
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

PolicyLint: Investigating Internal Privacy Policy
Contradictions on Google Play

Benjamin Andow and Samin Yaseer Mahmud, North Carolina State University; Wenyu
Wang, University of Illinois at Urbana-Champaign; Justin Whitaker, William Enck, and
Bradley Reaves, North Carolina State University; Kapil Singh, IBM T.J. Watson Research

Center; Tao Xie, University of Illinois at Urbana-Champaign

https://www.usenix.org/conference/usenixsecurity19/presentation/andow

PolicyLint: Investigating Internal Privacy Policy Contradictions on Google Play

Benjamin Andow?, Samin Yaseer Mahmud?, Wenyu Wang†, Justin Whitaker?

William Enck?, Bradley Reaves?, Kapil Singh‡, Tao Xie†

?North Carolina State University
†University of Illinois at Urbana-Champaign

‡IBM T.J. Watson Research Center

Abstract
Privacy policies are the primary mechanism by which compa-
nies inform users about data collection and sharing practices.
To help users better understand these long and complex legal
documents, recent research has proposed tools that summarize
collection and sharing. However, these tools have a signifi-
cant oversight: they do not account for contradictions that may
occur within an individual policy. In this paper, we present
PolicyLint, a privacy policy analysis tool that identifies such
contradictions by simultaneously considering negation and
varying semantic levels of data objects and entities. To do so,
PolicyLint automatically generates ontologies from a large
corpus of privacy policies and uses sentence-level natural
language processing to capture both positive and negative
statements of data collection and sharing. We use PolicyLint
to analyze the policies of 11,430 apps and find that 14.2% of
these policies contain contradictions that may be indicative
of misleading statements. We manually verify 510 contradic-
tions, identifying concerning trends that include the use of
misleading presentation, attempted redefinition of common
understandings of terms, conflicts in regulatory definitions
(e.g., US and EU), and “laundering” of tracking information
facilitated by sharing or collecting data that can be used to
derive sensitive information. In doing so, PolicyLint signifi-
cantly advances automated analysis of privacy policies.

1 Introduction

Mobile apps collect, manage, and transmit some of the most
sensitive information that exists about users—including pri-
vate communications, fine-grained location, and even health
measurements. These apps regularly transmit this information
to first or third parties [1, 7, 14]. Such data collection/sharing
by an app is often considered (legally) acceptable if it is de-
scribed in the privacy policy for the app. Privacy policies are
sophisticated legal documents that are typically long, vague,
and difficult for novices, experts, and algorithms to interpret.
Accordingly, it is difficult to determine whether app develop-
ers adhere to privacy policies, which can help app markets and

other analysts identify privacy violations, or help end users
choose more-privacy-friendly apps.

Recent work has begun studying whether or not mobile app
behavior matches statements in privacy policies [26,28,29,32].
However, the prior work fails to account for contradictions
within privacy policies; these contradictions may lead to incor-
rect interpretation of sharing and collection practices. Iden-
tifying contradictions requires overcoming two main chal-
lenges. First, privacy policies refer to information at different
semantic granularities. For example, a policy may discuss its
practices using broad terms (e.g., “personal information”) in
one place in the policy, but later discuss its practices using
more specific terms (e.g., “email address”). Prior approaches
have tackled this issue by crowdsourcing data object ontolo-
gies [26, 28],1 but such crowdsourced information is not com-
plete, accurate, or easily collected. Second, prior approaches
have struggled to accurately detect negative statements, re-
lying on bi-grams (e.g., “not share”) [32] or detecting only
verb modifiers [29] while neglecting the more-complicated
statements (e.g., “will share X except Y”) that are common in
privacy policies. Modeling negative statements is required to
determine the correct meaning of a policy statement (i.e., “not
sharing” versus “sharing” information). Fully characterizing
contradictions requires addressing both preceding challenges.

In this paper, we present PolicyLint for automatically iden-
tifying potential contradictions of sharing and collection prac-
tices in software privacy policies. Contradictions make poli-
cies unclear, confusing both humans and any automated sys-
tem that rely on interpreting the policies. Considering these
uses cases, PolicyLint defines two contradiction groupings.
Logical contradictions are contradictory policy statements
that are more likely to cause harm if users and analysts are
not aware of the contradictory statements. One example is
a policy that initially claims not to collect personal informa-
tion, but later in fine print discloses collecting a user’s name
and email address for advertisers. Narrowing definitions may
cause automated techniques that reason over policy statements

1Ontologies are graph data structures that capture relationships among
entities. For example, “personal information” subsumes “your email address.”

USENIX Association 28th USENIX Security Symposium 585

to make incorrect or inconsistent decisions and may result in
vague policies. PolicyLint is the first tool to have the sophis-
tication necessary to reason about both negative sentiments
and statements covering varying levels of specificity, being
necessary for uncovering contradictions.

PolicyLint is inspired by other security lint tools [6, 8–
11, 19], which analyze code for indicators of potential bugs.
Like any static approach, not every lint finding is necessarily
a real bug. For example, potential bug conditions could be
mitigated by an external control or other context that the tool
cannot verify. In many cases, only a human can verify the
outputs of a lint finding. In the case of PolicyLint, we note
that privacy policies are complex legal documents that may be
intentionally vague, ambiguous, or misleading even for human
interpretation. Despite these challenges, PolicyLint condenses
long, complicated policies into a small set of candidate issues
of interest to human or algorithmic analysis.

This paper makes the following main contributions:

• Automated generation of ontologies from privacy
policies. PolicyLint uses an expanded set of Hearst pat-
terns [16] to extract ontologies for both data objects and
entities from a large corpus of privacy policies (e.g., “W
such as X, Y, and Z”). PolicyLint is more comprehensive
and scalable than crowdsourced efforts [26, 28].

• Automated sentence-level extraction of privacy prac-
tices. PolicyLint uses sentence-level NLP and leverages
parts-of-speech and type-dependency information to cap-
ture data collection and sharing as a four-tuple: (actor,
action, data object, entity). For example, “We [actor]
share [action] personal information [data object] with
advertisers [entity].” Sentence-level NLP is critically
important for the correct identification of negative state-
ments. We also show that prior attempts at analyzing
negation would fail on 28.2% of policies.

• Automated analysis of contradictions in privacy poli-
cies. We formally model nine types of contradictions that
result from semantic relationships between terms, pro-
viding an algorithmic technique to detect contradictory
policy statements. Our groupings of narrowing defini-
tions and logical contradictions lay the foundation for
ensuring the soundness of automated policy tools and
identifying potentially misleading policy statements. In
a study of 11,430 privacy policies from mobile apps,
we are the first to find that logical contradictions and
narrowing definitions are rampant, affecting 17.7% of
policies, with logical contradictions affecting 14.2%.

• Manual analysis of contradictions to identify trends.
The high ratio of policy contradictions is surprising. We
manually review 510 contradictions across 260 policies,
finding that many contradictions are indeed indicators of
misleading or problematic policies. These contradictions

App Info

Privacy
Policy

Privacy
Policies

Ontology
Generation

Policy
Extraction

Policy
Statements

p = (actor, action,
data object, entity)

Ontologies
Data Objects

Entities

Contradiction
Analysis

Figure 1: Overview of PolicyLint

include making broad claims to protect personal infor-
mation early in a policy, yet later carving out exceptions
for data that the authors attempt to redefine as not per-
sonal, that could be used to derive sensitive information
(e.g., IP addresses and location), or that are considered
sensitive by some regulators but not others.

PolicyLint has four main potential use cases. First, policy
writers can leverage PolicyLint to reduce the risk of releas-
ing misleading policies. In fact, when we contacted parties
responsible for the contradictory policies, several fixed their
policies (Section 3.4). Second, regulators can use PolicyLint’s
definition of logical contradictions to identify deceptive poli-
cies. While the FTC has identified contradictory statements as
problem areas within privacy policies [3], to our knowledge,
there is no legal precedent regarding whether regulatory agen-
cies would take action as a result of contradictory policies.
However, we believe that some of our findings in Section 3
potentially fall under the FTC’s definition of deceptive prac-
tices [13]. We envision that regulators could deploy PolicyLint
to audit companies’ privacy policies for misleading statements
at large scale. Third, app markets, such as Google Play, can
deploy PolicyLint similarly to ensure that apps posted in the
store do not have misleading statements in their privacy poli-
cies. Furthermore, they can also use PolicyLint’s extraction of
policy statements to automatically generate privacy labels to
display on the markets to nudge users to less-privacy-invasive
apps. Finally, automated techniques for analyzing privacy
policies can use PolicyLint’s fine-grained extraction of policy
statements and formalization of logical contradictions and
narrowing definitions to help ensure tool soundness.

The rest of this paper is organized as follows. Section 2
describes PolicyLint’s design. Section 3 reports on our study
using PolicyLint. Section 4 discusses limitations and future
work. Section 5 describes related work. Section 6 concludes.

2 PolicyLint

PolicyLint seeks to identify contradictions within individ-
ual privacy policies for software. It provides privacy warn-
ings based on contradictory sharing and collection statements
within policies, but similar to lint tools for software, these
warnings require manual verification. PolicyLint identifies

586 28th USENIX Security Symposium USENIX Association

“candidate contradictions” within policies. A candidate contra-
diction is a pair of contradictory policy statements when con-
sidered in the most conservative interpretation (i.e., context-
insensitive). Candidate contradictions that are validated by
analysts are termed as “validated contradictions.” Manual
verification is required due to the fundamental problems of
ambiguity when interpreting the meaning of natural language
sentences (i.e., multiple interpretations of the same sentence).

For example, consider the privacy policy for a popular
recipe app (com.omniluxtrade.allrecipes). One part of the
policy states “We do not collect personally identifiable in-
formation from our users.” It is clear from this sentence that
the app does not collect any personal information. However,
later the policy states, “We may collect your email address
in order to send information, respond to inquiries, and other
requests or questions.” Such sentence is a clear contradiction
to the earlier sentence, as email address is considered personal
information. As discussed in detail in Section 3, the cause for
this underlying contradiction is that the developer does not
consider email address as personal information.

To our knowledge, we are the first to characterize and au-
tomatically analyze contradictions within privacy policies.
While PolicyLint is not the first NLP tool to analyze privacy
policies, identifying contradictions requires addressing two
broad challenges.

• References to information are expressed at different se-
mantic levels. Prior work [26, 28] uses ontologies to
capture subsumptive (i.e., “is-a”) relationships between
terms; however, such ontologies are crowdsourced and
subsumptive relationships are manually defined by the
authors, leaving concerns of comprehensiveness and scal-
ability. For example, prior work [26, 28] builds their on-
tology using only 50 and 30 policies, respectively. While
crowdsourced ontologies could be comprehensive given
unlimited time and manpower, crowdsourcing at large
scale is infeasible due to limited resources. Furthermore,
existing general-purpose ontologies do not capture all
of the specific relationships required to reason over data
types and entities mentioned within privacy policies.

• Privacy policies include negative sharing and collec-
tion statements. Most prior work [26, 28] operates at
paragraph level and cannot capture negative sharing
statements. Prior work [29, 32] that does capture nega-
tive statements misses complex statements (e.g., “will
share personal information except your email address”).
Such prior work extracts coarse-grained summaries of
policy statements (paragraph-level [26, 28], document-
level [32]) and can never precisely model negative state-
ments or the entities involved. Their imprecision may
result in incorrectly reasoning about 28.2% of policies
due to their negation modeling (Finding 1 in Section 3).

