLZ, T. REDQUEEN: fuzzing
with input-to-state correspondence. In Proceedings of
the 26th Network and Distributed Systems Security Sym-
posium (NDSS) (2019).

[8] ASKAROV, A., AND SABELFELD, A. Catch me if you
can: permissive yet secure error handling. In Proceed-
ings of the 4th International Workshop on Programming

Languages and Analysis for Security (PLAS) (2009),
pp. 45–57.

[9] BAI, J.-J., WANG, Y.-P., LIU, H.-Q., AND HU, S.-M.
Mining and checking paired functions in device drivers
using characteristic fault injection. Information and
Software Technology (IST) 73 (2016), 122–133.

[10] BAI, J.-J., WANG, Y.-P., YIN, J., AND HU, S.-M. Test-
ing error handling code in device drivers using character-
istic fault injection. In Proceedings of the 2016 USENIX
Annual Technical Conference (2016), pp. 635–647.

[11] BANABIC, R., AND CANDEA, G. Fast black-box testing
of system recovery code. In Proceedings of the 7th
European Conference on Computer Systems (EuroSys)
(2012), pp. 281–294.

[12] GNU Binutils. http://www.gnu.org/software/binutils/.

[13] BÖHME, M., PHAM, V.-T., AND ROYCHOUDHURY, A.
Coverage-based greybox fuzzing as markov chain. In
Proceedings of the 23rd International Conference on
Computer and Communications Security (CCS) (2016),
pp. 1032–1043.

[14] CABRAL, B., AND MARQUES, P. Exception handling:
A field study in java and. net. In Proceedings of the 2007
European Conference on Object-Oriented Programming
(ECOOP) (2007), pp. 151–175.

[15] CHEN, Y., GROCE, A., ZHANG, C., WONG, W.-K.,
FERN, X., EIDE, E., AND REGEHR, J. Taming com-
piler fuzzers. In Proceedings of the 34th International
Conference on Programming Language Design and Im-
plementation (PLDI) (2013), pp. 197–208.

[16] Clang: a LLVM-based compiler for C/C++ program.
https://clang.llvm.org/.

[17] CLOC: count lines of code. https://cloc.sourceforge.net.

[18] CONG, K., LEI, L., YANG, Z., AND XIE, F. Automatic
fault injection for driver robustness testing. In Proceed-
ings of the 2015 International Symposium on Software
Testing and Analysis (ISSTA) (2015), pp. 361–372.

[19] CVE-2019-7846. https://nvd.nist.gov/vuln/detail/CVE-
2019-7846.

[20] CVE-2019-2240. https://nvd.nist.gov/vuln/detail/CVE-
2019-2240.

[21] CVE-2019-1750. https://nvd.nist.gov/vuln/detail/CVE-
2019-1750.

[22] CVE-2019-1785. https://nvd.nist.gov/vuln/detail/CVE-
2019-1785.

2608 29th USENIX Security Symposium USENIX Association

[23] EBERT, F., AND CASTOR, F. A study on developers’
perceptions about exception handling bugs. In Proceed-
ings of the 2013 International Conference on Software
Maintenance (ICSM) (2013), pp. 448–451.

[24] FFmpeg: a complete, cross-platform solution to record,
convert and stream audio and video. https://ffmpeg.org/.

[25] FU, C., RYDER, B. G., MILANOVA, A., AND WONNA-
COTT, D. Testing of Java web services for robustness.
In Proceedings of the 2004 International Symposium on
Software Testing and Analysis (ISSTA) (2004), pp. 23–
34.

[26] GAN, S., ZHANG, C., QIN, X., TU, X., LI, K., PEI,
Z., AND CHEN, Z. CollAFL: path sensitive fuzzing. In
Proceedings of the 39th IEEE Symposium on Security
and Privacy (2018), pp. 679–696.

[27] GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y.
Grammar-based whitebox fuzzing. In Proceedings
of the 29th International Conference on Programming
Language Design and Implementation (PLDI) (2008),
pp. 206–215.

[28] GUNAWI, H. S., RUBIO-GONZÁLEZ, C., ARPACI-
DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND LI-
BLIT, B. EIO: error handling is occasionally correct. In
Proceedings of the 6th International Conference on File
and Storage Technologies (FAST) (2008), pp. 207–222.

