
BITE: Bitcoin Lightweight Client Privacy using Trusted Execution

Sinisa Matetic
ETH Zurich

Karl Wüst
ETH Zurich

Moritz Schneider
ETH Zurich

Kari Kostiainen
ETH Zurich

Ghassan Karame
NEC Labs

Srdjan Capkun
ETH Zurich

Abstract

Blockchains offer attractive advantages over traditional pay-
ments such as the ability to operate without a trusted author-
ity and increased user privacy. However, the verification of
blockchain payments requires the user to download and pro-
cess the entire chain which can be infeasible for resource-
constrained devices like mobile phones. To address this
problem, most major blockchain systems support so called
lightweight clients that outsource most of the computational
and storage burden to full blockchain nodes. However, such
verification leaks critical information about clients’ transac-
tions, thus defeating user privacy that is often considered one
of the main goals of decentralized cryptocurrencies.

In this paper, we propose a new approach to protect the
privacy of light clients in Bitcoin. Our main idea is to lever-
age the trusted execution capabilities of commonly avail-
able SGX enclaves. We design and implement a system
called BITE where enclaves on full nodes serve privacy-
preserving requests from light clients. However, as we will
show, naive processing of client requests from within SGX
enclaves still leaks client’s addresses and transactions. BITE
therefore integrates several private information retrieval and
side-channel protection techniques at critical parts of the sys-
tem. We show that BITE provides significantly improved pri-
vacy protection for light clients without compromising the
performance of the assisting full nodes.

1 Introduction

Since its inception in 2008, Bitcoin has fueled considerable
interest in decentralized currencies and other blockchain ap-
plications. The main goals of blockchains include a dis-
tributed trust model and increased user privacy. Several other
blockchain platforms, such as Ethereum [4], leverage the
same open or permissionless model as Bitcoin, while plat-
forms like Hyperledger [15], Ripple [10] and R3 [9], en-
able closed or permissioned blockchains. Most blockchains
implement a decentralized time-stamping mechanism that

ensures eventual consistency of transactions by collecting
them from the underlying peer-to-peer (P2P) network, ver-
ifying their correctness, and including them in connected
blocks. This process imposes heavy requirements on band-
width, computing, and storage resources of blockchain nodes
that need to fetch all transactions and blocks issued in the
blockchain, locally index them, and verify their correctness
against all prior transactions. For instance, a typical Bitcoin
installation requires more than 200 GB of storage today, and
the sizes of popular blockchains are growing fast [12, 5].
Therefore, users operating resource-constrained clients like
mobile devices cannot afford to run their own full node.

Lightweight clients and privacy. To address such heavy
resource requirements, most open blockchain platforms sup-
port lightweight clients, targeted for devices like smart-
phones, that only download and verify a small part of the
chain. As a matter of fact, according to [24], in 73−85% of
5.8− 11.5 million active Bitcoin wallets users control keys.
Since there are ∼ 10,000 full nodes [11], estimated 4.2-9.8
million wallets are lightweight clients. For example, Bit-
coin provides the BitcoinJ [2], PicoCoin [8] and Electrum [3]
clients implementing the Simple Payment Verification (SPV)
mode [44], where the clients connect to a full node that has
access to the complete chain and assists the client in trans-
action confirmation. Transactions contain inputs and outputs
that are bound to addresses owned by users. As the full node
has to learn all transactions issued and received by the re-
questing client to confirm them, such payment verification
obviously violates user privacy.

To improve user privacy, several clients support filters
(e.g., Bitcoin’s BIP37 [31] and Ethereum’s LES [6]). The
goal of filters is to allow the client to define an anonymity set
in an attempt to hide its real addresses from the full node. For
instance, BIP37 supports Bloom filters [18] that allow the
client to define a set of transactions, with false positives, that
are requested from the full node. Essentially, this approach
presents a trade-off between communication efficiency and
privacy: a filter that returns many false positives provides a

larger anonymity set but requires more communication. Al-
though such filters can be configured to be efficient, recent
studies have shown that in practice they offer almost no pri-
vacy [25]. Ergo, none of the current light clients provides
adequate privacy with practical performance overhead.

Our solution. Our goal is to improve the privacy of Bitcoin
lightweight clients without compromising the performance
of the assisting full nodes. The starting point of our solution
is to leverage the commonly available trusted computing ca-
pabilities of SGX enclaves [23] on full nodes. We propose
BITE (for BItcoin lightweight client privacy using Trusted
Execution), a solution in which a potentially untrusted entity
runs a full node with an SGX enclave that serves transac-
tion confirmation requests from clients. Since SGX provides
code integrity and data confidentiality for enclaves, such a
solution can preserve privacy (confidentiality) and complete-
ness (integrity) of client requests.

Unfortunately, simple usage of trusted computing is not
sufficient to solve our problem. While SGX prevents an
adversary that controls malicious software from directly ac-
cessing enclave’s memory, secret-dependent access patterns
to external storage, such as transaction databases, can re-
veal the client’s address. SGX is also susceptible to side-
channel attacks, where malicious software on the same
platform infers secret-dependent enclave data access pat-
terns or control flow by monitoring shared resources like
caches [20, 43, 27, 50]. Thus, the simple usage of SGX
would still leak the client’s addresses to malicious full node.

Given such limitations of SGX, the primary research
problem and contribution of this paper is how to design
and implement a solution that enables private processing of
light client request in the presence of enclave leakage with-
out compromising the system’s overall performance. To ad-
dress this non-trivial challenge, we carefully select and apply
known private information retrieval (PIR) and side-channel
protection techniques and combine them into a novel solu-
tion that meets our performance requirements. We empha-
size that in our application the assisting full node needs to
process a large blockchain database to serve client requests,
and thus straightforward usage of generic SGX side-channel
protection systems, such as Raccoon [47], Cloak [28] or Ze-
roTrace [49], would result in either excessive performance
overhead or imperfect side-channel protection. Instead of us-
ing such systems directly, we pick low-level primitives and
apply them at critical points in our system to achieve more
complete protection and better performance.

We design two variants of our solution. Our first variant,
Scanning Window, is similar to the current SPV clients that
verify transactions using block headers and Merkle paths re-
ceived from the full node. To prevent leakage from file ac-
cesses and message sizes, we design a customized chain ac-
cess mechanism that hides the client’s transactions and the
relationship between the size of the response and the number

of read blocks. Our second variant, Oblivious Database, al-
lows the client to verify the amount of coins associated with
its addresses by querying a specially-crafted version of the
unspent transaction output (UTXO) database. To prevent
leakage from database accesses, we leverage a well-known
Oblivious RAM (ORAM) algorithm [52]. (Prior to us, usage
of ORAM from enclaves has been proposed in systems like
ZeroTrace [49].) This variant allows even lighter clients that
no longer need to download and verify Merkle paths.

To prevent software-based side-channels, we adopt further
protections from recent SGX research. The basic building
block for our control-flow hiding is the cmov instruction [7]
that enables building oblivious execution of branches. (We
adopt this technique from the Raccoon system [47].) To pre-
vent leakage from data access patterns we apply additional
defenses, such as iterating over the entire data structure when
an element is accessed based on the protected client address.

Results. We show that our solution provides strong privacy
protection. In both of our variants, the external data access
patterns are independent of the protected client address. The
side-channel protections in the Oblivious Database variant
also make the enclave’s memory accesses (both code and
data) independent of the address, thus preventing leakage
caused by known SGX side-channels [20, 43, 27, 50, 58, 36].
While similar protections can also be used for the Scan-
ning Window variant, they impose a high overhead, which
is why we recommend using Oblivious Database if side-
channels are a concern. Our solutions also fail gracefully:
even if the used SGX processor would be completely broken
(e.g., through a physical attack), the adversary cannot double
spend or steal users’ coins or wallets.

In terms of performance, our solution is comparable to the
SPV scheme. The Oblivious Database variant increases the
full node’s storage moderately (e.g., additional 4 GB). The
required communication is significantly lower (e.g., 12 KB
instead of 17 MB per client request). The processing cost
for incoming client requests is reduced (e.g., 0.5s instead of
1.1s), but the processing cost for new blocks is higher (79s
instead of 2s). Even compared to SPV without privacy pro-
tection, our solution adds no processing time or communi-
cation overhead (in fact, BITE’s processing is faster by 0.1s
and the response size is 2kB smaller). The full node can be
easily made responsive for incoming client request during
block updates by using two enclave instances in parallel. The
Scanning Window variant requires no additional storage and
its communication cost is lower than in SPV. The processing
cost is also comparable when full side-channel protection is
not used.

We argue that BITE emerges as the first practical solution
that provides strong privacy protection for lightweight Bit-
coin clients. Our solution can be integrated into existing full
nodes and lightweight clients with minor modifications to
the existing software. While BITE is designed for Bitcoin,

we stress that it finds direct applicability in various other
blockchain platforms as well.

Contributions. In summary, in this paper we make the fol-
lowing contributions:
• Novel approach. We propose leveraging commonly avail-
able trusted execution capabilities of SGX enclaves for im-
proved lightweight Bitcoin client privacy.
• New system. We design and implement a system called
BITE that carefully combines a number of PIR and side-
channel protection techniques to prevent leakage.
• Evaluation. We show that BITE significantly improves
client privacy without compromising full node performance.
We argue that BITE is the first practical way to provide strong
privacy for lightweight Bitcoin clients.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our problem and Section 3 outlines our ap-
proach. Section 4 explains the details of our system BITE.
Section 5 covers security analysis and Section 6 provides
performance results. We provide discussion in Section 7,
review related work in Section 8, and conclude in Section 9.

For readers unfamiliar with SGX and ORAM, we provide
brief introductions in Appendices A and B.

2 Problem Statement

In this section, we provide background on Bitcoin
lightweight clients, explain the limitations of known ap-
proaches and define requirements for our solution.

2.1 Bitcoin Lightweight Clients
Bitcoin [44] is the first and still most popular cryptocurrency
based on blockchain technology. It enables users to per-
form payments by issuing transactions that transfer Bitcoins
(BTC) from one or more transaction inputs to one or more
outputs. Each of the outputs is bound to an address that is
derived from a user’s public key. A user that knows the cor-
responding private key is able to spend the Bitcoin contained
in the transaction output.