We tackle these challenges using two key insights.

Sentence structure informs semantics: Sharing and collec-
tion statements generally follow a learnable set of templates.
PolicyLint uses these templates to extract a four tuple from
such statements: (actor, action, data object, entity). For ex-
ample, “We [actor] share [action] personal information [data
object] with advertisers [entity].” The sentence structure also
provides greater insight into more complex negative sharing.
For example, “We share personal information except your
email address with advertisers.” PolicyLint extracts such se-
mantics from policy statements by building on top of existing
parts-of-speech and dependency parsers.
Privacy policies encode ontologies: Due to the legal nature
of privacy policies, general terms are often defined in terms of
examples or their constituent parts. While each policy might
not define semantic relationships for all of the terms used
in the policy, those relationships should exist in some other
policies in our dataset. By processing a large number of pri-
vacy policies, PolicyLint automatically generates an ontology
specific to policies (one for data objects and one for entities).
PolicyLint extracts term definitions using Hearst patterns [16],
which we have extended for our domain.

Figure 1 depicts the data flow within PolicyLint. There are
three main components of PolicyLint: ontology generation,
policy extraction, and contradiction analysis. The following
sections describe these components. Readers interested in
policy-preprocessing considerations can refer to Appendix A.

2.1 Ontology Generation

The goal of ontology generation is to define subsumptive (“is-
a”) relationships between terms in privacy policies to allow
reasoning over different granularities of language. PolicyLint
operates on the intuition that subsumptive relationships are
often embedded within the text of a privacy policy, e.g., an
example of the types of data considered to be a specific class
of information. The following example identifies that demo-
graphic information subsumes age and gender.

Example 1. We may share demographic information, such
as your age and gender, with advertisers.

PolicyLint uses such sentences to automatically discover sub-
sumptive relationships across a large set of privacy policies.
It focuses on data objects and the entities receiving data.

PolicyLint uses a semi-automated and data-driven tech-
nique for ontology generation. It breaks ontology generation
into three main parts. First, PolicyLint performs domain adap-
tation of an existing model of statistical-based named entity
recognition (NER). NER is used to label data objects and
entities within sentences, capturing not only terms, but also
surrounding context in the sentence. Second, PolicyLint learns
subsumptive relationships for labeled data objects and entities
by using a set of 11 lexicosyntactic patterns with enforced
named-entity label constraints. Third, PolicyLint takes a set

USENIX Association 28th USENIX Security Symposium 587

Table 1: NER Performance: Comparison of spaCy’s stock
en_core_web_lg model versus our adapted domain model

Overall Data Objects Entities
Default Adapted Default Adapted Default Adapted

Precision 43.48% 84.12% - 82.20% 61.22% 86.75%
Recall 8.33% 81.67% - 79.84% 17.75% 85.21%

F1-Score 13.99% 82.88% - 81.00% 27.52% 85.97%

of seed words as input and generates data-object/entity on-
tologies using the subsumptive relationships discovered in
the prior step. It iteratively adds relationships to the ontology
until a fixed point is reached. We next describe this process.

2.1.1 NER Domain Adaptation

To identify subsumptive relationships for data objects and enti-
ties, PolicyLint must identify which sentence tokens represent
a data object or entity. For Example 1, we seek to identify
“demographic information,” “age,” and “gender” as data ob-
jects, and “we” and “advertisers” as entities. PolicyLint uses a
statistical-based technique of named-entity recognition (NER)
to label data objects and entities within sentences. Prior re-
search [26, 28, 29, 32] proposed keyphrase-based techniques
for identifying data objects. However, keyphrase-based tech-
niques are less versatile in practice: they cannot handle term
ambiguity and variability, and they can identify only terms in
their pre-defined list. For example, “internet service provider”
can be both a data object and entity, which keyphrase-based
techniques cannot differentiate. In contrast, statistical-based
NER both resolves ambiguity and discovers “unseen” terms.

Unfortunately, existing NER models are not trained for our
problem domain (data objects and collective terms describing
entities, e.g., “advertisers”). Training an NER model from
scratch is time-consuming due to the large amount of train-
ing data required to achieve reasonable performance. There-
fore, PolicyLint takes an existing NER model and updates
it using annotated training data from our problem domain.
Specifically, PolicyLint adopts spaCy’s NER engine [17],
which uses deep convolutional neural networks. We adapt
the en_core_web_lg model to the privacy policy domain.

To perform domain adaptation, we gather 500 sentences as
training data. Our training data is selected as follows. First, we
randomly select 50 unique sentences from our policy dataset.
Second, for each of the 9 lexicosyntactic patterns described in
Section 2.1.2, we randomly select 50 sentences that contain
the pattern (450 in total). We run the existing NER model on
the training sentences to prevent the model from “forgetting”
old annotations. We then manually annotate the sentences
with data objects and entities.

When updating the existing NER model, we perform mul-
tiple passes over the annotated training data, shuffling at each
epoch, and using minibatch training with a batch size of 4.
To perform the domain adaptation, the current model predicts
the NER labels for each word in the sentence and adjusts the
synaptic weights in the neural network accordingly if the pre-

Table 2: Lexicosyntatic patterns for subsumptive relationships
Pattern

H1 X, such as Y1, Y2, . . . , Yn
H2 such X as Y1, Y2, . . .Yn
H3 X

[
or|and

]
other Y1, Y2, . . .Yn

H4 X, including Y1, Y2, . . .Yn
H5 X, especially Y1, Y2, . . .Yn
H′1 X,

[
e.g.|i.e.

]
, Y1, Y2, . . .Yn

H′2 X (
[
e.g.|i.e.

]
, Y1, Y2, . . .Yn)

H′3 X, for example, Y1, Y2, . . .Yn
H′4 X, which may include Y1, Y2, . . .Yn
∗ H* = Hearst Pattern; H′* = Custom Pattern

diction does not match the annotation. We stop making passes
over the training data when the loss rate begins to converge.
We annotate an additional 100 randomly selected sentences
as holdout data for testing the model. Table 1 shows the NER
model performance before and after domain adaptation for
our holdout dataset. PolicyLint achieves 82.2% and 86.8%
precision for identifying data objects and entities, respectively.

2.1.2 Subsumptive Relationship Extraction

PolicyLint uses a set of 9 lexicosyntactic patterns to discover
subsumptive relationships within sentences, as shown in Ta-
ble 2. The first 5 are Hearst Patterns [16], and the last 4 are
custom deviations based on observations of text in privacy
policies. For each pattern, PolicyLint ensures that named-
entity labels are consistent across the pattern (i.e., PolicyLint
uses Hearst patterns enforcing constraints on named-entity
labels). For example, Example 1 is recognized by the pattern
“X , such as Y1,Y2, · · · ,Yn” where X is a noun, Y1,Y2, · · · ,Yn
are all nouns, and the NER labels for X and each Yi are all
data objects. Note that PolicyLint merges noun phrases before
applying the lexicosyntactic patterns to ease extraction.

Given the set of extracted relationships, PolicyLint normal-
izes the relationships by lemmatizing the text and substituting
terms with their synonym. For example, consider that “blood
sugar levels” is a synonym for “blood glucose level.” Lemma-
tization turns “blood sugar levels” into “blood sugar level,”
and synonym substitution turns it into “blood glucose level.”
To identify synonyms, we output non-terminal (i.e., X value of
the Hearst patterns) data objects and entities in the subsump-
tive relationships. We manually scan through the list and mark
synonyms. We repeat the process with the terminal nodes that
are included after constructing the ontology. We then output
the data objects and entities labeled from all policies and sort
the terms by frequency. We mark synonyms for the most fre-
quent terms by keyword searching for related terms based
on sub-strings and domain knowledge. For example, if “loca-
tion” appears as a frequent term, we output all data objects
that contain the word “location,” read through the list, and
mark synonyms (e.g., “geographic location”). Next, we use
domain knowledge to identify that “latitude and longitude” is
a synonym of “location,” output the terms that contain those
words, and manually identify synonyms.

588 28th USENIX Security Symposium USENIX Association

Table 3: Seed terms used for ontology construction
Ontology Seeds
Data Ontology information, personal information, non-personal

information, information about you, biometric in-
formation, financial information, device sensor in-
formation, government-issue identification infor-
mation, vehicle usage information

Entity Ontology third party

2.1.3 Ontology Construction

PolicyLint generates ontologies by combining the subsump-
tive relationships extracted from policies with a set of seed
terms (Table 3). For each ontology, PolicyLint iterates through
each of the seeds, selecting relationships that contain it. Pol-
icyLint then expands the term list from the relationships in
that iteration. PolicyLint continues iterating over the relation-
ships until no new relationships are added to the ontology.
If there exists any inconsistent relationship where X is sub-
sumed under Y and Y is subsumed under X, PolicyLint uses
the relationship that has a higher frequency (i.e., appearing
in more privacy policies). Once a fixed point is reached, Pol-
icyLint ensures that there is only one root node by creating
connections between any nodes that do not contain inward-
edges with the root of the ontology (i.e., “information” for
the data ontology, and “public” for the entity ontology). Fi-
nally, PolicyLint ensures that no cycles exist in the ontology
by identifying simple cycles in the graph and removing an
edge between nodes to break the cycle. PolicyLint chooses
which edge to remove by finding the edge that appears least
frequently in the subsumptive relationships and ensures that
the destination node has more than one in-edge to ensure that
a new root node is not created.

2.2 Policy Statement Extraction
The goal of policy statement extraction is to extract a concise
representation of a policy statement to allow for automated
reasoning over this statement. We represent data sharing and
collection statements as a tuple (actor, action, data object,
entity) where the actor performs some action (i.e., share, col-
lect, not share, not collect) on the data object, and the entity
represents the entity receiving the data object. For example,
the statement, “We will share your personal information with
advertisers,” can be represented by the tuple of (we, share, per-
sonal information, advertisers). PolicyLint extracts complete
policy statements from privacy policy text by using patterns
of the grammatical structures between data objects, entities,
and verbs that represent sharing or collection (for brevity we
call these verbs SoC verbs). This section describes the steps
in policy statement extraction.

2.2.1 DED Tree Construction

The goal of constructing the data and entity dependency
(DED) trees is to extract a concise representation of the gram-

Table 4: SoC verbs used by PolicyLint
Type Word
Sharing disclose, distribute, exchange, give, provide, rent, report,

sell, send, share, trade, transfer, transmit
Collection access, check, collect, gather, know, obtain, receive,

save, store, use

matical relationships between the data objects, entities, and
SoC verbs (i.e., the verbs that represent sharing or collection).
The main intuition behind constructing these trees is to allow
PolicyLint to infer semantics of the sentence based on the
grammatical relationships between the tokens (i.e., who col-
lects/shares what with whom). The DED tree for a sentence
is derived from the sentence’s dependency-based parse tree.
However, the DED tree removes nodes and paths that are not
relevant to the data objects, entities, or SoC verbs, and per-
forms a set of simplifications to generalize the representation.
The transformation for Example 2 is shown in Figure 2.

Example 2. If you register for our cloud-based services, we
will collect your email address.