[29] HOLLER, C., HERZIG, K., AND ZELLER, A. Fuzzing
with code fragments. In Proceedings of the 21st USENIX
Security Symposium (2012), pp. 445–458.

[30] Honggfuzz: security oriented fuzzer with powerful anal-
ysis options. https://github.com/google/honggfuzz.

[31] Intel Processor Tracing (PT). https://software.intel.com/
en-us/blogs/2013/09/18/processor-tracing.

[32] JANA, S., KANG, Y. J., ROTH, S., AND RAY, B. Au-
tomatically detecting error handling bugs using error
specifications. In Proceedings of the 25th USENIX Se-
curity Symposium (2016), pp. 345–362.

[33] KANG, Y., RAY, B., AND JANA, S. APEx: automated
inference of error specifications for C APIs. In Proceed-
ings of the 31st International Conference on Automated
Software Engineering (ASE) (2016), pp. 472–482.

[34] KERY, M. B., LE GOUES, C., AND MYERS, B. A. Ex-
amining programmer practices for locally handling ex-
ceptions. In Proceedings of the 13th International Work-
ing Conference on Mining Software Repositories (MSR)
(2016), pp. 484–487.

[35] KIKUCHI, N., YOSHIMURA, T., SAKUMA, R., AND
KONO, K. Do injected faults cause real failures? a case
study of Linux. In Proceedings of the 25th Interna-
tional Symposium on Software Reliability Engineering
Workshops (ISSRE-W) (2014), pp. 174–179.

[36] KING, J. C. Symbolic execution and program testing.
Communications of the ACM 19, 7 (1976), 385–394.

[37] LAWALL, J., LAURIE, B., HANSEN, R. R., PALIX, N.,
AND MULLER, G. Finding error handling bugs in
openssl using Coccinelle. In Proceedings of the 2010
European Dependable Computing Conference (EDCC)
(2010), pp. 191–196.

[38] LEMIEUX, C., AND SEN, K. FairFuzz: a targeted muta-
tion strategy for increasing greybox fuzz testing cover-
age. In Proceedings of the 33rd International Confer-
ence on Automated Software Engineering (ASE) (2018),
pp. 475–485.

[39] MARINESCU, P. D., AND CANDEA, G. LFI: a practical
and general library-level fault injector. In Proceedings
of the 39th International Conference on Dependable
Systems and Networks (DSN) (2009), pp. 379–388.

[40] MENDONCA, M., AND NEVES, N. Robustness test-
ing of the Windows DDK. In Proceedings of the 37th
International Conference on Dependable Systems and
Networks (DSN) (2007), pp. 554–564.

[41] MSan: memory sanitizer. https://github.com/google/san-
itizers/wiki/MemorySanitizer.

[42] MYTKOWICZ, T., COUGHLIN, D., AND DIWAN, A. In-
ferred call path profiling. In Proceedings of the 24th
International Conference on Object Oriented Program-
ming Systems Languages and Applications (OOPSLA)
(2009), pp. 175–190.

[43] NATELLA, R., COTRONEO, D., DURAES, J., AND
MADEIRA, H. Representativeness analysis of injected
software faults in complex software. In Proceedings
of the 40th International Conference on Dependable
Systems and Networks (DSN) (2010), pp. 437–446.

[44] NATELLA, R., COTRONEO, D., DURAES, J. A., AND
MADEIRA, H. S. On fault representativeness of soft-
ware fault injection. IEEE Transactions on Software
Engineering (TSE) 39, 1 (2013), 80–96.

[45] PADHYE, R., LEMIEUX, C., SEN, K., PAPADAKIS, M.,
AND LE TRAON, Y. Semantic fuzzing with Zest. In
Proceedings of the 2019 International Symposium on
Software Testing and Analysis (ISSTA) (2019), pp. 329–
340.

USENIX Association 29th USENIX Security Symposium 2609

[46] Aacsbr: check that sample_rate is not 0 before division.
http://github.com/ffmpeg/ffmpeg/commit/a50a5ff29e.

[47] Found bug: libav: divide-by-zero in sbr_make_f_master.
https://blogs.gentoo.org/ago/2016/09/21/libav-divide-
by-zero-in-sbr_make_f_master-aacsbr-c/.

[48] CVE-2016-7499. https://nvd.nist.gov/vuln/detail/CVE-
2016-7499.

[49] Frame: fix the error path in av_frame_copy_props.
http://github.com/ffmpeg/ffmpeg/commit/a53551cba8.