When a user wants to perform a payment, she creates a
transaction that contains inputs, outputs, and the signatures
that allow her to spend the inputs. Subsequently, the trans-
action is propagated to all nodes using a peer-to-peer net-
work created by the system’s participants. Miners, a special
type of nodes, collect valid transactions into blocks and solve
Proof-of-Work (PoW) puzzle to make the contained transac-
tions hard to revert. A miner that successfully finds a valid
PoW, broadcasts the block to all other nodes, who then verify
its correctness and include it in their copy of the chain.

To verify transactions, Bitcoin users, or clients, need to
store the full history of all Bitcoin transactions. This ap-
proach puts a heavy load on client implementations in terms

of network and storage, and as a consequence, makes trans-
action confirmation on mobile clients infeasible. To address
this concern, the original Bitcoin paper proposed a solution
called Simplified Payment Verification (SPV) [44]. In this
technique, light clients store only block headers, check their
PoW puzzles and then request their own transactions and the
Merkle paths that are needed to verify their presence in the
blocks from a full node that stores the entire chain.

Improvement proposal BIP 37 [31] introduced Bloom fil-
ters [18] that allow a light client to request a subset of all
transactions to preserve some privacy without needing to
download all transactions for each block. A Bloom filter [18]
is a probabilistic data structure that consists of a set of hash
functions and a bit array where each bit is set to one if one of
the hash functions hashes one of its inputs to the index of the
bit in the array. This allows checking if a value is contained
in the filter by hashing the value with each of the hash func-
tions and checking whether the corresponding bit is set. If
this is not true, the value was not an input. If it is true, how-
ever, the value might have been an input or a false positive.
The false positive rate can be set by the creator of the filter.

In Bitcoin light clients, Bloom filters are used to encode
transactions or addresses, and allow a full node to determine
which transactions to send to a lightweight client without let-
ting the full node know the exact addresses. A lightweight
client prepares a Bloom filter to which she adds all of her
addresses and sends it to the full node. The full node
then checks for incoming (or past, if requested) transactions
whether they match the Bloom filter. If they match, she sends
them to the client together with the Merkle path needed for
verification. The client can adjust the false positive rate to
increase her privacy. If the false positive rate is higher, the
client will receive more irrelevant transactions, in an attempt
to hide her true addresses with a larger anonymity set.

2.2 Limitations of Known Solutions

The use of Bloom filters to receive Bitcoin transactions from
an assisting full node inherently creates a trade off between
performance and privacy. If a client increases the false pos-
itive rate she receives more transactions which provides in-
creased privacy, as any of the matching addresses could be
her real addresses, but it also means that she needs the net-
work capacity to download all of these transactions. In the
extreme cases, the filter matches everything, i.e., the client
downloads the full blocks, or the filter only matches the
client’s addresses, i.e., she has no privacy at all.

Gervais et al. [25] have shown that using Bloom filters in
Bitcoin light clients leaks more information than was pre-
viously thought. In particular, if the Bloom filter only con-
tains a moderate number of addresses, the attacker is able
to guess addresses correctly with high probability. For ex-
ample, with 10 addresses the probability for a correct guess
is 0.99. They also show that, even with a larger number of

addresses, the attacker is able to correctly identify a client’s
addresses with high probability if she is in possession of two
distinct Bloom filters from the same client (e.g., due to a
client restart). Hearn [30] later expanded on why solving
these issues is hard (e.g., need for resizing). Furthermore, it
is likely that an attacker using additional de-anonymization
heuristics, such as the ones described in [16, 41], could fur-
ther increase the probability to guess correctly.

Finally, a lightweight client cannot be sure that she re-
ceives all transactions that fit her filter from a full node.
While the full node cannot include faulty transactions in the
response, as this would be detected by the client when re-
computing the Merkle root, the client cannot detect whether
she has received all requested transactions. This problem can
be solved by requesting transactions from multiple nodes,
which again imposes more network load on the client.

Another solution would be to run the SPV protocol with
Bloom filters over a network anonymity mechanism such as
Tor. While this would prevent the full node from learning
the IP address of the client, the full node could still correlate
queries from the same client based on the addresses that leak
from Bloom filters. We argue that query unlinkability is a
useful privacy property in systems like Bitcoin and can be
considered similar to the transaction unlinkability in systems
like Zcash (that provide more advanced privacy protection).

2.3 Requirements

The high-level goal of this paper is to develop a solution that
provides better privacy for lightweight clients without com-
promising the system performance. More precisely, our so-
lution should meet the following requirements:

(R1) Privacy. Lightweight clients should be able to verify
that their transactions are confirmed on the blockchain or
check the amount of coins associated with their addresses
without revealing their addresses to the potentially untrusted
entity that controls the assisting full node. The full nodes
should not be able to link queries from the same light client
that could allow them to incur additional information regard-
ing the client’s transactional pattern or behavior.
(R2) Completeness. The verification process should guar-
antee that no valid transactions have been omitted.
(R3) Performance. The performance of the system should
be comparable to or better than current light client schemes.

3 Our Approach

The main idea behind our approach is to leverage commonly
available Trusted Execution Environments (TEEs) such as
Intel’s SGX enclaves [33, 23] running within full nodes
to provide a privacy-preserving verification service to light
clients. Besides increased privacy, TEEs can enable better

Full Nodes

FN1

FN3

FNn

FN2

Lightweight Clients

LC2

LC1

LCn

…
…

…

…

secure
Enclave E

Original
full

node

BC

UTXO

enclave
UTXO

Figure 1: System model. Lightweight clients request trans-
action verification from enclaves hosted on full nodes.

performance in terms of reduced processing and bandwidth,
and guarantee completeness of received responses.

In short, SGX provides a set of security enhancements in
the processor that allow creation of small applications, called
enclaves, whose data confidentiality and code integrity is
protected from any malicious software running on the same
platform, including the privileged OS.

A simple way to leverage SGX would be a solution where
the light client sends its wallet private key to an enclave on
the assisting full node. Using that key, the enclave can per-
form any operation on behalf of the user, including transac-
tion verification. However, such simple solution has a critical
drawback. If the used enclave is compromised, the adversary
can steal all user’s coins. Such approach might give the own-
ers of full nodes an undesirable economic incentive to break
their own SGX processors, e.g., using physical attacks.

To avoid such incentives, we choose a different approach.
In our solution, when a client needs to verify a transaction
or check the amount of coins associated with the user’s ad-
dresses, the client connects to one of the full nodes that sup-
ports our service. The client performs remote attestation
and establishes a secure channel to the enclave. Then, the
lightweight client sends the addresses that the user is inter-
ested in to the enclave. The enclave obtains all the required
verification information from the locally stored blockchain
or custom unspent transactions database (UTXO) and sends
back a response to the client that can verify it. Importantly,
the client’s private key is never shared with the enclave which
enables safe adoption of our solution.

We envision two types of deployment for our system. In
the first example deployment, a well-recognized company
could provide such a verification service. In the second ex-
ample, any volunteer currently running a Bitcoin full node
could adopt our extension and start providing the service to
lightweight clients. In both cases, to incentivize deployment
by the full nodes, the service could be run in exchange for
some small renumeration (i.e., verification fees).

3.1 System Model
Figure 1 shows our system model that consists of full nodes
FN1...FNm and lightweight clients LC1...LCn. When a
lightweight client LCi wants to acquire information about its

transactions or addresses, it can connect to any full node FN j
that supports our service and hosts an enclave E j. Full nodes
download and store the entire blockchain (BC) locally and
based on that maintain a database that contains all unspent
transaction outputs (UTXO). Our system additionally main-
tains a specially-crafted version of the UTXO, called enclave
UTXO, in an encrypted (sealed) form.

In SGX, enclave memory is limited to 128MB. Although
swapping memory pages is supported (swapping requires ex-
pensive encryption and integrity verification [17]), the com-
plete blockchain (BC) and the database of unspent transac-
tion outputs (UTXO) are significantly larger (as of Jan 2019,
200GB [12] and 2.8GB [13] or more, respectively) than the
enclave’s memory limits . Therefore, these databases are
stored on the local persistent storage.

3.2 Adversary Model
We consider an adversary who controls the OS and any other
privileged software on the full node. For example, the ad-
versary could be a malicious administrator or an external at-
tacker who has remotely compromised the OS on the full
node. Since the adversary controls the OS, she can sched-
ule and restart enclaves, start multiple instances, and block,
delay, read, or modify all messages sent by enclaves, either
to the OS itself or to other entities over the network. We as-
sume that the adversary cannot break the hardware security
enforcements of Intel SGX. That is, the adversary cannot ac-
cess processor-specific keys (e.g., attestation or sealing key)
and she cannot access enclave runtime memory that is en-
crypted and integrity-protected by the CPU. (Although we
consider SGX trusted, in Section 5 we discuss enclave com-
promise and show that our solution can handle it without
any financial loss.) Finally, we assume that common cryp-
tographic primitives like encryption or signatures are secure.

3.3 Challenges
Secure and practical realization of our approach under the
defined attacker model involves several technical challenges.

Leakage through external accesses. Since the adversary
controls the OS, she can observe access patterns to any ex-
ternal resources, such as files or databases stored on the disk.
Although externally stored data can be sealed (encrypted by
the CPU such that only the same enclave can decrypt), the
OS can infer information about the accessed element by ob-
serving access patterns to individual records, such as files
or database entries. In a simple implementation of our ap-
proach, the adversary could infer the client’s addresses by
observing which entries the enclave reads from a (sealed)
UTXO database when processing a client request.

Similarly, enclaves rely on the OS to perform communi-
cation operations which allows it to infer information about

the enclave’s communication patterns. Even if messages are
encrypted by the enclave, the message sizes, frequency and
destination can leak information. In our case, the adversary
could determine how many transactions are included to the
response by observing response sizes.

Leakage through side channels. The SGX architecture
is also susceptible to internal leakage. Numerous, recently
demonstrated side-channel attacks against SGX show that in-
ternal leakage is a relevant concern. For example, by mon-
itoring CPU caches the OS can infer secret-dependent data
and code accesses inside the enclave’s memory [20, 43, 27,
50]. The OS can also infer enclave’s secrets by monitor-
ing the memory pages that the enclave requests [58]. Re-
searchers have also demonstrated side-channel attacks using
the CPU’s branch prediction functionality [36]. In a simple
implementation of our approach, the adversary can monitor
address-dependent branching in the enclave’s control flow
and data accesses and thus determine the client’s addresses.