To construct DED trees, PolicyLint parses a sentence and
uses its custom-trained NER model to label data objects and
entities within the sentence (Section 2.1). PolicyLint merges
noun phrases and iterates over sentence tokens to label SoC
verbs by ensuring that the PoS (part-of-speech) tag of the to-
ken is a verb and the lemma of the verb is in PolicyLint’s man-
ually curated list of terms (Table 4). PolicyLint also labels the
pronouns, “we,” “I,” “you,” “me,” and “us,” as entities during
this step. PolicyLint then extracts the sentence’s dependency-
based parse tree whose nodes are labeled with the data object,
entity, and SoC verb labels as discussed earlier.
Negated Verbs: PolicyLint identifies negated verbs by check-
ing for negation modifiers in the dependency-based parse tree.
If the verb is negated, PolicyLint labels the node as negative
sentiment. PolicyLint propagates the negative sentiment to de-
scendant verb nodes in three cases. First, if a descendant verb
is part of a conjunctive verb phrase with the negated verb, neg-
ative sentiment is propagated. For example, “We do not sell,
rent, or trade your personal information,” means “not sell,”
“not rent,” and “not trade.” Second, if the descendant verb has
an open clausal complement to the negated verb, negative
sentiment is propagated. For example, “We do not require you
to disclose any personal information,” initially has “require”
marked with negative sentiment. Since “disclose” is an open
clausal complement to “require,” it is marked with negative
sentiment. Third, if the descendant verb is an adverbial clause
modifier to the negated verb, negative sentiment is propagated.
For example, “We do not collect your information to share
with advertisers,” initially has “collect” marked with negative
sentiment. Since “share” is an adverbial clause modifier to
“collect,” “share” is marked with negative sentiment.
Exception Clauses: PolicyLint identifies exception clauses
by traversing the parse tree and finding terms that represent
exceptions to a prior statement, such as “except,” “unless,”

USENIX Association 28th USENIX Security Symposium 589

advcl

mark
nsubj p rep

nsubjpobj
aux

collect
VERB

COLLECT

we
PRON
ENTITY

your email address
NOUN

DATA_OBJECT

will
VERB
NONE

register
VERB
NONE

if
ADP
NONE

you
PRON
ENTITY

for
ABP
NONE

our cloud-based services
NOUN
ENTITY

dobj nsubj

collect
VERB

COLLECT

we
PRON
ENTITY

your email address
NOUN

DATA_OBJECT

dobj

Figure 2: Transformation of Example 2 from its dependency-based parse tree to its DED tree.

“aside/apart from,” “with the exception of,” “besides,” “with-
out,” and “not including.” For each identified exception clause,
PolicyLint traverses down the parse tree from the exception
clause to identify verb phrases (subject-verb-object) and noun
phrases related to that exception. PolicyLint then traverses
upward from the exception term to identify the nearest verb
node and appends as a node attribute the list of noun phrases
and verb phrases identified in the downward traversal.

In certain cases, the term may not have a subtree. For ex-
ample, the exception term may be a marker that introduces a
subordinate clause. In the sentence, “We will not share your
personal information unless consent is given,” the term “un-
less” is a marker that introduces the subordinate clause “your
consent is given.” For empty sub-trees, PolicyLint attempts
the downward traversal from its parent node.

DED Tree construction: Finally, PolicyLint constructs the
DED tree by computing the paths between labeled nodes on
the dependency-based parse tree, copying labels and attributes
described above. Note that PolicyLint also copies over all
unlabeled subjects and direct objects from the parse tree, as
they are needed to extract the information. PolicyLint further
simplifies the tree by merging conjuncts of SoC verbs into
one node if the coordinating conjunction is “and” or “or.”
For example, “We will not sell, rent, or trade your personal
information,” can be simplified by collapsing “sell,” “rent,”
and “trade” into one node. The resulting node’s label is a
union of all of the tags of the merged verbs (i.e., {share} +
{collect} = {share, collect}. Similarly, PolicyLint repeats the
same process for conjuncts of data objects and entities.

PolicyLint then prunes the DED tree by iterating through
the nodes labeled as verbs in the graph and performing the
following process. First, for a verb node labeled as an SoC
verb, PolicyLint ensures that its sub-tree contains at least one
other node labeled as an SoC verb, data object, or entity. If
the node’s sub-tree does not meet this condition, PolicyLint
removes the subtree rooted at the node labeled as an SoC verb.
Second, for verb nodes not labeled as SoC verbs, PolicyLint
ensures that at least one SoC verb is contained in its sub-tree
and that it meets the preceding conditions for an SoC verb.
Similarly, if these conditions are not met, PolicyLint also
removes the sub-tree rooted at that non-labeled verb node.
For example, this pruning step causes the sub-tree rooted at
the verb “register” to be removed in Figure 2.

2.2.2 SoC Sentence Identification

To identify sentences that describe sharing and collection prac-
tices, PolicyLint takes a set of positive examples of sentences
as input and then extracts their DED trees to use as known
patterns for sharing and collection phrases. In particular, we
start by feeding PolicyLint a set of 560 example sentences
that describe sharing and collect practices. PolicyLint gener-
ates the DED trees from these sentences and learns 82 unique
patterns. The example sentences are auto-generated from a set
of 16 sentence templates (Appendix B). We choose to auto-
generate the sentences, because it is challenging to manually
select a set of sentences with diverse grammatical structures.
Our auto-generation does not adversely impact PolicyLint’s
extensibility, as adding a new pattern is as simple as feeding
PolicyLint a new sentence for reflecting this new pattern.

PolicyLint iterates through each sentence of a given privacy
policy. If the sentence contains at least one SoC verb and data
object (labeled by NER), PolicyLint constructs the DED tree.
PolicyLint then compares the sentence’s DED tree to the DED
tree of each known pattern. A pattern is matched if (1) the
label types of the sentence’s DED tree are equivalent to the
ones of the known pattern’s DED tree (e.g., {entity, SoC_verb,
data}), and (2) the known pattern’s DED tree is a subtree of
the sentence’s DED tree.

For a tree t1 to be a subtree of tree t2, (1) the tree structure
must be equivalent, (2) the dependency labels on edges be-
tween nodes must match, and (3) the following three node
conditions must hold. First, for SoC verb nodes to match,
they must have a common lemma. For example, a node with
the lemmas {sell, rent} matches a node with lemma {rent}.
Second, if the node’s part-of-speech is an apposition, the tags,
dependency label, and lemmas must be equal. Third, for all
other nodes, the tags and dependencies must be equal.

On sub-tree match, PolicyLint records the nodes in the
sub-tree match and continues the process until either (1) each
pattern is checked, or (2) the entire DED tree has been covered
by prior sub-tree matches. If at least one sub-tree match is
found, PolicyLint identifies the sentence as a potential SoC
sentence and begins extracting the policy statement tuple.

2.2.3 Policy Extraction

The goal of policy extraction is to transform the DED tree into
a (actor, action, data object, entity) tuple for a policy state-

590 28th USENIX Security Symposium USENIX Association

ment. PolicyLint performs extraction starting with the SoC
nodes present in the sub-tree matches. If multiple SoC nodes
exist in the sub-tree matches, multiple tuples are generated.
However, multiple sub-tree matches over the same SoC node
result in the generation of only one tuple. The SoC determines
the action (e.g., collect, not_collect). The action’s sentiment is
determined based on whether the node is labeled with positive
or negative sentiment, as discussed in Section 2.2.1.
Actor Extraction: To extract the actor, PolicyLint starts from
the matching SoC verb node. The actor is a labeled entity
chosen from the (1) subject, (2) prepositional object, or (3)
direct object (in that order). However, if the dependency is an
open clausal complement or adverbial clause modifier, Pol-
icyLint prioritizes the direct object and prepositional object
over the subject. For example, “We do not require you to dis-
close any personal information,” has “disclose” as an open
clausal complement to “require.” In this case, the correct actor
of this policy statement is the user (i.e., “you”) rather than the
vendor (i.e., “we”), which is correctly captured due to Poli-
cyLint’s dependency-based prioritization rules. If no match is
found, PolicyLint traverses up one level in the DED tree and
repeats. Finally, if no match is found, PolicyLint assumes that
the actor is the implicit first party.
Data Object Extraction: To extract the data objects, Poli-
cyLint starts from the matching SoC verb node. It traverses
down the DED tree to extract all nodes labeled as data objects.
The traversal continues until another SoC verb is reached. If
no data objects are found, and the verb’s subject and direct
object are not labeled as a data object, PolicyLint extracts the
data objects from the nearest ancestor SoC verb.
Entity Extraction: To extract the entities, PolicyLint starts
from the matching SoC verb node. It traverses down the DED
tree extracting all nodes labeled as entities that are not actors.
The traversal continues until another SoC verb is reached.
Exception Clauses: PolicyLint considers exception clauses
if the verb is marked with negative sentiment (e.g., not col-
lect, not share), creating a cloned policy statement with the
sentiment to change. We do not handle exception clauses for
positive sentiment. For example, “We might also share per-
sonal information without your consent to carry out your own
requests,” still shares personal information.

For negative sentiment verbs, there are three cases. First,
if the exception clause’s node attribute contains only data
objects, PolicyLint replaces the data objects of the new policy
with the data objects under the exception clause. For exam-
ple, “We will not collect your personal information except
for your name and phone number,” produces policies: (we,
not_collect, personal information, NULL), (we, collect, [name,
phone number], NULL). Second, if all noun phrases have an
entity label, PolicyLint replaces the entities of the new policies
with the entities under the exception attribute. For example,
“We do not share your demographics with advertisers except
for AdMob,” produces policies: (we, not_share, demographics,
advertisers) and (we, share, demographics, AdMob). Third, if

the labels are not data objects or entities, PolicyLint removes
the initial policy statement. For example, “We will not collect
your personal information without your consent,” produces
the policy: (we, collect, personal information, NULL).
Policy Expansion: PolicyLint may extract multiple actors,
actions, data objects, and entities when creating policy state-
ments. These complex tuples are expanded. For example,
([we], [share, sell], [location, age], [Google, Facebook]) is ex-
panded to (we, share, location, Google), (we, share, location,
Facebook), (we, share, age, Google), etc.

2.3 Policy Contradictions
PolicyLint’s components of ontology generation and policy
extraction identify the sharing and collection statements in
privacy policies. This section formally defines a logic for
characterizing different contradictions. It then describes how
PolicyLint uses this logic to identify candidate contradictions
within privacy policies. We note that contradictions may oc-
cur between an app’s privacy policy and the privacy policies
of third-party libraries (e.g., advertisement libraries). While
our study focuses specifically on contradictions within an
individual privacy policy, the formal logic and subsequent
analysis tools may also be used to include the privacy policies
for third-party libraries with minimal modification.

2.3.1 Policy Simplification

PolicyLint simplifies policy statements for contradiction anal-
ysis. We refer to the (actor, action, data object, entity) tuple
defined in Section 2.2 as a Complete Policy Statement (CPS).
We simplify CPS statements about the sharing of data (i.e.,
action is share or not share) by capturing sharing as collection.

Definition 1 (Simplified Policy Statement: SPS). An SPS is
a tuple, p = (e,c,d), where d is the data object discussed by
the statement, c ∈ {collect,not_collect} represents whether
the object is collected or not collected, and e is the entity
receiving the data object.