[50] PHAM, V.-T., BÖHME, M., SANTOSA, A. E., CACI-
ULESCU, A. R., AND ROYCHOUDHURY, A. Smart
greybox fuzzing. IEEE Transactions on Software Engi-
neering (TSE) (2019).

[51] RAWAT, S., JAIN, V., KUMAR, A., COJOCAR, L.,
GIUFFRIDA, C., AND BOS, H. VUzzer: application-
aware evolutionary fuzzing. In Proceedings of the 24th
Network and Distributed Systems Security Symposium
(NDSS) (2017), pp. 1–14.

[52] ROSENBERG, H. A., AND SHIN, K. G. Software fault
injection and its application in distributed systems. In
Proceedings of the 23rd International Symposium on
Fault-Tolerant Computing (FTCS) (1993), pp. 208–217.

[53] SAHA, S., LOZI, J., THOMAS, G., LAWALL, J. L., AND
MULLER, G. Hector: detecting resource-release omis-
sion faults in error-handling code for systems software.
In Proceedings of the 43rd International Conference
on Dependable Systems and Networks (DSN) (2013),
pp. 1–12.

[54] SHAH, H., GÖRG, C., AND HARROLD, M. J. Why
do developers neglect exception handling? In Proceed-
ings of the 4th International Workshop on Exception
Handling (WEH) (2008), pp. 62–68.

[55] SUSSKRAUT, M., AND FETZER, C. Automatically find-
ing and patching bad error handling. In Proceedings of
the 2006 European Dependable Computing Conference
(EDCC) (2006), pp. 13–22.

[56] TSan: thread sanitizer. https://github.com/google/san-
itizers/wiki/ThreadSanitizerCppManual.

[57] UBSan: undefined behavior sanitizer. https://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html.

[58] VAN DER VEEN, V., FRATANTONIO, Y., LINDORFER,
M., GRUSS, D., MAURICE, C., VIGNA, G., BOS, H.,
RAZAVI, K., AND GIUFFRIDA, C. Drammer: deter-
ministic rowhammer attacks on mobile platforms. In
Proceedings of the 23rd International Conference on
Computer and Communications Security (CCS) (2016),
pp. 1675–1689.

[59] WANG, J., CHEN, B., WEI, L., AND LIU, Y. Skyfire:
data-driven seed generation for fuzzing. In Proceedings
of the 38th IEEE Symposium on Security and Privacy
(2017), pp. 579–594.

[60] WANG, J., CHEN, B., WEI, L., AND LIU, Y. Superion:
grammar-aware greybox fuzzing. In Proceedings of the
41st International Conference on Software Engineering
(ICSE) (2019), pp. 724–735.

[61] WEIMER, W., AND NECULA, G. C. Finding and pre-
venting run-time error handling mistakes. In Proceed-
ings of the 19th International Conference on Object-
Oriented Programming Systems, Languages and Appli-
cations (OOPSLA) (2004), pp. 419–431.

[62] WU, W., CHEN, Y., XU, J., XING, X., GONG, X., AND
ZOU, W. FUZE: towards facilitating exploit generation
for kernel use-after-free vulnerabilities. In Proceed-
ings of the 27th USENIX Security Symposium (2018),
pp. 781–797.

[63] XU, W., LI, J., SHU, J., YANG, W., XIE, T., ZHANG,
Y., AND GU, D. From collision to exploitation: unleash-
ing use-after-free vulnerabilities in Linux kernel. In
Proceedings of the 22nd International Conference on
Computer and Communications Security (CCS) (2015),
pp. 414–425.

[64] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Find-
ing and understanding bugs in C compilers. In Proceed-
ings of the 32nd International Conference on Program-
ming Language Design and Implementation (PLDI)
(2011), pp. 283–294.

[65] YUN, I., LEE, S., XU, M., JANG, Y., AND KIM, T.
QSYM: a practical concolic execution engine tailored
for hybrid fuzzing. In Proceedings of the 27th USENIX
Security Symposium (2018), pp. 745–761.

[66] ZHANG, H., SHE, D., AND QIAN, Z. Android ion haz-
ard: The curse of customizable memory management
system. In Proceedings of the 23rd International Confer-
ence on Computer and Communications Security (CCS)
(2016), pp. 1663–1674.

[67] ZHANG, P., AND ELBAUM, S. Amplifying tests to
validate exception handling code. In Proceedings of the
34th International Conference on Software Engineering
(ICSE) (2012), pp. 595–605.