4 BITE System

In this section we present a system called BITE that real-
izes the above approach securely and addresses the afore-
mentioned challenges. In particular, we present two variants
of the same approach that serve slightly different purposes.

Our first variant, Scanning Window, can be seen as an ex-
tension to the current SPV verification mode, but without
reliance on bloom filters. Based on the client request, an en-
clave on the full node scans the blockchain and replies with a
set of Merkle paths that the client can use to verify its trans-
actions using downloaded block headers. This variant allows
the client to check that each of its transactions are confirmed
on the blockchain. As Bitcoin provides only eventual con-
sensus, the client may want to additionally verify that the
blocks where its transactions are placed have been extended
with a sufficient number of valid blocks (e.g., six).

Our second variant, Oblivious Database is a completely
new verification mode for lightweight clients. In this vari-
ant, the enclave on the full node maintains a specially-crafted
version of the unspent transaction outputs (UTXO) database
and when a client sends a verification request, it checks for
the presence of client’s outputs in this database using oblivi-
ous database access (ORAM [52]) and responds accordingly.
Such verification allows the client to check how many coins
are currently associated to its addresses, with significant per-
formance improvements over SPV.

In both variants, the client performs remote attestation and
establishes a TLS connection to the enclave. We note that
current light clients communicate with the full nodes without
encryption. Existing full node functionality, such as partic-
ipation in the P2P network and mining, remain unaffected.
Therefore, our system can be seen as a simple add-on to ex-

req(adr,my_last_block)

search through blocks for LC’s
request using Scanning Window

establish secure communication
2

information request for addresses of interest
3

P2P communication

authentication, TLS connection

5

update blockchain
unchanged full node

normal operation

co
nt

in
uo

us

Lightweight Client LCi Full Node FNj Full Node FNn…

attestation

BC
2

1
a

1

4

6

return request information about transactions
res((trx_info,merkle_path) ||

block_header)

BC
get block headers from
my_last_block

- for blocks containing client
addresses add transaction info and
the merkle tree path
- for blocks without client addresses
add block header

verify transactions, Merkle Tree paths

Enclave Ej Enclave En

acquire latest block header
from the P2P Bitcoin network b

Figure 2: Scanning Window operation. Light client creates
a secure connection to an enclave on full node and sends a
request with its address and last known block. The enclave
scans the locally stored chain and prepares a response with
the size proportional to the number of scanned blocks.

isting full nodes. For clients, payment execution remains
unchanged. Payment verification requires minor additions
(attestation and TLS) when Scanning Window is used or
slightly bigger changes with Oblivious Database variant.

4.1 Scanning Window Variant

In our first variant, we want to improve the privacy of the cur-
rent SPV verification mode. When a client needs to verify
transactions, it constructs a request that specifies the ad-
dresses of interest and the last block that it has in its inter-
nal state and sends that to the secure enclave residing on the
full node. The enclave reads the locally stored blockchain
database using a custom scanning technique that normal-
izes the relationship between response sizes and actually ac-
cessed data to hide the data/block access patterns and ensure
client privacy. Figure 2 shows the operation of this variant,
and we describe the details as follows:

Initialization and continuous operation.
(a) On initialization the Full Node FN j connects to the Bit-
coin network (a-1) and downloads the full blockchain (a-2).
Similarly, the locally stored blockchain database is updated
for each new block that is appended to the chain (i.e., as new
blocks are received over the P2P network).
(b) The lightweight client installation package includes a
checkpoint block header from a recent date. When the client

is started for the first time, it downloads all newer block
headers from the peer-to-peer network and verifies that (i)
they all have correct Proof of Work and (ii) the hash chain
of the downloaded headers leads to the checkpoint. Once
the client’s internal state it synchronized with the peer-to-
peer network, it stores a small number of the newest headers
(e.g., six blocks from the head of the chain to handle shallow
forks). The client can update its internal state by download-
ing newest block headers periodically or before each trans-
action verification request. The network and storage require-
ments of this process are minor and easily met even by clients
with severe resource constraints.1

Client request handling.
(1) The Lightweight Client LCi performs attestation with the
secure Enclave E j residing on the full node FN j.
(2) If the attestation was successful, the Lightweight Client
LCi establishes a secure communication channel to the En-
clave E j using TLS.
(3) The Lightweight Client LCi sends a request containing
the addresses of interest and a block number that specifies
how deep in the chain transactions should be searched for
verification. Typically, this number would be saved from the
previous interaction with a full node or in the case of the first
transaction verification the number could roughly match the
date when the client started using Bitcoin.
(4) The Enclave E j starts scanning its locally stored copy of
the blockchain (BC) for the requested address and range of
blocks using a scanning technique described in detail below.
(5) In preparation of the response, the Enclave E j does the
following: for blocks containing client addresses it adds the
full transaction information and the corresponding Merkle
tree path to the response, while for blocks without client ad-
dresses it only adds the block header.
(6) The Lightweight Client LCi verifies that (i) the received
block headers match its internal state and (ii) the received
transactions and Merkle Tree paths match to the block head-
ers. The client considers such received transactions as con-
firmed (assuming that they are sufficiently deep in the chain).
The client updates its internal state regarding the latest veri-
fied block number and closes the connection to the enclave.

Block scanning details. As explained in Section 3.3, en-
clave execution can leak information in various ways. For
example, if our solution would simply return each matching
transaction (and the corresponding Merkle Tree) in the spec-
ified range of blocks, based on the size of the response the
adversary could deduce how much information of interest

1For example, obtaining block headers for a checkpoint that is one month
old, would require 300 kB of downloaded data (one-time operation) and up-
dating the block headers once per day would require 10 kB of communica-
tion per day. Storing the latest six headers takes less than 1 kB of storage.

Block x

Scan START

n

n-x blocks

y

y-x blocks

Scanning window
Size dependent
on the equation

Client request additional

…
Block Block

Figure 3: Block reading in Scanning Window. Depending
on the number of requested blocks (up to x) and the number
of matching transaction in them, we read potentially extrane-
ous blocks (up to y) to keep the ratio between the read blocks
and the response message size constant.

for the client was contained within the scanned blocks. Over
a period of time, by tracking requests and response sizes,
the adversary could gain significant information about the
client’s addresses and transactions.

We address such leakage by using a custom-made block
scanning scheme. The main goal of the scheme is to fully
hide the ratio between the response size (that indicates the
number of transactions returned to the client) and the number
of scanned blocks. When this ratio is constant, the adversary
cannot deduce any meaningful information.

Figure 3 depicts the details of our scanning scheme. The
newest block in the blockchain observed by the Bitcoin
network is n. A client’s request contains an addresses of
interest and the number block x indicating how deep the
chain should be scanned. The enclave starts scanning from
n and moves towards x. It stores intermediate responses
and when it reaches block x it performs a check. The total
size of the response, r, is divided by the threshold size, t.
The threshold indicates the maximum response size per
block such that if we are to scan n− x blocks, the maximum
response size for the client can be r = (n−x)∗ t. If the given
response size r is greater, then the enclave has to scan up
to block y (or y− x more blocks), such that r = (n− y) ∗ t.
If the response size is smaller, i.e., if after scanning n− x
blocks r ≤ (n − x) ∗ t, we pad the response size such that
r = (n− x)∗ t. The exact size of the threshold is empirically
determined in Section 6.

Side-channel protection. The scanning technique de-
scribed above prevents external leakage through response
sizes and disk accesses. However, if the adversary is able to
mount high-granularity digital side-channel attacks (e.g., one
that allows her to observe execution paths with instruction-
level granularity), she will be able to determine the transac-
tions that were accessed, and thus infer the client’s addresses.

To make our system more robust against such attacks, we
optionally add side-channel protections at the expense of per-
formance (cf. Section 6). To protect against timing leakage
we compute the Merkle path for all transactions in each of
the scanned block in contrast to only computing the path for

Block
tm

…
e.g. 20 kB

Response

1 MB

e.g. 500 kB

…

…

…
…

…
n*t

n=100
t=5 kB

Figure 4: Oblivious copying in Scanning Window. The
data is copied in an oblivious fashion from the block to a tem-
porary array, i.e., every transaction is conditionally moved
using cmov to every possible destination. The data contained
in the temporary array is then copied to the response in an
oblivious fashion, again using cmov to conditionally copy
everything to all possible locations in the response.

the transactions of client’s interest. For protection against
control-flow side channels we make use of the cmov assem-
bly instruction to hide execution paths. cmov is a conditional
move such that “If the condition specified in the opcode (cc)
is met, then the source operand is written to the destination
operand. If the source operand is a memory operand, then
regardless of the condition, the memory operand is read” [7].
We use the cmov instruction in form of a wrapper (originally
presented in [47]) that allows us to remove branches from
our code resulting in the same control flow with no leakage.

The same technique is also used in previous side-channel
protection solutions like Raccoon [47]. However, since using
such a general purpose side-channel defense system directly
would incur an extremely high performance overhead in our
particular setting (due to large amounts of accessed data),
we customize these techniques to our setting. Specifically,
we apply the following modifications, as per Figure 4:

(i) Instead of continuing to scan the chain if the size of the
response exceeds the threshold, we stop scanning after the
specified number of blocks. If not all transactions fit in the
response, the client does not receive all transactions and is in-
formed of this through a flag in the response. This allows the
allocation of a response array that does not change size dur-
ing processing. The client can request the remaining trans-
actions in a new query (potentially from a different node).
(ii) For each block, we allocate a temporary array of size tm
(see Figure 4), where tm is a threshold that specifies the max-
imum data per block, as opposed to the threshold t that spec-
ifies the average data per block. While the block is parsed,
each transaction is moved to the temporary array in an oblivi-
ous fashion, i.e., we use the cmov instruction to conditionally
move each word of each transaction to every entry in the ar-
ray. This means that for every transaction we access every
entry in the array and since the same instruction is used for
each possible copy – independent of whether the data is actu-
ally copied – even an attacker with an instruction level view
of the control flow cannot determine which data is actually
copied. After processing the block, the temporary array is
traversed and all entries are copied to the response array (see

Figure 4). This is again done in an oblivious fashion, i.e.,
each entry is copied conditionally using the cmov method to
every possible position in the response array.
This method of copying transactions from the block to the re-
sponse is required to efficiently keep the data accesses obliv-
ious. Specifically, for a block of size m, a temporary ar-
ray of size tm and n requested blocks, this method requires
O(m · tm + tm · n · t) instead of O(m · n · t) operations when
naively copying the data obliviously from the block to the
response. Since tm is usually much smaller than m and n · t,
this method is in practice orders of magnitude faster.