To transform a CPS into an SPS, we leverage three main
insights. First, policies do not typically disclose whether the
sharing of the data occurs at the client side or server side.
Therefore, an actor sharing a data object with an entity may
imply that the actor is collecting the data and performing
the data sharing at the server side. In this case, a new policy
statement would need to be generated for allowing the actor
to collect the data object (Rule T1, Table 5). Second, a data
object being shared with an entity may imply that the entity is
collecting the information from the mobile device (Rule T2,
Table 5). Similarly, a policy for stating that the actor does not
share a data object with an entity implies that the entity is not
collecting the data from the mobile device (Rule T3, Table 5).
Finally, a policy for stating that the actor does not share a data
object implies that the actor collects the data object, because

USENIX Association 28th USENIX Security Symposium 591

Table 5: Rules that transform a CPS into an SPS
Rule Transformation Rules Rationale
T1 (actor, share, data object, entity) =⇒ (actor, collect, data object) Unknown whether sharing occurs at the client side or server side
T2 (actor, share, data object, entity) =⇒ (entity, collect, data object) Can observe only client-side behaviors
T3 (actor, not_share, data object, entity) =⇒ (entity, not_collect, data object) Can observe only client-side behaviors
T4 (actor, not_share, data object, entity) =⇒ (actor, collect, data object) If mention not share, assume implicit collection

the policy would likely have not mentioned not sharing data
that was never collected (Rule T4, Table 5).

However, there are two special cases. First, PolicyLint
treats only verb lemmas “save” and “store” with positive
sentiment (“not saving/storing” does not mean “not collect-
ing”). Second, PolicyLint ignores negative statements with
verb lemma “use.” This case leads to false positives, as Poli-
cyLint does not extract the collection purpose. For example,
“We do not use your location for advertising,” means that it is
not collected for the specific purpose of advertising.

2.3.2 Contradiction Types

We model an app’s privacy policy as a set of simplified policy
statements P. Let D represent the total set of data objects
and E represent the total set of entities, as represented by
ontologies for data objects and entities, respectively. A policy
statement p ∈ P is a tuple, p = (e,c,d) where d ∈ D, e ∈ E,
and c ∈ {collect,not_collect} (Definition 1).

Language describing policy statements may use different
semantic granularities. One policy statement may speak in
generalizations over data objects and entities while another
statement may discuss specific types. For example, consider
the policies p1 =(advertiser, not_collect, demographics) and
p2 = (Google Admob, collect, age). If we want to identify
contradictions, we need to know that Google AdMob is an
advertiser and age is demographic information. These relation-
ships are commonly referred to as subsumptive relationships
where a more specific term is subsumed under a more general
term (e.g., AdMob is subsumed under advertisers and age is
subsumed under demographics).

We use the following notation to describe binary relation-
ships between terms representing data objects and entities.

Definition 2 (Semantic Equivalence). Let x and y be terms
partially ordered by an ontology o. x ≡o y is true if x and y
are synonyms, defined with respect to an ontology o.

Definition 3 (Subsumptive Relationship). Let x and y be
terms partially ordered by “is-a” relationships in an ontology
o. x @o y is true if term x is subsumed under the term y such
that x 6≡o y. Similarly, xvo y =⇒ x @o y ∨ x≡o y.

Note that Definitions 2-3 parameterize the operators with
an ontology o. PolicyLint operates on two ontologies: data
objects and entities. Therefore, the following discussion pa-
rameterizes the operators with δ for the data object ontology
and ε for the entity ontology. For example, x≡δ y and x≡ε y.

A contradiction occurs if two policy statements suggest that
entities both may and may not collect or share a data object.

Table 6: Contradictions (C) and Narrowing Definitions (N)
P = {(ei,collect,dk),(e j,not_collect,dl)}

Rule Logic Example
C1 ei ≡ε e j ∧ dk ≡δ dl (companyX, collect, email address)

(companyX, not_collect, email address)
C2 ei ≡ε e j ∧ dk @δ dl (companyX, collect, email address)

(companyX, not_collect, personal info)
C3 ei @ε e j ∧ dk ≡δ dl (companyX, collect, email address)

(advertiser, not_collect, email address)
C4 ei @ε e j ∧ dk @δ dl (companyX, collect, email address)

(advertiser, not_collect, personal info)
C5 ei Aε e j ∧ dk @δ dl (advertiser, collect, email address)

(companyX, not_collect, personal info)

N1 ei ≡ε e j ∧ dk Aδ dl (companyX, collect, personal info)
(companyX, not_collect, email address)

N2 ei @ε e j ∧ dk Aδ dl (companyX, collect, personal info)
(advertiser, not_collect, email address)

N3 ei Aε e j ∧ dk ≡δ dl (advertiser, collect, email address)
(companyX, not_collect, email address)

N4 ei Aε e j ∧ dk Aδ dl (advertiser, collect, personal info)
(companyX, not_collect, email address)

Contradictions can occur at the same or different semantic
levels. For example, the simplest form of contradiction is an
exact contradiction where a policy states that an entity will
both collect and not collect the same data object, e.g., (adver-
tiser, collect, age) and (advertiser, not_collect, age). Due to
subsumptive relationships (Definitions 3), there are 3 relation-
ships between terms (x≡o y, x @o y, and x Ao y). Each binary
relationship applies to both entities and data objects. Thus,
there are 32 = 9 types of contradictions, as shown in Table 6.

Contradictions have two primary impacts when privacy
policies are analyzed. First, all contradictions impact analysis
techniques that seek to automatically reason over policies
and may result in these techniques making incorrect or in-
consistent decisions. For example, unlike firewall rules that
have a specific evaluation sequence, privacy policy statements
do not have a specific pre-defined sequence of evaluation.
Therefore, analysis techniques may make incorrect or incon-
sistent decisions based on the order in which they evaluate
policy statements. Second, contradictions may impact a hu-
man analyst’s understanding of a privacy policy, such as by
containing misleading statements. We define two groupings
of contradictions based on whether they may impact a hu-
man’s comprehension of privacy policies or solely impact
automated analysis.
Logical Contradictions (C1−5): Logical contradictions are
contradictory policy statements that are more likely to cause
harm if users and analysts are not aware of the contradic-
tory statements. Logical contradictions may cause difficulties
when humans attempt to comprehend or interpret the sharing

592 28th USENIX Security Symposium USENIX Association

Table 7: First Party Synonyms
First Party Synonyms

we, I, us, me, our app, our mobile application, our mobile app, our appli-
cation, our service, our website, our web site, our site
app, mobile application, mobile app, application, service, company, busi-
ness, web site, website, site

and collection practices discussed in the policy. They can be
characterized as either exact contradictions (C1) or those that
discuss not collecting broad types of data and later discuss
collecting exact or more specific types (C2−5). One example
is a policy that initially claims not to collect personal infor-
mation, but later in fine print discloses collecting a user’s
name and email address for advertisers. Similar to the goal of
software lint tools, PolicyLint flags logical contradictions
as problems within policies to allow a human analyst to man-
ually inspect the statements and analyze intent. As shown in
Section 3, these contradictions may lead to the identification
of intentionally deceptive policy statements or those that may
result in ambiguous interpretations.
Narrowing Definitions (N1−4): Narrowing definitions are
contradictory policy statements where broad information is
stated to be collected, and specific data types are stated not to
be collected. These statements narrow the scope of the types
of data that are collected, such as stating that personal infor-
mation is collected while your name is not collected. Note
that narrowing definitions are not necessarily an undesirable
property of policies, because saying that a broad data type
is collected does not necessarily imply that every specific
subtype is collected, but narrowing definitions may result in
vague policies. There may be clearer ways for policy writers
to convey this information, such as explicitly stating the exact
data types collected and shared. For example, if the app col-
lects your email address, the policy could directly state, “We
collect your email address,” instead of including a narrowing
definition, such as “We collect personal information. We do
not collect your name.” However, policies that narrow the
scope of their data sharing and collection practices can be
seen as more desirable in contrast to policies that just disclose
practices over broad categories of data. Nonetheless, narrow-
ing definitions impact the logic behind analysis techniques, as
they must consider prioritization of data objects and entities.

2.3.3 Contradiction Identification

PolicyLint uses the contradiction types from Table 6 to deter-
mine a set of candidate contradictions. It then uses a set of
heuristics to reduce the set of candidate contradictions that
are potentially low-quality indicators of underlying problems.
Next, PolicyLint prepares the contradictions for presentation
by collapsing duplicate contradictions, linking other metadata
(e.g., download counts of apps), and by using a set of filter-
ing heuristics to allow the regulator or privacy analysts to
focus on specific subclasses of candidate contradictions. The
remainder of this section describes this process.

Initial Candidate Set Selection: Given policy statements p1
and p2, PolicyLint ensures that p1.c does not equal p2.c, as
contradictions require opposing sentiments. PolicyLint then
compares entities p1.e and p2.e, determining whether they
are equal or have a subsumptive relationship. A subsumptive
relationship occurs if there is a path between the entities in the
entity ontology. When comparing entities, PolicyLint treats
the terms in Table 7 as synonyms for the first party (i.e., “we”).
If an entity match is found, PolicyLint then performs the same
steps for data objects p1.d and p2.d using the data object
ontology. If a data object match is found, PolicyLint adds
the candidate contradiction to the candidate set. Note that in
policy statements PolicyLint ignores entities and data objects
that are not contained in the ontologies, as it cannot reason
about those relationships. However, if PolicyLint cannot find a
direct match for a term in the ontologies, it will try to find sub-
matches by splitting the term on the coordinating conjunction
terms (e.g., “and,” “or”) and checking for their existence in the
ontologies. Furthermore, PolicyLint does not identify policy
statements as contradictions if they are generated from the
same sentence due to the semantics of exception clauses. For
example, “We do not collect your personal information except
for your name,” produces simplified policy statements (we,
not_collect, personal information) and (we, collect, name).
While the semantics of this statement is clear, our definition
of contradictions would incorrectly identify these statements
as a C2 contradiction. Therefore, PolicyLint ignores same-
sentence contradictions to reduce false positives.
Candidate Set Reduction: PolicyLint uses heuristics to
prune candidate contradictions that are likely low-quality
indicators of underlying problems. PolicyLint removes con-
tradictions that occur based on potentially poor relationships
discovered in the ontologies. For example, PolicyLint filters
out contradictions that occur between certain data object pairs,
such as “usage information” and “personal information.” Con-
tradictions whose entities refer to the user (e.g., “user,” “cus-
tomer,” “child”) or involve terms for general data objects (e.g.,
“information,” “content”) or entities (e.g., “individual,” “pub-
lic”) are also removed. Finally, PolicyLint removes candidate
contradictions where a negative-sentiment policy statement
may be conditioned with age restrictions or based on user
choice by searching for common phrases in the sentences that
are used to generate the policy statements (e.g., “under the
age of,” “from children,” “you do not need to provide”). Note
that some of these reductions may occur during candidate set
construction to reduce complexity of the analysis.
Candidate Set Filtering: PolicyLint further filters the set of
candidate contradictions into subsets based on the data objects
involved in the contradictions to allow for targeted exploration
during verification. For example, all of the contradictions
with statements involving collecting email address but not
collecting personal information are placed into one subset
(e.g., (*, collect, email address) and (*, not_collect, PII)).
Contradiction Validation: Given the filtered subsets of can-

USENIX Association 28th USENIX Security Symposium 593

didate contradictions, the next step is to explore certain sub-
sets and validate candidate contradictions. To validate a candi-
date contradiction, the analyst reads through the policy state-
ments and sentences that are used to generate them in context
of the entire policy, and makes a decision.