[68] ZUO, C., WU, J., AND GUO, S. Automatically detect-
ing SSL error-handling vulnerabilities in hybrid mobile
web apps. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Secu-
rity (2015), pp. 591–596.

2610 29th USENIX Security Symposium USENIX Association

Appendix

 We randomly select 50 of the 317 alerts reported by FIFUZZ in the 9 tested applications, and show their information in the table.
 These 50 alerts are caused by 36 bugs in terms of their root causes.
 The column “Error points” shows the call stacks of error points (ErrPtx) that trigger the alert. A call stack presents the information of
each function call in the stack, including the name of the called function and code line number of this function call.
 The columns “Source file” and “Line” respectively show the source file name and code line number where the alert occurs.
 The column “State” shows the current state of our bug report. “F” means that the bug has been confirmed and fixed; “C” means that the
bug has been confirmed but not fixed yet; “R” means that the bug report has not been replied.

Program Error points Source file Line Alert type State

vim ErrPt1: main -> common_init(173) -> alloc(934) -> lalloc(827) -> malloc(924) message.c 4334 null-pointer dereference F

vim ErrPt1: main -> mch_early_init(115) -> alloc(3212) -> lalloc(827) -> malloc(924) message.c 4334 null-pointer dereference F

vim
ErrPt1: main -> termcapinit(384) -> set_termname(2571) -> set_shellsize(2069) -> screenclear(3466) -> screenalloc(8744)

-> lalloc(8495) -> malloc(924)
screen.c 8664 null-pointer dereference F

vim
ErrPt1: main -> termcapinit(384) -> set_termname(2571) -> set_shellsize(2069) -> screenclear(3466) -> screenalloc(8744)

-> win_alloc_lines(8507) -> alloc_clear(5085) -> lalloc(851) -> malloc(924)
screen.c 8664 null-pointer dereference F

vim
ErrPt1: main -> vim_main2(444) -> create_windows(728) -> open_buffer(2750) -> ml_open(167) -> ml_new_data(392) ->

mf_new(4015) -> mf_alloc_bhdr(379) -> alloc(898) -> lalloc(827) -> malloc(924)
misc2.c 4446 null-pointer dereference F

vim
ErrPt1: main -> common_init(173) -> set_init_1(1010) -> set_options_default(3522) -> set_option_default(3847) ->

set_string_option_direct(3769) -> vim_strsave(5976) -> alloc(1279) -> lalloc(827) -> malloc(924)
charset.c 1456 null-pointer dereference F

vim

ErrPt1: main -> common_init(173) -> set_init_1(1010) -> set_options_default(3522) -> set_option_default(3847) ->
set_string_option_direct(3769) -> set_string_option_global(5987) -> vim_strsave(6083) -> alloc(1279) -> lalloc(827)
-> malloc(924)

charset.c 1456 null-pointer dereference F

vim
ErrPt1: main -> command_line_scan(200) -> alist_add(2495) -> buflist_add(6688) -> buflist_new(3309) ->

buf_copy_options(2036) -> vim_strsave(11649) -> alloc(1279) -> lalloc(827) -> malloc(924)
option.c 8422 null-pointer dereference F

vim
ErrPt1: main -> command_line_scan(200) -> save_typebuf(2365) -> alloc_typebuf(1332) -> alloc(1286) -> lalloc(827) ->

malloc(924)
getchar.c 1313 double free F

vim
ErrPt1: main -> command_line_scan(200) -> save_typebuf(2365) -> alloc_typebuf(1332) -> alloc(1287) -> lalloc(827) ->

malloc(924)
getchar.c 1317 double free F

vim
ErrPt1: main -> init_highlight(413) -> do_highlight(415) -> syn_check_group(859) -> vim_strsave_up(3066) -> lalloc(827) ->

malloc(924)
highlight.c 871 null-pointer dereference F

vim
ErrPt1: main -> vim_main2(444) -> create_windows(728) -> open_buffer(2750) -> readfile(233) -> next_fenc(893) ->

enc_canonize(2789) -> alloc(4323) -> lalloc(827) -> malloc(924)
fileio.c 2320 freeing invalid pointer F

vim
ErrPt1: main -> vim_main2(444) -> main_loop(903) -> msg_attr(1286) -> msg_attr_keep(122) -> set_vim_var_string(142) ->

vim_strsave(7119) -> alloc(1279) -> lalloc(827) -> malloc(924)
message.c 1437 use after free F

vim
ErrPt1: main -> vim_main2(444) -> main_loop(903) -> normal_cmd(1370) -> do_pending_operator(1133) ->

op_delete(1816) -> do_join(2079) -> alloc(4557) -> lalloc(827) -> malloc(924)
ops.c 4559 null-pointer dereference F

vim

ErrPt1: main -> vim_main2(444) -> load_start_packages(492) -> do_in_path(2317) -> alloc(1864) -> lalloc(827) ->
malloc(924)