4.2 Oblivious Database Variant

In our second variant, we focus on reducing the load of
lightweight clients in terms of computation and network
while offering even better privacy preservation (namely, the
block number that specifies how deep the chain should be
searched does not leak). The main idea behind this variant
is to allow lightweight clients to send requests containing
addresses of their interest and directly receive information
regarding unspent outputs, without the need to verify block
headers and Merkle tree paths.

In order to achieve such verification, a new indexed
database of unspent transactions (denoted as enclave UTXO)
is created and searched for every client request using an
Oblivious RAM algorithm. Figure 5 shows the operation of
this variant, and we describe the details as follows:

Initialization and continuous operation.
(a) Similar to a standard full node, on initialization the full
node FN j connects to the peer-to-peer network and down-
loads and verifies the entire blockchain. After initialization,
when new blocks are available in the peer-to-peer network,
FN j downloads and verifies them.
(b) During initialization Enclave E j reads the locally stored
blockchain and verifies each block. The enclave builds its
own enclave UTXO database that is a special version of the
original structure present in standard full nodes. In partic-
ular, this UTXO set is encrypted on the disk as sealed stor-
age, indexed for easy and fast access depending on the client
request, and accessed using ORAM to prevent information
leakage through disk accesses. After initialization, the en-
clave updates this UTXO using ORAM when new blocks
are available in the locally stored blockchain.
(c) As in the Scanning Window variant, the client obtains
the latest block headers from the peer-to-peer network.

Client request handling.
(1) The Lightweight Client LCi performs an attestation with
the secure Enclave E j residing on the full node FN j.

search trough UTXO
for LC’s request using ORAM

establish secure communication
2

information request for addresses of interest
3

authentication, TLS connection

5

Lightweight Client LCi Full Node FNj Full Node FNn…

attestation

1

verify block, perform
PoW, verify Merkle Tree

UTXO create/update
using ORAM

2

3

BC

enclave
UTXO

deliver each
new block

co
nt

in
uo

us

b
secure addon for

privacy preservation

enclave generate and
updates its own

UTXO storing it in an
encrypted form

1

req(adr,trx_hash,trx_num)

4
enclave
UTXO

return request information about transactions
res(us_trx_outputs, num_trx,
max_trx, last_block_header)

6

Enclave Ej Enclave En

P2P communication

update blockchain
unchanged full node

normal operation

co
nt

in
uo

usBC
2

1
a

summarize the enclave’s response

acquire latest block header
from the P2P Bitcoin network c

Figure 5: Oblivious Database operation. Lightweight
client sends a request containing its address and the last
transaction to an enclave on full node. Enclave queries
a specially-constructed UTXO database using ORAM and
provides a response back to the client.

(2) LCi establishes a secure communication channel to the
Enclave E j using TLS.
(3) LCi sends a request containing the addresses of inter-
est, along with the hash and number of the latest transaction
known to the client. The last two parameters are needed in
case the number of unspent outputs contained by an address
is larger than the maximum size of the message. For exam-
ple, LCi receives the first response containing x transaction
outputs with an indication that there is more, and in a con-
sequent request specifies the same address as in the first re-
quest along with the x–th transaction hash and transaction
number. This gives an indication to the enclave to respond
with the second batch of outputs starting from that transac-
tion. The process repeats (possibly with a different node)
until the client is satisfied. To prevent information leakage
through the message sizes, requests are always of constant
size, i.e., the client pads shorter requests and splits up larger
queries. The size is defined to accommodate the majority
of requests. Since a lightweight client can choose any avail-
able node to connect to, she can choose to send requests to

different nodes to hide the number of sent requests.
(4) The Enclave E j reads the enclave UTXO database to get
the unspent transaction output information in respect to the
client’s request. E j uses ORAM and the previously created
index to access the enclave UTXO in an oblivious fashion.
(5) In preparation of the response, E j includes the relevant
information as explained in step (3), which encompasses the
currently included and maximum number of unspent trans-
actions found for a specific address. When these numbers
match, the LCi knows that she has received all the unspent
outputs of a specific address. The enclave additionally in-
cludes the block hash of the last known block from the local
blockchain (longest chain). With this information the client
can deduce whether the enclave has been served with the lat-
est block and that the enclave’s database is fully updated.
Responses are always of constant size, i.e., shorter responses
are padded and if a response is too large, the client is in-
formed of missing outputs, such that she can later retrieve
the rest of the outputs (e.g., from a different node). The size
of the response is chosen such that it accommodates the ma-
jority of responses.
(6) The Lightweight Client LCi can summarize the unspent
transaction outputs received from the Enclave E j. The en-
clave guarantees completeness in terms of transaction con-
firmation and the current state of the chain, so the client does
not have to perform any additional checks by herself. Suc-
cessful update of the client’s internal state results in the con-
nection termination between the enclave and the client.

Oblivious Database details. In this variant, we use an
ORAM algorithm called Path ORAM [52] to protect data
access patterns of our enclaves. For readers unfamiliar with
this algorithm, a brief description is in Appendix B.

Database Initialization. The ORAM database is initial-
ized by creating dummy buckets on disk and filling the po-
sition map with randomized entries. The stash is also filled
with dummy chunks. After that the ORAM database is fully
initialized and can be used to add new unspent outputs from
the blockchain. To ensure that the enclave always uses the
latest version of the sealed UTXO database, SGX counters or
rollback-protection systems such as ROTE [39] can be used.

Database Update. When a new Bitcoin block is added,
the enclave first verifies the proof of work. It then extracts all
transaction inputs and outputs and bundles them by address.
For each address found in the block, the UTXO database en-
try is requested and then updated with the new information.
If too many entries are added, resulting in the chunk getting
too big, the chunk is split into two and the index is updated to
reflect the changes made to the UTXO database. All accesses
are performed using the ORAM algorithm and, therefore, do
not leak any information about the access patterns.

Database Access. Accesses to the ORAM database follow
the normal procedure described in [52] and in Appendix B.

Side-channel protection. While the usage of ORAM pro-
tects against all external leakage, side-channel attacks, and
thus, internal leakage remains a challenge. If we consider
the most powerful attacker that can perform all digital side-
channel attacks (see Section 3.3), this variant would be for-
feit due to the leakage of the code access patterns, specif-
ically, execution paths in the if statements when the stash,
indexes and the position map is being accessed. This would
leak the exact address which is used to search for the unspent
transactions in the internal database.

To remedy internal leakage, we deploy several mecha-
nisms that protect our code and execution. First, when ac-
cessing the security critical data structures, specifically, the
position map, stash, and the indexes containing information
about which chunks contain unspent transactions of a certain
Bitcoin address we pass over them entirely in the memory
to hide the memory access pattern. Second, to hide the ex-
ecution paths we remove all branching in the code that ac-
cesses these data structures and deploy the cmov assembly
instruction (see Section 4.1). Observation of the control flow
and memory access does not leak whether the operation per-
formed by the enclave was a read or a write, and since there is
a single control flow without creating multiple branches de-
pending on the condition, we effectively hide the execution
and thus protect this variant from internal leakage in full.

5 Security Analysis

In this section, we provide an informal security analysis.
First, we analyze our solution with respect to our adversary
model where SGX security enforcements cannot be broken.
In particular, we show that our solution ensures confiden-
tiality of the requested client addresses, as the attacker can-
not infer the requested address from disk access patterns, re-
sponse sizes, side-channels, or a combination thereof. Sec-
ond, we discuss implication of potential SGX compromise
and show that our solution can handle such cases gracefully.

5.1 External Leakage Protection
Scanning window. This variant scans complete blocks
from the blockchain database, instead of accessing individ-
ual transactions within them, and thus prevents direct infor-
mation leakage from disk access patterns. The constant ratio
of response size to scanned blocks prevents information leak-
age from the response size. The adversary may only infer the
number of blocks that are accessed and not which addresses
are sent by the client or how many transactions are returned.

Oblivious Database. To protect against information leak-
age attacks on the disk access, our second variant utilizes
the well-studied Path ORAM [52] algorithm. Our setting is
slightly different than the typical client-server model con-
sidered in ORAM. In our case, the enclave corresponds to

the client. Because the adversary can run the enclave freely,
she can use it as an oracle, i.e., she can influence the data
that is written (by delivering blocks to the enclave) and can
query for values himself. Regardless of that, due to the un-
linkability property of ORAM, the attacker learns nothing
about what is accessed and the probability to guess correctly
which ORAM block was accessed is equal to that of a ran-
dom guess, as shown in [52]. Also, the adversary learns
nothing from responses as they are of constant size.

5.2 Side-channel Protection
Most known side-channel attacks on SGX provide imperfect
data-access or control-flow traces and require many repeti-
tions to filter out noise [20, 43, 27, 50]. In BITE, queries
from legitimate clients cannot be replayed due to the authen-
ticated TLS channel and since the enclave is either stateless
across power cycles or protected against rollback. The ad-
versary can create his own client and send requests to the
enclave, but this will not result in any advantage against le-
gitimate clients. For these reasons, mounting side-channel
attacks against BITE is more challenging than performing
side-channel attacks against enclaves in general. To analyze
our solution against future adversaries that may be able to
mount more precise attacks, below we consider the worst
case scenario, i.e., side-channel attacks that obtain perfect
data access and control flow traces from enclave’s execution.

Scanning Window. To harden our Scanning Window vari-
ant against side-channels, we provide optional protections
that incur significant performance penalty. When the en-
clave scans through both the temporary array and the final
response array in their entirety, it performs cmov operations
for all possible transactions. This allows replacing branches
in our code with a few instructions resulting in the same con-
trol flow with no leakage to the attacker since all data is ac-
cessed and the same operation is executed every time.

Oblivious Database. For our Oblivious Database variant
we always include side-channel protections to our solution,
since the performance overhead is negligible. When access-
ing the security critical data structures such as stash, indexes
and the position map, we pass over them entirely to hide the
memory access pattern. Second, to hide the execution paths,
we remove all branching in the code that accesses these data
structures and replace them with cmov assembly instructions
(see Section 4.2). Observation of the control flow and mem-
ory access does not leak whether the operation performed by
the enclave was a read or a write, and since there is a single
control flow without creating multiple branches depending
on the condition, we effectively hide the execution path and
thus protect this variant from internal leakage in full.