3 Privacy Study

Our primary motivation for creating PolicyLint is to analyze
contradictory policy statements within privacy policies. In
this section, we use PolicyLint to perform a large-scale study
on 11,430 privacy policies from top Android apps.
Dataset Collection: To select our dataset, we scrape Google
Play for the privacy policy links of the top 500 free apps
for each of Google Play’s 35 app categories in September
2017. Note that the “top free apps” are based on the ranking
provided by Google Play (“topselling_free” collection per app
category). We download the HTML privacy policies using the
Selenium WebDriver in a headless Google Chrome browser to
allow for the execution of dynamic content (e.g., JavaScript).
We exclude apps that do not have a privacy policy link on
Google Play, those whose pages are unreachable at the time
of collection, and privacy policies where the majority of the
document is not English, as discussed in Appendix A. We
convert the HTML policies to plaintext documents. Our final
dataset consists of 11,430 privacy policies.

3.1 General Policy Characteristics
PolicyLint extract sharing and collection policy statements
from 91% of the policies in our dataset (10,397/11,430). From
those policies, PolicyLint extract 438,667 policy statements
from 177,169 sentences that PolicyLint identifies as a sharing
or collection sentence. Of those policy statements, 32,876
have negative sentiment and 405,789 have positive senti-
ment. In particular, 60.5% (6,912/11,430) of the policies have
at least one negative-sentiment policy statement and 89.6%
(10,239/11,430) of the policies have at least one positive sen-
timent policy statement. We explore why PolicyLint does not
extract policy statements for 9% of the policies by analyzing
a random subset of 100 policies and find that it is mainly due
to dataset collection or preprocessing errors (Appendix C).
Finding 1: Policies frequently contain negative sentiment
policy statements that discuss broad categories of data. For
60.5% of the policies with at least one negative sentiment pol-
icy statement, the data object “personal information” appears
in 67.7% of those policies (4,681/6,912). This result demon-
strates the importance of handling negative policy statements,
as around 41.0% of the policies contain a negative sentiment
policy statement for claiming that a broad type of data (i.e.,
“personal information”) is not collected. Further, we measure
the distance from the negation (i.e., “not”) to the verb that
the negation modifies, and find that 28.2% (3,234/11,430) of
the policies have a distance greater than one word away. This

0 5 10 15 20 25 30 35 40 45 50 55
Number of Unique Contradictory Statements

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e

R
at

io
 o

f
Po

lic
ie

s w
ith

 a
 C

on
tr

ad
ic

tio
n

Logical Contradictions (C1 − 5)
Narrowing Definitions (N1 − 4)
ALL (C1 − 5 or N1 − 4)

Figure 3: CDF of Contradictory Policy Statements: 50% of
contradictory policies have 2 or fewer logical contradictions.

result calls into question prior approaches [26,28] that assume
only positive sentiment when considering sharing and collec-
tion statements, as the prior approaches could be incorrect
up to 60.5% of the time when reasoning over sharing and
collection statements. Further, approaches [32] that handle
negations using bigrams would have failed to reason about
28.2% of the policies.

3.2 Candidate Contradictions
Based on PolicyLint’s fine-grained policy statement extrac-
tion, we find that 59.1% (6,754/11,430) of the policies are
candidates for contradiction analysis, as they contain at least
one positive and one negative sentiment policy statements.
Among these policies, there are 13,871 and 129,575 policy
statements with negative and positive sentiment, respectively.
Finding 2: For candidate contradictions, 14.2% of the pri-
vacy policies contain logical contradictions (C1−5). Poli-
cyLint identifies 9,906 logical contradictions across around
14.2% (1,618/11,430) of the policies. Therefore, 14.2% of
the policies may contain potentially misleading statements.
Figure 3 shows that around three-fifths (59.2%) of the poli-
cies with at least one logical contradiction have 2 or fewer
unique contradictions. The relatively low number of candi-
date contradictions per policy indicates that manual validation
is feasible. As roughly 6 in 7 policies are not contradictory,
writing policies without logical contradictions is possible.
Finding 3: Contradiction prevalence and frequency do not
substantially vary across Google Play app categories. Fig-
ure 4a shows the ratio of policies containing candidate con-
tradictions per each Google Play category. The categories
with policies most and least prone to contradiction are Beauty
and Events, respectively. However, when analyzing the poli-
cies within those categories, we find that their means are
skewed by contradictory policies for apps by the same de-
veloper. When we recompute the means without the outliers,
these categories follow the general trend. Policies with logical
contradictions accompany 7.3% to 20.9% of apps across all
categories. We find that policies with logical contradictions
are not substantially more prevalent in particular categories
of apps, but instead occur consistently in apps from every
category. We also find that prevalence of logical contradiction

594 28th USENIX Security Symposium USENIX Association

Gam
e (

43
2)

Foo
d &

 D
rin

k (3
68

)

New
s &

 M
ag

az
ines

(34
1)

Auto
& V

eh
icl

es
(27

4)

Dati
ng (

27
9)

Hea
lth

 &
 Fitn

ess
 (3

69
)

Life
sty

le
(39

4)

Fam
ily

 (4
84

)

Finan
ce

(39
9)

Soc
ial

 (3
25

)

W
ea

ther
(31

7)

Enter
tai

nmen
t (3

11
)

Educa
tio

n (3
61

)

Pers
on

ali
za

tio
n (3

63
)

Spor
ts

(35
0)

Andro
id W

ea
r (

36
7)

Shop
ping (

39
2)

Com
ics

 (2
15

)

M
usic

 &
 A

udio
(36

1)

Libra
rie

s &
 D

em
o (

19
1)

M
ed

ica
l (3

55
)

Video
 Play

ers
 (3

17
)

Busin
ess

 (4
16

)

Too
ls (

37
2)

Bea
uty

(28
5)

M
ap

s &
 N

av
iga

tio
n (3

21
)

Photo
gr

ap
hy (

37
0)

Art
& D

esi
gn

 (2
70

)

Pro
ducti

vit
y (

39
0)

Hou
se

& H
om

e (
25

5)

Tra
ve

l &
 Loc

al
(37

3)

Com
munica

tio
n (3

87
)

Par
en

tin
g (

25
2)

Boo
ks &

 R
efe

ren
ce

(21
6)

Eve
nts

(28
7)

Application Category (# of Policies)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
R

at
io

 o
f

C
on

tr
ad

ic
to

ry
 P

ol
ic

ie
s

Narrowing Definitions (N1 − 4) Logical Contradictions (C1 − 5)

(a) Ratio of Contradictory Policies per Category: 79.7% of contradictory policies have at least one or more logical
contradictions (C1−5) that may indicate potentially deceptive statements.

Gam
e (

43
2)

Foo
d &

 D
rin

k (3
68

)

New
s &

 M
ag

az
ines

(34
1)

Auto
& V

eh
icl

es
(27

4)

Dati
ng (

27
9)

Hea
lth

 &
 Fitn

ess
 (3

69
)

Life
sty

le
(39

4)

Fam
ily

 (4
84

)

Finan
ce

(39
9)

Soc
ial

 (3
25

)

W
ea

ther
(31

7)

Enter
tai

nmen
t (3

11
)

Educa
tio

n (3
61

)

Pers
on

ali
za

tio
n (3

63
)

Spor
ts

(35
0)

Andro
id W

ea
r (

36
7)

Shop
ping (

39
2)

Com
ics

 (2
15

)

M
usic

 &
 A

udio
(36

1)

Libra
rie

s &
 D

em
o (

19
1)

M
ed

ica
l (3

55
)

Video
 Play

ers
 (3

17
)

Busin
ess

 (4
16

)

Too
ls (

37
2)

Bea
uty

(28
5)

M
ap

s &
 N

av
iga

tio
n (3

21
)

Photo
gr

ap
hy (

37
0)

Art
& D

esi
gn

 (2
70

)

Pro
ducti

vit
y (

39
0)

Hou
se

& H
om

e (
25

5)

Tra
ve

l &
 Loc

al
(37

3)

Com
munica

tio
n (3

87
)

Par
en

tin
g (

25
2)

Boo
ks &

 R
efe

ren
ce

(21
6)

Eve
nts

(28
7)

Application Category (# of Policies)

0

1

2

3

4

5

6

7

A
vg

. C
on

tr
ad

ic
tio

ns
Pe

r
C

on
tr

ad
ic

to
ry

 P
ol

ic
y

N4 N3 N2 N1 C5 C4 C3 C2 C1

(b) Average number of unique candidate contradictions per category: Logical contradictions (C1−5) and narrowing
definitions (N1−4) are both widely prevalent across Google Play categories.

Figure 4: Distribution of Candidate Contradictions across Google Play Categories.

does not substantially vary by download count as well.
Figure 4b displays the average number of candidate con-

tradictions for policies containing one or more contradictions.
We find that frequency of logical contradiction for contradic-
tory policies does not substantially vary across Google Play
categories. Initial analysis indicates that contradictory poli-
cies for apps in the Games category contain around 4.9 logical
contradictions on average. Further analysis reveals that this
result is due to policies with 19 unique logical contradictions
in 9 apps produced by the same developer, and one app that
has 31 unique logical contradictions. Excluding these outliers
brings the category’s average to 3.16 logical contradictions
per app, fitting the trend of the rest of the categories. This
result may indicate that poor policies are linked to problem-
atic developers. Similar analysis on categories Food & Drink,
Auto & Vehicles, and News & Magazines produces similar
results. We find that the number of logical contradictions per
policy is roughly equivalent across app categories, indicating
that one app category is not necessarily more contradictory
on average than another.
Finding 4: Negative sentiment policy statements that discuss
broad categories of data are problematic. Figure 5 shows the

frequency of the most common data-type pairs referred to
in contradictory policy statements. The contradictory policy
statements in the topmost row are most problematic. This
row represents logical contradictions, which are either (1)
exact contradictions or (2) discussion of not collecting broad
types of data and collecting more specific data types (C1−5).
As we demonstrate in Section 3.3, logical contradictions can
lead to a myriad of problems when one interprets the policy
including making interpretation ambiguous in certain cases.
The leftmost column corresponds to narrowing definitions
(N1−4), which solely impact automated analysis techniques,
as discussed in Section 2.3.

Finding 5: For candidate contradictions, 17.7% of the pri-
vacy policies contain at least one or more logical contradic-
tions (C1−5) or narrowing definitions (N1−4). PolicyLint iden-
tifies 17,986 logical contradictions and narrowing definitions
across around 17.7% (2,028/11,430) of the policies. Figure 3
shows that slightly more than half (57.0%) of the contradic-
tory policies have 3 or fewer unique logical contradictions and
narrowing definitions. As discussed in Section 2.3, logical
contradictions and narrowing definitions impact approaches
that seek to automatically reason over privacy policies. To

USENIX Association 28th USENIX Security Symposium 595

Pers
on

al
In

for
mati

on

Email
 A

ddres
s

Geo
gr

ap
hica

l L
oc

ati
on

Non
-P

ers
on

al
In

for
mati

on

Reli
gio

us /
Philo

sop
hica

l B
eli

efs Rac
e

Pers
on

 N
am

e

In
for

mati
on

 A
bou

t Y
ou

Hea
lth

 In
for

mati
on

Pay
men

t C
ar

d In
for

mati
on

IP
 A

ddres
s

Post
al

Addres
s

Dev
ice

 Id
en

tif
ier

Phon
e N

umber

Dev
ice

 In
for

mati
on

Collect

Personal Information

Email Address

Geographical Location

Non-Personal Information

Religious / Philosophical Beliefs

Race

Person Name

Information About You

Health Information

Payment Card Information

IP Address

Postal Address

Device Identifier

Phone Number

Device Information

N
ot

 C
ol

le
ct

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 5: Log 10 Frequency of Data-Type Pairs in Contradic-
tions: Negative statements that discuss broad categories of
data are problematic (i.e., C1−5).

correctly reason over contradictions, analysis techniques must
include logic to prioritize specificity of data types and entities,
and be able to identify potentially undecidable cases, such as
exact contradictions (C1). No prior approaches [26,28,29,32]
that attempt to reason over policies operate at the required
granularity to identify contradictions or contain the logic to
correctly reason over them. Therefore, these prior approaches
could make incorrect or inconsistent decisions around 17.7%
of the time around 1–3 times per policy on average. We per-
form similar analysis across categories as Finding 3 and find
that logical contradictions and narrowing definitions do not
substantially vary across Google Play categories.