ErrPt2: main -> vim_main2(444) -> wait_return(680) -> hit_return_msg(1078) -> msg_puts_attr_len(1961) -> alloc(2588) ->
lalloc(827) -> malloc(924)

message.c 2589 null-pointer dereference F

vim

ErrPt1: main -> source_startup_scripts(432) -> do_source(3051) -> fix_fname(2759) -> FullName_save(4817) ->
vim_FullName(3082) -> mch_FullName(4479) -> fchdir(2589)

ErrPt2: main -> vim_main2(444) -> wait_return(680) -> hit_return_msg(1078) -> msg_putchar(1267) ->
msg_putchar_attr(1369) -> msg_puts_attr(1386) -> msg_puts_attr_len(1961) -> msg_puts_printf(2008) ->
alloc(2588) -> lalloc(827) -> malloc(924)

message.c 2589 null-pointer dereference F

bison ErrPt1: main -> uniqstrs_new(86) -> hash_initialize(160) -> malloc(605) hash.c 251 null-pointer dereference F

bison ErrPt1: main -> reader(104) -> symbols_new(714) -> hash_initialize(776) -> malloc(605) hash.c 251 null-pointer dereference F

bison ErrPt1: main -> muscle_init(87) -> hash_initialize(129) -> calloc(626) hash.c 251 null-pointer dereference F

bison ErrPt1: main -> generate_states(124) -> allocate_storage(358) -> state_hash_new(168) -> hash_initialize(362) -> calloc(626) hash.c 251 null-pointer dereference F

bison
ErrPt1: main -> tables_generate(152) -> pack_table(802) -> bitset_create(727) -> bitset_alloc(163) -> bitset_init(138) ->

vbitset_init(88) -> vbitset_resize(989) -> realloc(77)
vector.c 81 null-pointer dereference F

ffmpeg
ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->

avformat_alloc_context(1041) -> av_mallocz(151) -> av_malloc(238) -> posix_memalign(87)
dict.c 205 null-pointer dereference R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3331) -> open_output_file(3277) ->
avformat_alloc_output_context2(2152) -> avformat_alloc_context(151) -> av_mallocz(151) -> av_malloc(238) ->
posix_memalign(87)

dict.c 205 null-pointer dereference R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3331) -> open_output_file(3277) -> new_audio_stream(2236)
-> new_output_stream(1859) -> avcodec_alloc_context3(1387) -> init_context_defaults(163) -> av_opt_set(141) ->
set_string_number(484) -> av_expr_parse_and_eval(292) -> av_expr_parse(751) -> av_malloc(687) ->
posix_memalign(87)

options.c 141 assertion failure R

ffmpeg

ErrPt1: main -> transcode(4894) -> transcode_step(4692) -> process_input(4638) -> process_input_packet(4518) ->
decode_audio(2619) -> send_frame_to_filters(2337) -> ifilter_send_frame(2270) -> configure_filtergraph(2189) ->
avfilter_graph_parse2(1056) -> parse_filter(427) -> av_get_token(184) -> av_malloc(151) -> posix_memalign(87)

avstrings.c 87 null-pointer dereference R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> avcodec_open2(3674) -> av_mallocz(624) -> av_malloc(238) ->
posix_memalign(87)

utils.c 491 null-pointer dereference R

ffmpeg

ErrPt1: main -> transcode(4894) -> transcode_step(4692) -> reap_filters(4648) -> init_output_stream(1442) ->
avcodec_open2(3517) -> ff_ac3_float_encode_init(935) -> ff_ac3_encode_init(138) -> allocate_buffers(2481) ->
ff_ac3_float_allocate_sample_buffers(2331) -> av_mallocz(49) -> av_malloc(238) -> posix_memalign(87)