The usage of cmov for protecting against digital side-
channel and internal leakage was previously studied in Rac-

coon [47] and with respect to protecting ORAM-based sys-
tems it was studied in other SGX-related works [49, 14].
These works show the effectiveness of cmov in protecting
against internal leakage. Our solution uses the same tech-
niques, and thus directly inherits the security guarantees that
successfully protect against the same type of attacks, i.e.,
those based on digital side-channel leakage.

5.3 Completeness
In the Scanning Window variant, the client herself performs
the verification of the block headers, Merkle paths and trans-
actions. Since the client can retrieve block headers from the
P2P network and the enclave returns all transactions from its
view of the chain, the client can ensure completeness of the
response by checking that she received data from the longest
chain. In the Oblivious Database variant, the enclave per-
forms all verifications for the client. To ensure completeness,
the client can compare the latest block hash from received re-
sponse to information from other sources.

An adversary that controls the OS of the full node server
can deliver incomplete blocks to BITE enclave or decide to
not deliver specific new blocks to the enclave. However, this
would be noticed by the light clients. Remember that light
clients are required to obtain the latest block hash from an
alternative source in order to verify the completeness of BITE
responses. (Another approach to solve this would be to use
systems such as TownCrier [59] or TLS-N [48], that enable
the enclave to get an authenticated feed that could confirm
the correctness of the blocks received from the full node.)

5.4 Implications of a Full SGX break
Our adversary model assumes that side-channel leakage
from enclave’s execution may happen, but the adversary can-
not fully break SGX, i.e., the adversary cannot read all en-
clave’s secrets and modify its control flow arbitrarily. How-
ever, SGX was never intended to provide tamper resistance
against physical attacks and recent research has demon-
strated that platform vulnerabilities like Spectre [35] and
Meltdown [38] can be adapted to extract attestation keys
from SGX processors [21, 54]. Therefore, it becomes rel-
evant to ask how BITE handles a full SGX compromise.

In the Scanning Window variant, the client only loses the
privacy protections provided by our system and all of his
funds remain secure. Since the client still performs SPV, the
security is otherwise not affected and our system provides
the same guarantees as current light clients, i.e., a node may
omit transactions, but cannot steal funds or make a client
falsely accept a payment.

In the Oblivious Database variant, a compromised enclave
could make the client accept false payments by sending in-
valid UTXOs. However, we argue that this will not be a
realistic threat since it would require the client to sell some

System
Our implementation Libraries

Total
Bitcoin1 Network2 mbed-tls

Scanning Window 1’876 1’613 53’831 57’320
Oblivious Database 4’117 1’613 53’831 59’561

1 Processing the Bitcoin blockchain.
2 Parsing responses from the client over TLS.

Table 1: Trusted Computing Base in LOC.

goods or service to the provider of the node, i.e. this is not
a realistic issue for most users. Merchants that see a full
break of SGX as a realistic threat can instead use the Scan-
ning Window variant. Additionally, such an attack would
be easily detectable after the fact and result in loss of rep-
utation of the provider of our service and would thus likely
only be profitable for high value transactions for which most
merchants would probably run a full node.

We conclude that BITE can provide as much security and
privacy as traditional lightweight clients even given a full
break of SGX. This is in contrast to the naive solution of
storing the clients’ private keys in the enclave and using it
as a remote wallet. Lastly, we emphasize that our approach
and BITE as a solution are not limited to SGX. Our main
ideas could most likely be applied to other TEEs as well,
such as the open-source Keystone TEE [1], thus reducing
the reliance on SGX (and thereby Intel) even further.

6 Performance Evaluation

In this section, we describe our implementation and provide
performance evaluation results.

6.1 Implementation Details
The centerpiece of our system is an original blockchain
parser. For TLS connections we use the mbed-tls library
from ARM [37]. Table 1 shows the trusted computing base.

Scanning Window. The implementation of Scanning Win-
dow is very small since it only involves scanning the
blockchain and does not have to keep state. The network
code including the mbed-tls library contributes the most to
the TCB with over 96%. The same work for matching and
non-matching transactions is performed in order to keep the
scanning time per block constant for all requests.

The response size per block allows for around 5 trans-
actions. We believe this is a reasonable choice that satis-
fies common usage patterns for light clients. For n included
and N total transactions in the block, an upper bound for the
Merkle path size is n∗ log(N) and each entry is 32 bytes long.
This results in an approximate upper bound of 2.2kB for
N = 4000, the current limit in Bitcoin. As of today (Novem-
ber 2018) the average transaction size is around 500 bytes,
therefore, a response size per block of 5kB is enough to fit

around 5 transactions (5 ∗ 500B + 2200B < 5kB). If more
or larger transactions are found, following from Section 4,
the enclave scans more blocks of the blockchain until the re-
sponse can fit all requested transactions.

Oblivious Database. The implementation of Oblivious
Database is more complex than Scanning Window and the
enclave has to keep state and store a large UTXO set on disk.
At the time of writing, the UTXO size (indexed by Bitcoin
address) is around 3GB while our ORAM overhead accounts
for 2 times the original size, totaling around 6GB.

We use Path ORAM to store the UTXO set and have evalu-
ated various chunk sizes for the implementation. The chosen
chunk size accounts for 32kB, meaning a single chunk can
fill up to 32kB with outputs from one address. If an address
has more unspent outputs, the outputs are stored in multi-
ple chunks. Assuming an average output size of 100B, one
ORAM read can return up to 320 outputs for one address.
The outputs are grouped by the receiving address and then
ordered alphabetically. This is necessary in order to keep the
size of the index small enough to fit in the enclave’s memory.
In the worst case the maximum index size involves the lower
and upper limits for addresses (20B) and transaction hashes
(32B) for every ORAM block resulting in a maximum of
(8GB/32kB) · (32B∗2+20B∗2)≈ 19.5MB.

To set the response size, we analyzed the typical unspent
outputs per active address in the Bitcoin network. Our re-
sults show that 95% of all addresses have 5 or fewer unspent
outputs and 98% have fewer than 12 outputs. Based on this
data, we settled on 12 average outputs per request, resulting
in around 1.2kB.

6.2 Performance Results and Comparison

In this section, we evaluate both variants of BITE and com-
pare them to the current SPV performance using python-
bitcoinlib [53]. The focus is put on three different metrics:
processing time, communication overhead, and storage re-
quirements. Processing time encompasses both the request
handling from the client to the enclave as well as the time
needed for the enclave to update the UTXO for new blocks.
Communication overhead is evaluated through the response
size, thus directly affecting the client’s necessary bandwidth.
Lastly, we report the necessary storage requirements on the
full nodes that these system need for operation. A summary
of all reported results can be found later on in Table 3.

Note that in all our data points, the TLS handshake times
are omitted. Matetic et al. [40] report around 100ms for a
new handshake and <10ms for TLS session resumption us-
ing mbed-tls in SGX. We do not evaluate the performance of
a client since the client-side storage and network overhead
are insignificant. We tested our implementation on an Intel
i7-8700k with a Samsung 960 SSD for local storage.

0 50 100 150 200 250 300
Number of Blocks

0s

1s

2s

3s

4s

5s

6s
Ti

m
e

FPR 0.1%

FPR 0.0%

FPR 0.5%
FPR 5%

BITE Scanning Window
Current SPV (Bloom Filter)
BITE Oblivious Database

(a) Processing cost (client request) for Scanning Window, Oblivi-
ous Database and current SPV protocols using Bloom filters.

0 50 100 150 200 250 300
Number of Blocks

0MB

5MB

10MB

15MB

20MB

To
ta

l T
ra

ns
m

itt
ed

 B
yt

es

FPR 0.1%FPR 0.5%FPR 5%

BITE Oblivious Database
and FPR 0%

BITE Scanning Window

(b) Communication cost for Scanning Window, Oblivious
Database and current SPV protocols using bloom filters.

Figure 6: Performance evaluation of Scanning Window and Oblivious Database.

tm

5kB 10kB 20kB

B
lo

ck
s 100 0.7s (± 0.2s) 1.3s (± 0.5s) 2.7s (± 0.9s)

200 0.7s (± 0.2s) 1.4s (± 0.5s) 2.8s (± 0.9s)
300 0.7s (± 0.2s) 1.5s (± 0.5s) 3.0s (± 0.9s)

Table 2: Processing time per block with oblivious execution
for Scanning Window depending on the number of requested
blocks and the temporary size, averaged over 100 blocks.

Processing. Figure 6a shows the processing cost to filter
blocks for BITE and current SPV protocols. Note that the
measurements in Figure 6a do not account for the network
speed. For client update requests over the last 100 blocks,
the current SPV mode takes 0,62s, 1.06s, 1.06s, 1.5s, with
the false positive rates of Bloom filters set to 0.0% 0.1%,
0.5% and 5%, respectively. Note that the numbers regard-
ing standard SPV with the Bloom filter false positive rate of
0.0% actually indicates a solution with no privacy, e.g. the
light client sends only his addresses in the request without
any masquerading.

For the Scanning Window variant without side-channel
protections we report 1.9s, corresponding to an 81% over-
head compared to the SPV with FPR 0.1% and 0.5%. If the
side-channel protection is added to Scanning Window, the
oblivious execution and memory access adds a significant
overhead. Table 2 shows the time per block for various re-
quests and tm size. Higher tm allows to cope with high vari-
ance of relevant activity within the requested blocks. Note
that the blocks vary in size, and thus the time per block fluc-
tuates a lot leading to a high standard deviation. Synchro-
nizing 100 blocks with tm = 5kB takes around 73 seconds
corresponding to an overhead of approximately 40x. Note
that the oblivious Scanning Window variant is not shown in
Figure 6a due to its size.

In our Oblivious Database variant, the unspent outputs are
directly fetched from the enclave UTXO and the individual
blocks are not scanned. Thus, the performance does not de-

pend on the client’s last known block, but only on the ORAM
database access times. A request that fetches the information
regarding 10 client addresses accounts only for 0.5s and is
completely independent on the number of requested blocks,
thus making it even faster than the standard SPV mode used
without any privacy protections.