3.3 Deeper Findings
In this section, we describe the findings from validating can-
didate contradictions. We limit our scope to logical contradic-
tions (C1−5), as they may be indicative of misleading policy
statements. Due to resource constraints, we do not validate all
9,906 candidate logical contradictions from the 1,618 policies.
Instead, we narrow the scope of our study by choosing cate-
gories of candidate contradictions to focus on. Our selection
and validation methodology is described below.
Selection Methodology: To select the categories of candidate
contradictions to focus on, we analyze Figure 5 for the data
objects involved in the contradictory statements. We limit
our scope to logical contradictions (C1−5) that discuss not
collecting “personal information” and collecting “email ad-
dress,” “device identifier,” or “personal information.” We also
explore two other categories of candidate contradictions in
which one type of data can be derived from the other type;
these categories caught our attention when analyzing the heat
map. Within each category of candidate contradictions, we
choose which candidate contradictions to validate by sorting
the contradictions based on the belonging app’s popularity and

working down the list. We spend around one week validating
contradictions where our cutoffs are due to time constraints
and attempting to achieve coverage across categories.
Validation Methodology: To validate candidate contradic-
tion, one of three student authors reads through the sentences
that are used to generate each policy statement for the candi-
date contradiction to ensure correctness of policy statement
extraction. If there is an error with policy statement extrac-
tion, we record the candidate contradiction as a false positive
and stop analysis. Next, we locate the sentences within the
policy and view the context in which they appear (i.e., sec-
tion, surrounding sentences) to determine whether the policy
statements are contradictory. We try to determine why the
contradiction occurs if possible and record any observations.
If the author is uncertain about his/her decision, a second au-
thor analyzes it. The two authors discuss and resolve conflicts,
with no conflicts left unresolved after discussion.

3.3.1 Personal Information and Email Addresses

For candidate contradictions with negative statements about
“personal information” and with positive statements about
“email address,” we find 618 candidate contradictions across
333 policies (C2, C4, C5) We validate 204 candidate contra-
dictions from 120 policies. We find that 5 candidate contra-
dictions are false positives due to inaccuracies of labeling
data objects by the NER model. From the 199 remaining
candidate contradictions across 118 policies, we have the fol-
lowing main findings. Note that for the findings discussed
below, the terms “personally identifiable information” and
“personal information” are commonly used synonymously in
USA regulations, and “personal data” is considered the EU
equivalent albeit covering a broader range of information.
Finding 6: Policies are stating certain types of common per-
sonally identifiable information, such as email addresses, as
non-personally identifiable. When validating 14 candidate
contradictions, we find 14 policies for explicitly stating that
they do NOT consider email address as personally identifiable
information. 11 of those policies are released by the same
developer (OmniDroid) where the most popular app in the
set (com.omniluxtrade.allrecipes) has over 1M+ downloads.
OmniDroid’s policy explicitly lists email address when defin-
ing non-personally identifiable information. The remaining 3
policies belong to another app developer, PlayToddlers. The
apps are explicitly targeted toward children from 2-8 years
old and have between 500K-1M+ downloads for each app.
Their policy states the following sentence verbatim, “When
the user provides us with an email address to subscribe to the
“PlayNews” mailing list, the user confirms that this address is
not a personal data, nor does it contain any personal data.”

The fact that any privacy policies are declaring email ad-
dresses as non-personal information is surprising, as it goes
against the norms of what data is considered personal infor-
mation as defined by regulations (e.g., CalOPPA, GDPR),

596 28th USENIX Security Symposium USENIX Association

standards bureaus (NIST), and common sense.
Finding 7: Services that auto-generate template-based poli-
cies for app developers are producing contradictory policies.
During our validation process, we notice that many policies
have similar structural compositions and contain a lot of the
same text in paragraphs. When validating 78 candidate contra-
dictions, we find 59 contradictory policies that are automati-
cally generated or used templates. Identical policy statements
from various developers suggest that some policies may be
generated automatically or acquired from a template. We in-
vestigate these cases and identify 59 policies that use 3 unique
templates. We check that these policies are not ones for apps
created by the developers or organization. Findings 8 and
11 discuss the problems caused by the templates. This result
demonstrates that poor policy generators can be a contributing
factor for numerous contradictory policies.
Finding 8: Policies use blanket statements affirming that per-
sonal information is not collected and contradict themselves
by stating that subtypes of personal information are collected,
such as email addresses. When validating 182 candidate con-
tradictions, we find 104 policies for broadly making blanket
statements that personal information is not collected in one
part of the policy and then directly contradicting their prior
statements by disclosing that they collect email addresses. We
find 69 of those policies (127 validated contradictions) for
stating that they do not collect personal information, but later
stating that they collect email addresses for some purpose. Of
those 69 policies, 32 policies define email address as personal
information in one part of their policy. Due to the lack of defi-
nition of what they consider personal information in the other
37 policies, it is unclear whether they do not consider email
address as personal information or are just contradictory.

The same organization (emoji-keyboard.com) produces
20 of those policies that explicitly define email addresses
as personal information, but contradict themselves. The
most popular app in that group has 50M+ downloads
(emoji.keyboard.emoticonkeyboard). The following two sen-
tences are in the policy verbatim: (1) “Since we do not collect
Personal Information, we may not use your personal infor-
mation in any way.”; (2) “For users that opt in to Emoji
Keyboard Cloud, we will collect your email address, basic de-
mographic information and information concerning the words
and phrases that you use (“Language Modeling Data”) to
enable services such as personalization, prediction synchro-
nization and backup.” This case is clearly a contradictory
statement and arguably a misleading practice.

A policy for a particular app with 1M+ downloads
(com.picediting.haircolorchanger) appears to have been po-
tentially trying to mislead users by using bold text to high-
light desirable properties and then contradicting themselves.
For example, the following excerpt is in the policy verba-
tim including the bold typography: “We do not collect any
Personal information but it may be collected in a number of
ways. We may collect certain information that you voluntarily

provide to us which may contain personal information. For
example, we may collect your name, email address you pro-
vide us when you contact us by e-mail or use our services...”
The use of bold typography and general presentation of these
policy statements could potentially be considered as attempt-
ing to deceive the reader, who may not perform a close read
of the text in fine-print. This finding validates PolicyLint’s
value in flagging problematic areas in policies to aid in the
identification of deceptive statements.
Finding 9: Policies consider hashed email addresses as
pseudonymized non-personal information and share it with
advertisers. When validating three candidate contradictions,
we find that two policies discuss sharing hashed email ad-
dresses with third parties, such as advertisers. One candidate
contradiction is a false positive due to misclassifying a sen-
tence discussing opt-out choices as a sharing or collection
sentence. The other policy belongs to an app named Tango
(com.sgiggle.production). Tango is a messaging and video
call app, which has over 100M+ downloads on Google Play
and according to their website has 390M+ users globally.
Their policy states the following sentences verbatim ,“For
example, we may tell our advertisers the number of users our
app receives or share anonymous identifiers (such as device
advertising identifiers or hashed email addresses) with adver-
tisers and business partners.” Tango explicitly states that they
consider hashed email addresses as anonymous identifiers. It
is arguable whether hashing is sufficient for pseudonymiza-
tion as defined by GDPR, as it is likely that advertisers are
using hashed email addresses to identify individuals.

3.3.2 Personal Information and Device Identifiers

For the candidate contradictions with negative statements
about “personal information” and with positive statements
about “device identifiers,” we find 234 candidate contradic-
tions across 155 policies. We investigate this group of candi-
date contradictions as there are differing regulations across
countries on whether device identifiers are considered per-
sonal information. For example, various court cases within
the US (Robinson v. Disney Online, Ellis v. Cartoon Net-
work, Eichenberger v. ESPN) rule that device identifiers are
not personal information. However, the GDPR defines device
identifiers as personal information. Therefore, our goal is to
check whether policies are complying to the stricter GDPR
definition of personal information or to the US definition, as
the outcome could hint toward problems with complying to
regulations across country boundaries. In total, we validate
10 candidate contradictions across 9 policies.
Finding 10: Policies are considering device identifiers as
non-personal information, raising concerns regarding global-
ization of their policies. When validating 10 candidate contra-
dictions, we find 9 policies for stating that they do not collect
personal information, but later state that they collect device
identifiers. We find that classification of device identifiers

USENIX Association 28th USENIX Security Symposium 597

varies across policies. We find 4 policies that explicitly de-
scribe device identifiers as non-personal information. The
most popular app is Tango (com.sgiggle.production), which
boasts of 390M+ global users on their website. It is likely a
safe assumption that some of those users are in the EU, which
is subject to GDPR. As their current policy still contains this
statement, it may hint that they may not be GDPR compliant.

To reduce the threats to the validity of our claims, we re-
request the 9 policies using a proxy to route the traffic through
an EU country (Germany) to ensure that an EU-specific policy
is not served based on the origin of the request. We request
the English version of the policy where applicable and find
similarly problematic statements in regard to not treating
device identifiers as personal information.

3.3.3 Personal Information

We find 5100 candidate contradictions across 1061 policies
where the data type of both the negative statement and pos-
itive statement is “personal information.” We validate 254
candidate contradictions across 153 policies.
Finding 11: Policies directly contradict themselves. When
validating the 254 candidate contradictions, we find that the
153 policies directly contradict themselves on their data prac-
tices on “personal information.” For example, the policy for
an app with 1M+ downloads states “We may collect personal
information from our users in order to provide you with a
personalized, useful and efficient experience.” However, later
in the policy they state, “We do not collect Personal Informa-
tion, and we employ administrative, physical and electronic
measures designed to protect your Non-Personal Informa-
tion from unauthorized access and use.” These scenarios are
clearly problematic, as the policies state both cases and it
makes it difficult, if not, impossible to determine their actual
data sharing and collection practices.

3.3.4 Derived Data

In this section, we explore cases of candidate contradictions
where the negative statements discuss data that can be derived
from the data discussed in the positive statement. In particular,
we explore two cases: (1) coarse location from IP address;
and (2) postal address from precise location.

For “coarse location from IP,” we find 170 candidate contra-
dictions from 167 policies that represent collecting IP address
and not collecting location. We remove candidate contradic-
tions whose statements discuss precise location, as IP address
does not provide a precise location. This filtering results in 18
candidate contradictions from 18 different policies. We vali-
date 15 candidate contradictions across 15 different policies
for this case. We note that 3 candidate contradictions from 3
policies are false positives due to incorrect negation handling.