mem.c 223 null-pointer dereference R

USENIX Association 29th USENIX Security Symposium 2611

Program Error points File name Line Bug type State

ffmpeg

ErrPt1: main -> transcode(4894) -> transcode_step(4692) -> process_input(4638) -> process_input_packet(4518) ->
decode_audio(2619) -> send_frame_to_filters(2337) -> ifilter_send_frame(2270) -> configure_filtergraph(2189) ->
avfilter_graph_config(1109) -> graph_config_formats(1275) -> query_formats(1164) ->
ff_merge_channel_layouts(499) -> av_realloc_array(242) -> av_realloc(202) -> realloc(144)

avfiltergraph.c 583 use after free R

ffmpeg

ErrPt1: main -> transcode(4894) -> transcode_step(4692) -> process_input(4638) -> process_input_packet(4518) ->
decode_audio(2619) -> send_frame_to_filters(2337) -> ifilter_send_frame(2270) -> configure_filtergraph(2189) ->
configure_output_filter(1106) -> configure_output_audio_filter(685) -> choose_channel_layouts(606) ->
avio_close_dyn_buf(194) -> avio_flush(1431) -> flush_buffer(241) -> writeout(184) -> dyn_buf_write(163) ->
av_reallocp(1319) -> av_realloc(173) -> realloc(144)

ffmpeg_filter.c 179 null-pointer dereference R

ffmpeg
ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3331) -> open_output_file(3277) -> avio_open2(2558) ->

ffio_open_whitelist(1180) -> ffio_fdopen(1169) -> av_strdup(1007) -> av_realloc(256) -> realloc(144)
mem.c 233 double free R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) -> avformat_open_input(1104)
-> init_input(573) -> io_open_default(438) -> ffio_open_whitelist(124) -> ffio_fdopen(1169) -> av_strdup(1007) ->
av_realloc(256) -> realloc(144)

mem.c 233 double free R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> avcodec_open2(3674) -> av_opt_set_dict(634) -> av_opt_set_dict2(1605) ->
av_dict_set(1590) -> av_strdup(87) -> av_realloc(256) -> realloc(144)

ErrPt2: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> try_decode_frame(3903) -> avcodec_open2(3050) ->
ff_decode_bsfs_init(736) -> av_bsf_alloc(232) -> av_mallocz(86) -> av_malloc(238) -> posix_memalign(87)

decode.c 2059 freeing dangling pointer R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> avcodec_open2(3674) -> av_opt_set_dict(634) -> av_opt_set_dict2(1605) ->
av_dict_set(1590) -> av_strdup(87) -> av_realloc(256) -> realloc(144)

ErrPt2: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> try_decode_frame(3903) -> avcodec_open2(3050) -> aac_decode_init(935) ->
ff_mdct_init(1226) -> ff_fft_init(61) -> av_malloc(224) -> posix_memalign(87)

aacdec_template.c 2659 null-pointer dereference R

ffmpeg

ErrPt1: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> avcodec_open2(3674) -> av_opt_set_dict(634) -> av_opt_set_dict2(1605) ->
av_dict_set(1590) -> av_strdup(87) -> av_realloc(256) -> realloc(144)

ErrPt2: main -> ffmpeg_parse_options(4872) -> open_files(3317) -> open_input_file(3277) ->
avformat_find_stream_info(1126) -> try_decode_frame(3903) -> avcodec_open2(3050) -> aac_decode_init(935) ->
ff_mdct_init(1226) -> av_malloc_array(64) -> av_malloc(188) -> posix_memalign(87)

aacdec_template.c 2659 null-pointer dereference R

nasm ErrPt1: main -> saa_init(479) -> nasm_malloc(56) -> malloc(75) nasm.c 1909 null-pointer dereference F

nasm ErrPt1: main -> init_labels(476) -> nasm_malloc(563) -> malloc(75) nasm.c 1909 null-pointer dereference F

nasm ErrPt1: main -> saa_init(479) -> nasm_zalloc(47) -> calloc(85) nasm.c 1909 null-pointer dereference F

nasm ErrPt1: main -> init_labels(476) -> hash_init(561) -> alloc_table(66) -> nasm_zalloc(60) -> calloc(85) nasm.c 1909 null-pointer dereference F

catdoc ErrPt1: main -> read_charset(112) -> calloc(93) charsets.c 95 null-pointer dereference R