Contrary to the Scanning Window, in the Oblivious
Database variant, the enclave needs to update its UTXO set
after each new block arrives in the ORAM database which
takes 78.5s. To reach permanent availability we propose to
use 2 systems in parallel which update with an offset between
each other. If a user requests the result from a node that is
not fully up to date, the remaining blocks can be scanned by
utilizing oblivious Scanning Window. The number of clients
that can be served by a single SGX enclave can be estimated
by using around 120s (pessimistic estimate) for updating the
state and then the remaining 8 out of 10 minutes (Bitcoin
block interval) to continuously answer client requests, lead-
ing to an approximate 10000 clients per enclave.

Communication. Figure 6b shows the bandwidth compar-
ison between all discussed protocols. Our variants use sig-
nificantly smaller response sizes compared to SPV since they
do not need to hide relevant information with false posi-
tives. A device with a decent 4G connection that operates
at 100Mbit/s additionally requires around 1.4s to retrieve
100 blocks (17MB) with the current SPV protocol and a
0.5% false positive rate while Scanning Window only takes
0.04s (500kB). The Oblivious Database variant reduces the
communication overhead even more and accounts only for
0.0001s (only 12kB), which is insignificantly small since
only unspent outputs are included and not the entire transac-
tion information along with the Merkle paths. The SPV with
no privacy protections performs slight less effective than the
Oblivious Database of BITE as it was the case when the pro-
cessing performance was compared.

Processing Communication Storage

Request
UTXO
Update Response Blockchain UTXO

Leakage
Protection

Scanning
Window1 1.9s - 500kB 200GB 0 3/74

Oblivious
SW1 73s - 500kB 200GB 0 3

Oblivious
Database3 0.5s 78.5s 12kB 50MB5 6GB 3

Stan. SPV
FPR 0.5%1 1.1s ≈2s 17MB 200GB 2.8GB 7

Stan. SPV
FPR 0.0%1,2 0.6s ≈2s 14kB 200GB 2.8GB 7

1 For 100 blocks. 2 SPV with no privacy protection. 3 For 10 addresses.
4 Protects against external leakage but not side-channels.
5 Only the block headers need to be stored.

Table 3: Performance comparison and requirements on the
full node for supporting light clients.

Storage. The SPV mode has to store both the whole
blockchain (200GB) and the UTXO set (2.8GB), while our
Scanning Window variant only needs to store the blockchain.
Moreover, our Oblivious Database variant does not need the
whole blockchain (except during initialization) but only the
block headers (50MB in total) and the special enclave UTXO
stored in the ORAM database. This database accounts to
6GB, a 100% overhead compared to the regular UTXO set,
due to the ORAM algorithm requirements. It is clear that
both our variants require less storage, and our Oblivious
Database variant’s requirements are insignificant compared
to all mentioned solutions.

Comparison of BITE variants. Table 3 shows a perfor-
mance comparison between all our variants and the stan-
dard SPV mode from the full node’s perspective. The per-
formance of Scanning Window is heavily dependent if side-
channels are a concern. The original Scanning Window of-
fers a slightly worse performance than the standard SPV
but offers increased privacy, protecting against external leak-
age, and requires significantly less bandwidth. Adding pro-
tection from side-channels greatly increases the processing
time, while the communication load stays the same. Oblivi-
ous Database, on the other hand, offers the same full privacy
guarantees as the oblivious Scanning Window, and has the
smallest footprint in both the processing time and the net-
work overhead. The enclave UTXO does require regular up-
dating affecting the uptime. However, the previously men-
tioned solution of having two parallel enclaves with opera-
tion offset effectively removes this limitation. In conclusion,
we have shown that our variants offer comparable or better
performance with increased end client’s privacy.

Comparison to side-channel protection systems. Fi-
nally, we compare the performance and security of BITE
to previous SGX side-channel protection systems. For
our comparison we use Raccoon [47] that addresses inter-
nal leakage due to secret-dependent memory accesses and

Leakage Performance
OverheadExternal Internal Response Size

Raccoon[47] 7 3 7 ∼ 100x1

Obliviate[14] 3 7 7 > 4x1

Raccoon[47] + Obliviate[14] 3 3 7 100x−400x2

BITE Scanning Window 3 3 3 3 40x
BITE Oblivious Database 3 3 3 1x

1 Based on the performance evaluation of [47] and [14].
2 Combination of the two primitives can yield an overhead in this range.
3 Fully oblivious Scanning Window variant.

Table 4: Performance overhead and security comparison be-
tween existing primitives and BITE.

Obliviate [14] that addresses external leakage due to file ac-
cesses. We note that ZeroTrace [49] also provides similar
external leakage protection as Obliviate, but since the Zero-
Trace paper does not report performance overhead numbers
suitable for comparison, we exclude it from our discussion.

Table 4 summarizes our comparison. By applying Rac-
coon to the target enclave code, the performance overhead
of the enclave’s execution can range up to 1000x depending
on the complexity of the original code that is made oblivi-
ous. In our case, the complexity of the original code matches
the examples that report the overhead of around 100x. Ap-
plying techniques from Obliviate can cause a performance
overhead of >4x. Neither Raccoon nor Obliviate alone pro-
vide full leakage protection, as Raccoon prevents only from
internal leakage and Obliviate protects only against external
leakage. Neither of these two systems protects against leak-
age from response sizes. The combination of Raccoon and
Obliviate would protect both internal and external leakage,
but still not leakage from response sizes. We estimate that
the combined overhead of these two protection tools would
amount to 100x-400x.

Our fully oblivious Scanning Window variant has a perfor-
mance overhead of 40x while the Oblivious Database vari-
ant has practically no overhead. More importantly, both of
the BITE variants protect against external leakage, internal
leakage, and leakage from the response sizes, and therefore
achieve more complete protection than any of the previous
solutions.

7 Discussion

Usage and long-term privacy. Lightweight clients can
use BITE in different ways and the chosen usage model can
have implications on the clients’ long-term privacy. For ex-
ample, in what we consider non-recommended usage, the
client (i) performs payment verification requests only when
the payment appears in the ledger, (ii) always uses the same
full node for verification, and (iii) only uses a single or few
Bitcoin address. If all of the above conditions are met, al-
though the adversary controlling the full node does not learn
the client’s address from a single verification request, he
might be able to correlate the timing of the verification re-

quest events and the Bitcoin addresses visible in the ledger
at roughly the same time, and thus construct a set of can-
didate addresses that may belong to the served client. We
acknowledge that our solution cannot eliminate this type of
correlation completely. However, we stress that such correla-
tion would require long-term tracking of verification requests
from the adversary and that the same limitation applies to any
light client payment verification scheme.

In recommended usage of BITE, the client (i) uses differ-
ent full nodes for payment verification, (ii) regularly uses
fresh Bitcoin addresses (e.g., using an HD wallet [57]), and
(iii) introduces unpredictability to the timing pattern of pay-
ment verification requests like a small number of extra re-
quests at random time points. Following such a usage model,
the above mentioned correlation becomes very difficult.2

Large responses. Some client requests might result in a
larger response than our defined threshold for message size.
As our performance analysis shows, the number of these re-
quests is almost negligible. However, our mechanism still al-
lows these types of request with the distinctive factor that the
client would have to request them in batches. For example,
if a client in the Scanning Window variant requests transac-
tions for 10 of his addresses from the last 300 blocks using
the full-side-channel protection, there might be more trans-
action data then the 300∗ t kB message size. In this case, the
enclave sets a flag indicating there is more information to be
delivered. After receiving the response, the client can repeat
the request with the defined flag and receive the rest of the
information. The protocol operates in the same way, thus no
distinction between these two requests can be observed by
the attacker. However, the attacker can see the repeated re-
quest and infer that the specific client has more transactions
of interest in the designated blocks. To mitigate this prob-
lem one could wait a period of time before requesting the
rest of the response, obfuscate the IP address or change to
a completely different service provider (another enclave) for
finishing the request.

Denial of service. A malicious user might attempt DoS by
asking for a very long scan window, incurring large process-
ing times for full nodes and making the service momentarily
unavailable for other clients. DoS (and spam) are common
in systems where there is no significant cost involved (e.g.,
sending 1M emails is practically free). In our setting, one
could easily remedy such denial of service attacks by ap-
plying fees based on the nature of the request. Large bal-
ance updates for lightweight clients would incur higher costs
than just frequent updates, thus limiting the attacker from

2To quantify how accurately the adversary can correlate the client’s ad-
dresses with these best practices, would be an interesting direction for future
work. As building an accurate model would require collecting significant
amount data about the behavioral patterns of light clients, we consider this
task a research project on its own and outside our scope.

performing “free” DoS attacks. On the other hand, a mali-
cious node can easily block all enclave messages or interrupt
enclave execution, thereby preventing the enclave to access
the blockchain, update its UTXO or serve client requests.
This however falls in a domain which is impossible to fully
prevent. If this would occur, the light client can just send its
request to another enclave hosted by another entity.

Unbounded enclave memory. The performance of our
system is mostly bounded by the slower disk operations.
However, if future versions of Intel SGX would allow more
enclave memory (i.e., currently the limit is 128MB without
the expensive page swapping) ranging up to the RAM limit
on the residing platform, one could keep the UTXO database
and all other security critical data in the memory and not on
the disk, similar to recently proposed SGX-based in-memory
database systems like EnclaveDB [46].

8 Related Work

Lightweight client privacy. The idea of light clients for
Bitcoin was already included in the Bitcoin paper by Satoshi
Nakamoto [44] in the form of Simple Payment Verification
(SPV). Hearn and Corallo later introduced Bloom filters [18]
in BIP 37 [31] that allow a client to probabilistically request a
subset of all transactions in a block to mask which addresses
are owned by the client. Gervais et al. later showed that
the information leaked by the use of Bloom filters in Bit-
coin can in many cases enable the identification of client
addresses [25]. Hearn later expanded on these issues and
discussed the difficulties of solving them [30].

Osuntokun et al. recently proposed modifications to Bit-
coin nodes and lightweight clients that move the application
of the filter to the client [45]. Full nodes create a filter (with
a low false positive rate) for the set of all transactions in a
block. A lightweight client then fetches the filter from one
or more full nodes and can then check whether the block con-
tains transactions that she is interested in. If that is the case,
the client will request the full block from any node.

This approach suffers from a number of shortcomings.
First, the gained privacy largely depends on the client behav-
ior and how well the client is connected to distinct entities.
If the client does not request the filter headers from multi-
ple entities and then requests the blocks from a different one,
she can be easily tricked into revealing her addresses by us-
ing forged filters: A node prepares a filter matching half of
all addresses and sends it to the client. If the client requests
the block, at least one of her addresses lies within that set,
otherwise all of her addresses lie in the other half. The node
can then further reduce the possible set using binary search
by sending modified filters for the following blocks, allowing
bitwise recovery of client addresses. Second, depending on
how often a transaction is of interest to the client, she might

end up downloading the full blockchain after all. Since the
client always either requests the full block or nothing at all,
she will download almost every block if a large fraction of
blocks contain at least one transaction that is of interest.