For “postal address from precise location,” we find 27 can-
didate contradictions across 20 policies. Note that we remove

candidate contradictions that discuss coarse location, as they
are not precise enough to derive postal addresses. We validate
22 candidate contradictions across 17 apps, as 5 candidate
contradictions are false positives due to sentence misclassifi-
cation (4 cases) or errors of handling negations (1 case).
Finding 12: Policies state that they do not collect certain data
types, but state that they collect other data types in which the
original can be derived. When validating the 15 candidate
contradictions for “coarse location from IP,” we find that all
15 policies are stating that they do not collect location infor-
mation, but state that they automatically collect IP addresses.
As coarse location information can generally be derived from
the user’s IP address, it can be argued that the organization
is technically collecting the user’s location information. In-
terestingly, two of the policies discuss that if users disable
location services, then location will not be collected. It is
highly unlikely that companies cease IP address collection
based on device privacy settings. However, as IP address col-
lection typically occurs passively at the server side, we cannot
claim with 100% certainty that the companies still collect IP
addresses when location services are disabled.

When validating 20 candidate contradictions for “postal ad-
dress from precise location,” we find that 15 policies discuss
not collecting postal addresses, but then state that they collect
locations. Similar to the preceding case, postal addresses can
be derived from location data (i.e., latitude and longitude).
Again, the argument can be made that they are collecting data
precise enough to be considered a postal address, causing a
contradiction. For the other two candidate contradictions from
two policies, it is not clear whether it is actually a contradic-
tion, as they state that they do not collect addresses from the
user’s address book, which is more specific than a general
statement about not collecting addresses.

3.4 Notification to Vendors

For the 510 contradictions that are validated across 260 poli-
cies, we contact each vendor via the email address listed for
the privacy policy’s corresponding app on Google Play. We
disclose the exact statements that we find to be contradictory
and explain our rationale. We ask whether they consider the
statements to be contradictory and request clarifications on
their policy. Figure 6 (Appendix) shows a template of the
email. Overall, 244 emails are successfully delivered, as 16
email addresses are either invalid or unreachable. In total,
we receive a 4.5% response rate (11/244), which is relatively
substantial when considering that responding to our emails
could raise liability concerns. All of the responses are re-
ceived within a week or less after we send the initial emails.
We have not received additional responses in the 4 months
that have passed before publication. The remainder of this
section discusses the responses.
Fixed Policy: Three vendors agree with our findings and
update their policy to remove the contradiction. One ven-

598 28th USENIX Security Symposium USENIX Association

dor states that there is an “error” in their privacy policy
and updates it accordingly. We confirm that the policy has
been updated. The remaining two vendors state that the self-
contradictory portion of the policy is a leftover remnant from
a prior update and should have been removed. They clarify
that they do not collect email addresses.
Disagreed with our Findings: One vendor explicitly dis-
agrees with our findings. Their policy states that they do
not collect personal information, but also states that they
collect email addresses. The vendor responds by claim-
ing that email addresses are only personal information
if it contains identifiable information, such as your name
(e.g., john.doe@gmail.com), but are not personal informa-
tion if it does not contain identifiable information (e.g.,
wxyz@gmail.com). They state that they explicitly tell users
not to submit email addresses that contain personal informa-
tion and thus their policy is not contradictory. This interpre-
tation is surprising, because it goes against the definition of
email addresses as personal information, as defined by regula-
tions (e.g., CalOPPA, GDPR) and standards bureaus (NIST).
Claimed Outdated Policy: Four vendors respond that they
do not find the reported statements in their current policy
and that we analyzed an older version of their policy. One of
the vendors sent us their updated policy for their mobile app.
However, the policy has a link to refer to their full privacy
policy, which links to the policy analyzed by us. We request
clarifications on their “full policy,” but receive no response.
We analyze the remaining three policies and find that they
have the contradictory statements removed from their policy.
No Comment: Two vendors respond without providing a
comment or clarification of their policy. One developer simply
replies back “Thanks for the observation.” The other responds
that their app is removed from Google Play.

4 Limitations

PolicyLint provides a set of techniques to extract a concise
structured representation of both collection and sharing state-
ments from the unstructured natural language text in privacy
policies. In so doing, it provides unprecedented analysis depth,
and our findings in Section 3 demonstrate the utility and value
of such analysis. However, extracting structured information
from unstructured natural language text continues to be an
open and active area of NLP research, and there are currently
no perfect techniques for this challenging problem. PolicyLint
is thus limited by the current state of NLP techniques, such
as the limitations of NLP parsers and named-entity recogni-
tion. Its performance also depends on its verb lists and policy
statement patterns, which may be incomplete despite our best
efforts, reducing overall recall. We note that as a lint tool,
our goal is to provide high precision at a potential cost to
high recall. We note that PolicyLint achieves 97.3% precision
(496/510) based on the 14 false positives identified during our
validation of contradictions.

Another limitation is that PolicyLint cannot extract the con-
ditions or purposes behind collection and sharing statements.
Extracting such information would allow for a more holistic
analysis, but doing so would require advances in decades-old
NLP problems, including semantic role labeling, coreference
resolution, and natural language understanding.

Finally, our analysis focuses on policies of Android apps.
While we cannot claim that our findings would certainly gen-
eralize to policies from other domains (e.g., iOS, web), we
hypothesize that self-contradictions likely occur across the
board, as policies are written for all platforms in largely the
same way to describe data types collected by all platforms.

5 Related Work

Recent research has increasingly focused on automated analy-
sis of privacy policies. Various approaches have used NLP for
deriving answers to a limited number of binary questions [31]
from privacy policies, applied topic modeling to reduce am-
biguity in privacy policies [27], and used data mining [30]
or deep learning [15] models to extract summaries from poli-
cies of what and how information is used. Some other ap-
proaches [26, 28] have used crowdsourced ontologies for
policy analysis. These approaches are often limited by lack
of accuracy, completeness, and collection complexity. Other
approaches [12, 18] identify patterns to extract subsumptive
relationships. However, they do not provide methodology
to generate usable ontologies from such extracted informa-
tion and rely on a fixed lexicon. Prior research has also at-
tempted to infer negative statements in privacy policies with
limited success. Zimmeck et al. [32] and Yu et al. [29] rely on
keyword-based approaches of using bi-grams and verb modi-
fiers, respectively, to detect the negative statements. In con-
trast to these previous approaches, our work provides a more
comprehensive analysis with an automatically constructed
ontology and accounting for negations and exceptions in text.

Prior approaches [2, 5, 29] identify the possibility of con-
flicting policy statements. However, we are the first to charac-
terize and automatically analyze self-contradictions resulting
from interactions of varying semantic levels and sentiments.

Analyzing the usability and effectiveness of privacy poli-
cies is another well-researched focus area. Research has
shown that privacy policies are hard to comprehend by
users [23] and proposals have been made to simplify their un-
derstanding [24]. Cranor et al. [5] perform a large-scale study
of privacy notices of US financial institutions to highlight a
number of concerning practices. Their policy analysis relies
on standardized models used for such notices; in contrast, pri-
vacy policies in mobile apps follow no such standards making
the analysis more challenging. Other approaches [20, 21, 25]
have attempted to bridge the gap between users’ privacy ex-
pectations and app policies. While standardizing privacy pol-
icy specification has been attempted [4] with limited suc-
cess [22], mobile apps’ privacy policies have generally failed

USENIX Association 28th USENIX Security Symposium 599

to adhere to any standards. The findings in our study highlight
the need to renew standardization discussion.

6 Conclusion

In this paper, we have presented PolicyLint, a privacy policy
analysis tool that conducts natural language processing to
identify contradictory sharing and collection practices within
privacy policies. PolicyLint reasons about contradictory pol-
icy statements that occur at different semantic levels of gran-
ularity by auto-generating domain ontologies. We apply Pol-
icyLint on 11,430 privacy policies from popular apps on
Google Play and find that around 17.7% of the policies contain
logical contradictions and narrowing definitions, with 14.2%
containing logical contradictions. Upon deeper inspection,
we find a myriad of concerning issues with privacy policies,
including misleading presentations and re-defining common
terms. PolicyLint’s fine-grained extraction techniques and for-
malization of narrowing definitions and logical contradictions
lay the foundation to help ensure the soundness of automated
policy analysis and identify potentially deceptive policies.

Acknowledgment

We thank our shepherd, David Evans, and the anonymous
reviewers for their valuable comments. This work is supported
in part by NSF grants CNS-1513690, CNS-1513939, and
CCF-1816615. Any findings and opinions expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies.

References
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps. In Proceed-
ings of the ACM Conference on Programming Language Design and
Implementation (PLDI), 2014.

[2] Travis D. Breaux and Ashwini Rao. Formal Analysis of Privacy Re-
quirements Specifications for Multi-tier Applications. In Proceedings
of the IEEE International Requirements Engineering Conference (RE),
2013.

[3] Federal Trade Commission. Privacy Online: Fair Information Practices
in the Electronic Marketplace: A Federal Trade Commission Report to
Congress, May 2000.

[4] Lorrie Faith Cranor, Marc Langheinrich, Massimo Marchiori, Martin
Presler-Marshall, and Joseph Reagle. The Platform for Privacy Pref-
erences 1.0 (P3P1.0) Specification. W3C Recommendation, 16, April
2002.

[5] Lorrie Faith Cranor, Pedro Giovanni Leon, and Blase Ur. A Large-Scale
Evaluation of US Financial Institutions’ Standardized Privacy Notices.
ACM Transactions on the Web, 2016.

[6] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An Empirical Study of Cryptographic Misuse in Android
Applications. In Proceedings of the ACM SIGSAC Conference on
Computer & Communications Security (CCS), 2013.

[7] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), October 2010.

[8] David Evans. Annotation-Assisted Lightweight Static Checking. In
Proceedings of the International Workshop on Automated Program
Analysis, Testing and Verification, 2000.

[9] David Evans, John Guttag, Jim Horning, , and Yang Meng Tan. LCLint:
A Tool for Using Specifications to Check Code. In Proceedings of the
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (FSE), 1994.

[10] David Evans and David Larochelle. Statically Detecting Likely Buffer
Overflow Vulnerabilities. In Proceedings of the USENIX Security
Symposium, 2001.

[11] David Evans and David Larochelle. Improving Security Using Extensi-
ble Lightweight Static Analysis. IEEE Software, January 2002.

[12] Morgan C. Evans, Jaspreet Bhatia, Sudarshan Wadkar, and Travis D.
Breaux. An Evaluation of Constituency-based Hyponymy Extraction
from Privacy Policies. In Proceedings of the IEEE International Re-
quirements Engineering Conference (RE), 2017.

[13] Federal Trade Commission Act: Section
5: Unfair or Deceptive Acts or Practices.
https://www.federalreserve.gov/boarddocs/supmanual/cch/ftca.pdf.

[14] Michael Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.
Unsafe Exposure Analysis of Mobile In-App Advertisements. In Pro-
ceedings of the ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), 2012.

[15] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G.
Shin, and Karl Aberer. Polisis: Automated Analysis and Presentation of
Privacy Policies Using Deep Learning. In Proceedings of the USENIX
Security Symposium, 2018.

[16] Marti A. Hearst. Automatic Acquisition of Hyponyms from Large
Text Corpora. In Proceedings of the Conference on Computational
Linguistics (COLING), 1992.

[17] Matthew Honnibal and Ines Montani. spaCy 2: Natural Language Un-
derstanding with Bloom Embeddings, Convolutional Neural Networks,
and Incremental Parsing, 2017.

[18] Mitra Bokaei Hosseini, Travis D. Breaux, and Jianwei Niu. Inferring
Ontology Fragments from Semantic Role Typing of Lexical Variants. In
Proceedings of the International Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ), 2018.