clamav

ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_loadftm(5184) -> cli_parse_add(2156) ->
cli_ac_addsig(497) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> add_new_node(299) ->
cli_calloc(236) -> calloc(216)

matcher-ac.c 578 use after free C

clamav

ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_loadftm(5184) -> cli_parse_add(2156) ->
cli_ac_addsig(608) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> cli_ac_addpatt_recursive(305) ->
add_new_node(299) -> cli_calloc(229) -> calloc(216)

matcher-ac.c 578 use after free C

clamav

ErrPt1: main -> scanmanager(161) -> cl_load(833) -> cli_loaddbdir(4726) -> cli_load(4581) -> cli_cvdload(4341) ->
cli_tgzload(706) -> cli_load(345) -> cli_loadcbc(4392) -> load_oneldb(2020) -> cli_parse_add(1876) ->
cli_ac_addsig(497) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> add_new_node(299) ->
cli_calloc(236) -> calloc(216)

matcher-ac.c 578 use after free C

clamav

ErrPt1: main -> scanmanager(161) -> cl_load(833) -> cli_loaddbdir(4726) -> cli_load(4581) -> cli_cvdload(4341) ->
cli_tgzload(706) -> cli_load(345) -> cli_loadcbc(4392) -> cli_initroots(1961) -> cli_bm_init(678) -> cli_calloc(147) ->
calloc(216)

matcher-bm.c 224 double free C

clamav
ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_bytecode_prepare2(5250) -> selfcheck(2683) ->

add_selfcheck(2479) -> cli_calloc(2397) -> calloc(216)
bytecode.c 1931 null-pointer dereference C

clamav
ErrPt1: main -> scanmanager(161) -> cl_load(833) -> cli_loaddbdir(4726) -> cli_load(4581) -> cli_cvdload(4341) ->

cli_cvdverify(625) -> cli_versig(566) -> cli_str2hex(131) -> cli_calloc(242) -> calloc(216)
dsig.c 136 null-pointer dereference C

clamav

ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_loadftm(5184) -> cli_parse_add(2156) ->
cli_ac_addsig(608) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> add_new_node(299) ->
cli_realloc(245) -> realloc(235)

matcher-ac.c 578 use after free C

clamav

ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_loadftm(5184) -> cli_parse_add(2156) ->
cli_ac_addsig(497) -> cli_ac_addpatt(2835) -> cli_ac_addpatt_recursive(340) -> cli_ac_addpatt_recursive(305) ->
cli_ac_addpatt_recursive(305) -> insert_list(268) -> cli_realloc(106) -> realloc(235)

matcher-ac.c 578 use after free C

clamav
ErrPt1: main -> scanmanager(161) -> cl_engine_compile(861) -> cli_bytecode_prepare2(5250) -> selfcheck(2683) ->

add_selfcheck(2479) -> cli_realloc2(2348) -> realloc(254)
bytecode.c 1919 null-pointer dereference C

clamav

ErrPt1: main -> scanmanager(161) -> cl_load(833) -> cli_loaddbdir(4726) -> cli_load(4581) -> cli_cvdload(4341) ->
cli_tgzload(706) -> cli_load(345) -> cli_loadcbc(4392) -> cli_initroots(1961) -> cli_ac_init(670) -> cli_malloc(521) ->
malloc(197)

matcher-ac.c 614 use after free C

clamav ErrPt1: main -> scanmanager(161) -> scanfile(205) -> cl_scandesc_callback(391) -> scan_common(4324) -> malloc(4128) scanners.c 4129 null-pointer dereference R

2612 29th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Error Handling Code
	Bug Examples in Error Handling Code
	Study of Error Handling Code
	Study of CVEs Found by Existing Fuzzing

	Basic Idea and Approach
	Basic Idea
	Error Sequence Model
	Context-Sensitive SFI-based Fuzzing

	FIFUZZ Framework
	Compile-Time Analysis
	Runtime Fuzzing

	Evaluation
	Experimental Setup
	Error-Site Extraction
	Runtime Testing
	Security Impact of Found Bugs
	Comparison to Context-Insensitive SFI
	Comparison to Existing Fuzzing Tools

	Discussion
	False Positives of Error-Site Extraction
	False Negatives of Bug Detection
	Manual Analyses
	Performance Improvement
	Exploitability of Error Handling Bugs

	Related Work
	Fuzzing
	Software Fault Injection
	Static Analysis of Error Handling Code

	Conclusion