Other research on Bitcoin privacy shows that using differ-
ent heuristics, large parts of the Bitcoin transaction graph can
be deanonymized [16, 41]. These techniques are orthogonal
to the problem of light client privacy and out of our scope.

Lastly, there exist alternative solutions that tackle limited
computation abilities of light clients, such as VerSum [55].
The main idea is that the complex computation is outsourced
to a set of remote servers. Even though these solutions do
not focus on privacy preservation directly, they do offer al-
ternative ways to construct support systems for light clients
that do not require the creation of UTXO type databases for
proving correctness.

SGX Leakage Protection. During the last few years, the
research community has studied information leakage from
SGX enclaves extensively and proposed a number of de-
fenses. In this section we explain why none of the existing
systems solves our problem directly and which prior systems
use similar protective primitives as our solution.

Raccoon [47] addresses both internal and external infor-
mation leakage for both code and data accesses. For control-
flow obfuscation, Raccoon uses taint analysis to determine
execution paths that should be hidden and transforms en-
clave code such that it executes extraneous decoy paths to
hide the enclave’s actual control flow. The basic building
block for such control-flow obfuscation is the cmov instruc-
tion that we use as well. Raccoon also uses Path ORAM
to hide external secret-dependent data accesses and “stream-
ing” over data structures (i.e., accessing every element) in
the internal enclave memory. The main difference between
Raccoon and our solution is that by tailoring our implemen-
tation, we avoid the need for taint analysis and extra decoy
paths enabling a more efficient solution.

Other related systems include Cloak [28] that prevents
cache leakage using hardware-based transactional memory
features in processors; ZeroTrace [49] and Obliviate [14]
that provide a library for data structures protected using
ORAM; DR.SGX [19] that randomizes and periodically re-
randomizes all data locations in enclave’s memory with
cache-line granularity; and, T-SGX [51] and Deja Vu [22]
that detect and prevent side-channel attacks based on re-
peated interrupts. The main limitation of Cloak is that
it requires hardware features that are not available on all
SGX CPUs and it only prevents cache-based leakage. Ze-
roTrace and Obliviate are limited to data access protection
and does not prevent leakage from secret-dependent control
flow. DR.SGX is also limited to data accesses and imposes
a high performance overhead when configured to prevent all
leakage. T-SGX and Deja Vu are limited to attacks that per-
form repeated interrupts (subset of known attacks).

Oblix [42] presents a new ORAM algorithm tailored to
SGX. We use Path ORAM, but our solution is agnostic to
the used ORAM algorithm and we could easily replace it.

9 Conclusion

Improved user privacy is one of the main goals of decentral-
ized currencies like Bitcoin. However, payment verification
requires downloading and processing the entire chain which
is impossible for most mobile clients. Therefore, all popu-
lar blockchains support simplified verification modes where
lightweight clients can verify transactions with the help of
full nodes. Unfortunately, such payment verification does
not preserve user privacy and thus defeats one of the main
benefits of using systems like Bitcoin. In this paper, we
have proposed a new approach to improve the privacy of
lightweight clients using trusted execution. We have shown
that our solution provides strong privacy protection and addi-
tionally improves performance of current lightweight clients.
We argue that BITE is the first practical solution to ensure
privacy for light clients, such as mobile devices, in Bitcoin.

Acknowledgments

The research work leading to these results has been sup-
ported by Zurich Information Security and Privacy Cen-
ter (ZISC). We would also like to thank our shepherd Rob
Jansen for his insightful comments.

References

[1] Keystone: Open-source Secure Hardware Enclave.

[2] BitcoinJ, 2018. https://bitcoinj.github.io/.

[3] Electrum, 2018. https://electrum.org/#home.

[4] Ethereum, 2018. https://www.ethereum.org/.

[5] Etherscan.io, 2018. https://etherscan.io.

[6] Light Ethereum Subprotocol (LES), 2018. https://

github.com/zsfelfoldi/go-ethereum/wiki/Light-

Ethereum-Subprotocol-%28LES%29.

[7] OpCodes: CMOV, 2018. http://www.rcollins.org/p6/
opcodes/CMOV.html.

[8] PicoCoin, 2018. https://github.com/jgarzik/

picocoin.

[9] R3, 2018. https://www.r3.com/.

[10] Ripple, 2018. https://ripple.com/.

[11] Bitnodes, 2019. https://bitnodes.earn.com/.

[12] Blockchain.info, 2019. https://blockchain.info.

[13] Statoshi.info, 2019. https://statoshi.info.

[14] AHMAD, A., KIM, K., SARFARAZ, M. I., AND LEE, B.
OBLIVIATE: A Data Oblivious File System for Intel SGX.
In NDSS (2018).

https://bitcoinj.github.io/
https://electrum.org/#home
https://www.ethereum.org/
https://etherscan.io
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
http://www.rcollins.org/p6/opcodes/CMOV.html
http://www.rcollins.org/p6/opcodes/CMOV.html
https://github.com/jgarzik/picocoin
https://github.com/jgarzik/picocoin
https://www.r3.com/
https://ripple.com/
https://bitnodes.earn.com/
https://blockchain.info
https://statoshi.info

[15] ANDROULAKI, E., BARGER, A., BORTNIKOV, V., CACHIN,
C., CHRISTIDIS, K., DE CARO, A., ENYEART, D., FER-
RIS, C., LAVENTMAN, G., MANEVICH, Y., ET AL. Hyper-
ledger Fabric: A Distributed Operating System for Permis-
sioned Blockchains. In Proceedings of the 13th EuroSys Con-
ference (2018), ACM.

[16] ANDROULAKI, E., KARAME, G. O., ROESCHLIN, M.,
SCHERER, T., AND CAPKUN, S. Evaluating User Privacy
in Bitcoin. In International Conference on Financial Cryp-
tography and Data Security (2013), Springer.

[17] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH, T.,
MARTIN, A., PRIEBE, C., LIND, J., MUTHUKUMARAN,
D., O’KEEFFE, D., STILLWELL, M., ET AL. SCONE: Se-
cure Linux Containers with Intel SGX. In 11th USENIX
Symposium on Operating Systems Design and Implementa-
tion (USENIX OSDI) (2016).

[18] BLOOM, B. H. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Communications of the ACM 13, 7 (1970),
422–426.

[19] BRASSER, F., CAPKUN, S., DMITRIENKO, A., FRAS-
SETTO, T., KOSTIAINEN, K., MÜLLER, U., AND SADEGHI,
A. DR.SGX: Hardening SGX Enclaves against Cache Attacks
with Data Location Randomization, 2017.

[20] BRASSER, F., MULLER, U., DMITRIENKO, A., KOSTI-
AINEN, K., CAPKUN, S., AND SADEGHI, A.-R. Soft-
ware Grand Exposure: SGX Cache Attacks Are Practical. In
11th USENIX Workshop on Offensive Technologies (WOOT)
(2017).

[21] CHEN, G., CHEN, S., XIAO, Y., ZHANG, Y., LIN, Z., AND

LAI, T. H. SgxPectre Attacks: Leaking Enclave Secrets
via Speculative Execution. Computing Research Repository
(CoRR), arXiv abs/1802.09085 (2018).

[22] CHEN, S., ZHANG, X., REITER, M. K., AND ZHANG, Y.
Detecting Privileged Side-Channel Attacks in Shielded Exe-
cution with Déjá Vu. In Proceedings of the 12th ACM ASIA
Conference on Computer and Communications Security (ASI-
ACCS) (2017).

[23] COSTAN, V., AND DEVADAS, S. Intel SGX explained. In
Cryptology ePrint Archive, Report 2016/086 (2016).

[24] FOR ALTERNATIVE FINANCE, C. C. Global Cryptocurrency
Benchmarking Study, 20187. https://goo.gl/7B99Ev.

[25] GERVAIS, A., CAPKUN, S., KARAME, G., AND GRUBER,
D. On the Privacy Provisions of Bloom Filters in Lightweight
Bitcoin Clients. In Proceedings of the 30th Annual Computer
Security Applications Conference (2014), ACM.

[26] GOLDREICH, O., AND OSTROVSKY, R. Software Protec-
tion and Simulation on Oblivious RAMs. Journal of the ACM
(JACM) 43, 3 (1996), 431–473.

[27] GÖTZFRIED, J., ECKERT, M., SCHINZEL, S., AND

MÜLLER, T. Cache Attacks on Intel SGX. In Proceedings
of the 10th European Workshop on Systems Security (2017),
ACM.

[28] GRUSS, D., LETTNER, J., SCHUSTER, F., OHRIMENKO, O.,
HALLER, I., AND COSTA, M. Strong and Efficient Cache
Side-Channel Protection using Hardware Transactional Mem-
ory. In USENIX Security (2017).

[29] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N.,
CLARKSON, W., PAUL, W., CALANDRINO, J. A., FELD-
MAN, A. J., APPELBAUM, J., AND FELTEN, E. W. Lest We
Remember: Cold-boot Attacks on Encryption Keys. Commu-
nications of the ACM 52, 5 (2009), 91–98.

[30] HEARN, M. Bloom Filter Privacy and Thoughts on a Newer
Protocol, 2015. https://groups.google.com/forum/#!

msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ.

[31] HEARN, M., AND CORALLO, M. Connection Bloom
Filtering. Bitcoin Improvement Proposal 37 (2012).
https://github.com/bitcoin/bips/blob/master/

bip-0037.mediawiki.

[32] INTEL. Intel SGX, Ref. No.: 332680-002, 2015.
https://software.intel.com/sites/default/

files/332680-002.pdf.

[33] INTEL. Intel Software Guard Extensions - Developer Zone
- Details, 2017. https://software.intel.com/en-us/

sgx/details.

[34] KAUER, B. OSLO: Improving the Security of Trusted Com-
puting. In USENIX Security (2007).

[35] KOCHER, P., HORN, J., FOGH, A., , GENKIN, D., GRUSS,
D., HAAS, W., HAMBURG, M., LIPP, M., MANGARD, S.,
PRESCHER, T., SCHWARZ, M., AND YAROM, Y. Spectre
Attacks: Exploiting Speculative Execution. In Proceedings
of the 40th IEEE Symposium on Security and Privacy (SP)
(2019).

[36] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H., AND

PEINADO, M. Inferring fine-grained control flow inside sgx
enclaves with branch shadowing. In USENIX Security (2017).

[37] LIMITED, A. mbedTLS (formerly known as PolarSSL), 2015.
https://tls.mbed.org/.

[38] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T.,
HAAS, W., FOGH, A., HORN, J., MANGARD, S., KOCHER,
P., GENKIN, D., YAROM, Y., AND HAMBURG, M. Melt-
down: Reading Kernel Memory from User Space. In USENIX
Security (2018).

[39] MATETIC, S., AHMED, M., KOSTIAINEN, K., DHAR, A.,
SOMMER, D., GERVAIS, A., JUELS, A., AND CAPKUN,
S. ROTE: Rollback Protection for Trusted Execution. In
USENIX Security (2017).

[40] MATETIC, S., SCHNEIDER, M., MILLER, A., JUELS, A.,
AND CAPKUN, S. DELEGATEE: Brokered Delegation Using
Trusted Execution Environments. In USENIX Security (2018).

[41] MEIKLEJOHN, S., POMAROLE, M., JORDAN, G.,
LEVCHENKO, K., MCCOY, D., VOELKER, G. M.,
AND SAVAGE, S. A Fistful of Bitcoins: Characterizing
Payments among Men with No Names. In Proceedings of
the 2013 conference on Internet Measurement Conference
(2013), ACM.

[42] MISHRA, P., PODDAR, R., CHEN, J., CHIESA, A., AND

POPA, R. A. Oblix: An Efficient Oblivious Search Index.
In Proceedings of the 39th IEEE Symposium on Security and
Privacy (SP) (2018).

https://goo.gl/7B99Ev
https://groups.google.com/forum/#!msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ
https://groups.google.com/forum/#!msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/en-us/sgx/details
https://software.intel.com/en-us/sgx/details
https://tls.mbed.org/

[43] MOGHIMI, A., IRAZOQUI, G., AND EISENBARTH, T.
Cachezoom: How SGX Amplifies the Power of Cache At-
tacks. In International Conference on Cryptographic Hard-
ware and Embedded Systems (2017), Springer.

[44] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash
System, 2008.

[45] OSUNTOKUN, O., AKSELROD, A., AND POSEN, J.
Client Side Block Filtering. Bitcoin Improvement Proposal
157 (2017). https://github.com/bitcoin/bips/blob/
master/bip-0157.mediawiki.

[46] PRIEBE, C., VASWANI, K., AND COSTA, M. EnclaveDB: A
Secure Database using SGX. IEEE.

[47] RANE, A., LIN, C., AND TIWARI, M. Raccoon: Clos-
ing Digital Side-channels Through Obfuscated Execution. In
USENIX Security (2015).

[48] RITZDORF, H., WÜST, K., GERVAIS, A., FELLEY, G.,
ET AL. Tls-n: Non-repudiation over tls enabling ubiquitous
content signing. In Network and Distributed System Security
Symposium (NDSS) (2018).

[49] SASY, S., GORBUNOV, S., AND FLETCHER, C. ZeroTrace:
Oblivious memory primitives from Intel SGX. In NDSS
(2017).

[50] SCHWARZ, M., WEISER, S., GRUSS, D., MAURICE, C.,
AND MANGARD, S. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In International Conference on
Detection of Intrusions and Malware, and Vulnerability As-
sessment (2017), Springer.

[51] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M. T-
SGX: Eradicating Controlled-Channel Attacks Against En-
clave Programs. In NDSS (2017).

[52] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER, C.,
REN, L., YU, X., AND DEVADAS, S. Path ORAM: an ex-
tremely simple oblivious RAM protocol. In Proceedings of
the 20th ACM SIGSAC Conference on Computer and Com-
munications Security (CCS) (2013).

[53] TODD, P. python-bitcoinlib, 2018. https://github.com/

petertodd/python-bitcoinlib.

[54] VAN BULCK, J., MINKIN, M., WEISSE, O., GENKIN, D.,
KASIKCI, B., PIESSENS, F., SILBERSTEIN, M., WENISCH,
T. F., YAROM, Y., AND STRACKX, R. FORESHADOW:
Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security (2018).

[55] VAN DEN HOOFF, J., KAASHOEK, M. F., AND ZELDOVICH,
N. Versum: Verifiable computations over large public logs. In
Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security (2014), ACM, pp. 1304–
1316.

[56] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking SMM
Memory via Intel CPU Cache Poisoning. Invisible Things
Lab (2009).

[57] WUILLE, P. Hierarchical Deterministic Wallets. Bitcoin
Improvement Proposal 32 (2012). https://github.com/

bitcoin/bips/blob/master/bip-0032.mediawiki.

[58] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel
Attacks: Deterministic Side Channels for Untrusted Operat-
ing Systems. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (SP) (2015).

[59] ZHANG, F., CECCHETTI, E., CROMAN, K., JUELS, A., AND

SHI, E. Town Crier: An Authenticated Data Feed for Smart
Contracts. In Proceedings of the 23rd ACM SIGSAC Con-
ference on Computer and Communications Security (CCS)
(2016).

A Intel SGX

Intel’s SGX [23, 32] entails a security enhancement for new
Intel CPUs in form of a TEE for security-critical applications
in commodity PC platforms. The SGX architecture enables
protected applications, called enclaves that are isolated from
software running outside of the enclave. This isolation pro-
tects the integrity and confidentiality of the enclave’s execu-
tion from any malicious software running on the same sys-
tem, including BIOS, OS and hypervisor, or even malicious
peripherals such as compromised network cards [56, 34, 29].
Enclave memory is handled in plaintext only inside the pro-
cessor and is encrypted by the processor whenever it leaves
the CPU (e.g., to DRAM) to ensure that neither the OS nor
malicious hardware can access it.

Even though the OS is untrusted, it is responsible for start-
ing and managing enclaves. To protect the integrity of the ex-
ecution, the CPU securely records all initialization actions to
create a measurement that records the code and initial state
of the enclave. This can be later used by a third party to
verify that the correct code is running on the system sup-
ported by SGX. This process is called remote attestation. A
system service called Quoting Enclave signs the attestation
statement – which contains the mentioned measurements –
for remote verification. Using an online attestation service
run by Intel, the verifier can check that signature. An en-
clave can attach data to the attestation statement, such as a
public key, that it sends to the verifier. This can be used to
establish a secure communication channel to an enclave.

In addition, SGX enables enclaves to store data for per-
sistent storage in an encrypted form through a process called
sealing. The processor provides a sealing key that can only
be accessed by the same enclave running on the same plat-
form, i.e. only the enclave that sealed data can later unseal it.
This provides confidentiality and integrity for the stored data,
but it does not protect from so called rollback attacks [39]
when the enclave is restarted. Finally, enclaves cannot exe-
cute system calls and do not have access to secure peripher-
als. For this reason, software using SGX has to be split into
two parts, a protected enclave and an unprotected component
that runs in normal user space and handles communication
with the OS, i.e. operations concerning networking and file
accesses. For further details, we refer the reader to [23, 32].

https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/petertodd/python-bitcoinlib
https://github.com/petertodd/python-bitcoinlib
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

1 4 2

35

1 4 2

35

2

41

35

3 2stash
leaf number L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

position
map

1 2 3 4 5
L2 L4 L3 L3 L1

1 2 3 4 5
L2 L1 L3 L3 L1

1 2 3 4 5
L1 L2 L3 L3 L1

address

leaf

address

leaf

address

leaf

a) b) c)

Figure 7: a) The client wants to access the chunk 2 that is stored in Path ORAM. b) The position map specifies that the chunk
2 is on the path to leaf 4. Therefore, the server reads all entries on the path into the stash and re-randomizes the position map
entry of the requested chunk. c) The server writes back as many chunks as possible on the previously read path.

B Oblivious RAM

Oblivious RAM (ORAM) [26], is a well-known technique
that hides access patterns to an encrypted storage medium.
A typical ORAM model is one where a trusted client wants
to store sensitive information on an untrusted server. En-
crypting each data record before storing it on the server pro-
vides confidentiality, but access patterns to stored encrypted
records can leak information, such as correlation of multiple
accesses to the same record. The intuition behind the se-
curity definition of ORAM is to prevent the adversary from
learning anything about the access pattern. In ORAM, the
adversary does not learn any information about which data
is being accessed and when, whether the same data is be-
ing repeatedly accessed (i.e., unlinkability), the pattern of
the access itself, and lastly the purpose, type of the access
(i.e., write or read). However, one should note that ORAM
techniques cannot hide access timing.

In this work, we use a popular and simple algorithm called
Path ORAM [52] that provides a good trade-off between
client side storage and bandwidth. The storage is organized
as a binary tree with buckets containing Z chunks each. The

position of each chunk is stored in a position map that maps
a database entry to a leaf in the tree, and for every access the
leaf of the accessed entry is re-randomized. A small amount
of entries is stored in a local (i.e., memory) structure – stash.

Every access involves reading all buckets of a path from
the root to a leaf into the stash and then writing back new
or old re-randomized data from the stash to the same path
resulting in an overhead of O(logN) read/write operations. If
the requested chunk is already in the stash, an entire path still
gets read and written. The summary of ORAM operations is:

(1) get leaf from position map and generate new random leaf
for the database entry. Insert it into the position map, read all
buckets along the path to the leaf and put them into the stash
(2) if access is a write, replace the specified chunk in the
stash with the new chunk
(3) write back some chunks from the stash to the path.
Chunks can only be put into the path if their leaf from the
position map allows it. Chunks are pushed down as far as
possible into the tree to minimize stash capacity.
(4) return requested chunk

	Introduction
	Problem Statement
	Bitcoin Lightweight Clients
	Limitations of Known Solutions
	Requirements

	Our Approach
	System Model
	Adversary Model
	Challenges

	Bite System
	Scanning Window Variant
	Oblivious Database Variant

	Security Analysis
	External Leakage Protection
	Side-channel Protection
	Completeness
	Implications of a Full SGX break

	Performance Evaluation
	Implementation Details
	Performance Results and Comparison

	Discussion
	Related Work
	Conclusion
	Intel SGX
	Oblivious RAM