[19] S. C. Johnson. Lint, a C Program Checker. In Computer Science
Technical Report, pages 78–1273, 1978.

[20] Jialiu Lin, Norman Sadeh, and Jason I. Hong. Modeling Users’ Mobile
App Privacy Preferences: Restoring Usability in a Sea of Permission
Settings. In Proceedings of the Symposium on Usable Privacy and
Security (SOUPS), 2014.

[21] Fei Liu, Rohan Ramanath, Norman Sadeh, and Noah A. Smith. A
Step Towards Usable Privacy Policy: Automatic Alignment of Pri-
vacy Statements. In Proceedings of the International Conference on
Computational Linguistics (COLING), 2014.

[22] Aditya Marella, Chao Pan, Ziwei Hu, Florian Schaub, Blase Ur, and
Lorrie Faith Cranor. Assessing Privacy Awareness from Browser Plug-
ins. In Proceedings of the Symposium on Usable Privacy and Security
(SOUPS), 2014.

[23] Aleecia M. McDonald and Lorrie Faith Cranor. The Cost of Reading
Privacy Policies. I/S Journal of Law and Policy for the Information
Society (ISJLP), 4, 2008.

[24] Thomas B. Norton. Crowdsourcing Privacy Policy Interpretation. In
Proceedings of the Research Conference on Communications, Informa-
tion, and Internet Policy (TPRC), 2015.

600 28th USENIX Security Symposium USENIX Association

[25] Ashwini Rao, Florian Schaub, Norman Sadeh, Alessandro Acquisti, and
Ruogu Kang. Expecting the Unexpected: Understanding Mismatched
Privacy Expectations Online. In Proceedings of the Symposium on
Usable Privacy and Security (SOUPS), 2016.

[26] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester,
Ram Krishnan, Jaspreet Bhatia, Travis D. Breaux, and Jianwei Niu. To-
ward a Framework for Detecting Privacy Policy Violations in Android
Application Code. In Proceedings of the International Conference on
Software Engineering (ICSE), 2016.

[27] John W. Stamey and Ryan A. Rossi. Automatically Identifying Re-
lations in Privacy Policies. In Proceedings of the ACM International
Conference on Design of Communication (SIGDOC), 2009.

[28] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,
Travis D. Breaux, and Jianwei Niu. GUILeak: Tracing Privacy Policy
Claims on User Input Data for Android Applications. In Proceedings
of the International Conference of Software Engineering (ICSE), 2018.

[29] Le Yu, Xiapu Luo, Xule Liu, and Tao Zhang. Can We Trust the Privacy
Policies of Android Apps? In Proceedings of the IEEE/IFIP Conference
on Dependable Systems and Networks (DSN), 2016.

[30] Razieh Nokhbeh Zaeem, Rachel L. German, and K. Suzanne Barber.
PrivacyCheck: Automatic Summarization of Privacy Policies Using
Data Mining. ACM Transactions on Internet Technology (TOIT), 2013.

[31] Sebastian Zimmeck and Steven M. Bellovin. Privee: An Architecture
for Automatically Analyzing Web Privacy Policies. In Proceedings of
the USENIX Security Symposium, 2014.

[32] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu,
Florian Schaub, Shomir Wilson, Norman Sadeh, Steven M. Bellovin,
and Joel Reidenberg. Automated Analysis of Privacy Requirements
for Mobile Apps. In Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS), 2017.

A Preprocessing Privacy Policies

Privacy policies are commonly made available via a link on
Google Play to the developer’s website and hosted in HTML.
Most NLP parsers expect plaintext input; therefore, PolicyLint
begins by converting the HTML privacy policy into plaintext.
We next describe how PolicyLint achieves this conversion.
Removing Non-relevant and Non-displayed Text: Privacy
policies are frequently embedded as main content on a web-
page containing navigational elements and other non-relevant
text. Additionally, non-displayed text should also be stripped
from the HTML, as we want to analyze what is actually dis-
played to users. PolicyLint extracts the privacy policy por-
tion of the webpage by iterating over the elements in the
HTML document. To remove non-relevant text, PolicyLint
strips comment, style, script, nav, and video HTML tags.
PolicyLint also strips HTML links containing phrases com-
monly used for page navigation (e.g., “learn more,” “back
to top,” “return to top”). Finally, PolicyLint removes HTML
span and div tags using the “display:none” style attribute.
Converting HTML to Flat Plaintext Documents: Certain
HTML elements, such as pop-up items, result in a non-flat
structure. When flattening the HTML documents, PolicyLint
must ensure that the plaintext document has a formatting
style similar to the text displayed on the webpage (e.g., same
paragraph and sentence breaks). PolicyLint handles pop-up
elements by relocating the text within the pop-up element

to the end of the document. Pop-up elements often provide
additional context, explanation, clarification, or a definition of
a term. Therefore, relocating these elements should not have a
significant effect on processing the referencing paragraph. To
ensure that the formatting style is maintained, PolicyLint con-
verts the HTML document to markdown using html2text.
Merging Formatted Lists: Formatted lists within text can
cause NLP parsers to incorrectly detect sentence breaks or in-
correctly tag parts-of-speech and typed dependencies. These
parsing errors can negatively impact the semantic reasoning
of sentences. Therefore, PolicyLint merges the text within list
items with the preceding clauses before the list begins. Poli-
cyLint also uses a set of heuristics for nesting list structures
to ensure that list items propagate to the correct clause.

PolicyLint merges formatted lists in two phases. The first
phase occurs before the aforementioned conversion to mark-
down. In this phase, PolicyLint iterates over HTML elements
using list-related HTML tags (i.e., ol, ul, li) to annotate
list structures and nesting depth. The second phase occurs
after the conversion to markdown. In this phase, PolicyLint
searches for paragraphs ending in a colon where the next
sentence is a list item (e.g., starts with bullets, roman numer-
als, formatted numbers, or contains annotations from the first
phase). It then forms complete sentences by merging the list
item text with the preceding text.

PolicyLint iterates over the paragraphs in the markdown
document to find those that end in a colon. For each paragraph
that ends in a colon, PolicyLint checks whether the proceed-
ing paragraph is a list item. If the line of text is a list item,
PolicyLint creates a new paragraph by appending the list item
text to the preceding text that ends with the colon. If the list
item ends in another colon, PolicyLint repeats the same pre-
ceding process but by prepending the nested list items to the
new paragraph created in the last step. PolicyLint then lever-
ages the symbols that denote list items to predict the next list
item’s expected symbol, which is useful for detecting bound-
aries of nested lists. For example, if the current list item starts
with “(1),” then we would expect the next list item to start
with “(2).” If the item symbol matches the expected symbol,
PolicyLint merges the list item text as discussed above and
continues this process. If the item symbol does not match the
expected symbol, PolicyLint stops this process and returns.
Final Processing: The final step converts markdown to plain-
text. PolicyLint normalizes Unicode characters and strips
markdown formatting, such as header tags, bullet points, list
item numbering, and other format characters. PolicyLint then
uses langid to determine whether the majority of the doc-
ument is written in English. If not, PolicyLint discards the
document. If so, PolicyLint outputs the plaintext document.

B Training Sentence Generation

PolicyLint requires a training set of sharing and collection
sentences to learn underlying patterns from in order to iden-

USENIX Association 28th USENIX Security Symposium 601

Table 8: Sentence Generation Templates
1 ENT may VERB_PRESENT DATA We may share your personal information.
2 We may VERB_PRESENT DATA PREP ENT We may share your personal information with advertisers.
3 We may VERB_PRESENT ENT DATA We may send advertisers your personal information.
4 We may VERB_PRESENT PREP ENT DATA We may share with advertisers your personal information.
5 DATA may be VERB_PAST PREP ENT Personal information may be shared with advertisers.
6 DATA may be VERB_PAST Personal information may be shared.
7 DATA may be VERB_PAST by ENT Personal information may be shared by advertisers.
8 We may choose to VERB_PRESENT DATA We may choose to share personal information.
9 We may choose to VERB_PRESENT DATA PREP ENT We may choose to share personal information with advertisers.
10 You may be required by us to VERB_PRESENT DATA You may be required by us to share personal information.
11 You may be required by us to VERB_PRESENT DATA PREP ENT You may be required by us to share personal information with advertisers.
12 We are requiring you to VERB_PRESENT DATA We are requiring you to share personal information.
13 We are requiring you to VERB_PRESENT DATA PREP ENT We are requiring you to share personal information with advertisers.
14 We require VERB_PRESENT_PARTIC DATA We require sharing personal information.
15 We require VERB_PRESENT_PARTIC DATA PREP ENT We require sharing personal information with advertisers.
16 We may VERB_PRESENT ENT with DATA We may provide advertisers with your personal information.

tify “unseen” sharing and collection sentences. As it is tedious
to manually select a set of sharing and collection sentences
with diverse grammatical structures, we opt to auto-generate
the training sentences instead. Note that auto-generating sen-
tences does not adversely impact the extensibility of Poli-
cyLint, as adding a new pattern is as simple as feeding Poli-
cyLint a new sentence for reflecting this new pattern. To iden-
tify the templates, we use our domain expertise to identify
different sentence compositions that could describe sharing
and collection sentences. We identify 16 sentence templates,
as shown in Table 8.

To fill the templates, we substitute an entity
(ENT), data object (DATA), the correct tense of
an SoC verb (VERB_PRESENT, VERB_PAST,
VERB_PRESENT_PARTICIPLE), and a preposition
that describes with whom the sharing occurs for sharing verbs
(PREP). We begin by identifying the present tense, past
tense, and present participle forms of all of the SoC verbs
(e.g., “share,” “shared,” “sharing,” respectively). We then
identify common prepositions for each of the sharing verbs
that describe with whom the sharing occurs. For example,
for the terms share, trade, and exchange, the preposition is
“with” and for the terms sell, transfer, distribute, disclose, rent,
report, transmit, send, give, provide, the preposition is “to.”

For each template, we fill the placeholders accordingly. If
the template has a placeholder for prepositions (PREP) and
the verb is a collect verb, we skip the template. We also skip
the templates for “send,” “give,” and “provide” if they do not
contain a placeholder for a preposition (T1, T6, T8, T10, T12,
T14), as those template sentences do not make sense with-
out specifying to whom the data is being sent/given/provided.
We set DATA to the phrases “your personal information” and
“your personal information, demographic information, and fi-
nancial information.” Similarly, we set ENT to the phrases
“advertiser” and “advertisers, analytics providers, and our busi-
ness partners.” Note that we include conjuncts of the DATA
and ENT placeholders to account for deviations in the parse
tree due to syntactic ambiguity (i.e., a sentence can have mul-

tiple interpretations). Therefore, we generate two sentences
for each template: one with a singular DATA and ENT, and
second with the plural DATA and plural ENT. In total, we
generate 560 sentences, which are used by PolicyLint to learn
patterns to identify sharing and collection sentences.

C Policy Statement Extraction
For the 9% of the policies from which PolicyLint does not
extract policy statements, we randomly select 100 policies to
explore why this situation occurs. We find that 88% (88/100)
are due to an insufficient crawling strategy (i.e., privacy pol-
icy links being pointed at home pages, navigation pages, or
404 error pages). Among the remaining 12 policies, the links
in 3 policies point at a PDF privacy policy while PolicyLint
handles only HTML, and 2 policies are not written in English
but are not caught by our language classifier. Finally, 7 poli-
cies are due to errors in extracting policy statements, such
as incomplete verb lists (3 cases), tabular format policies (1
case), and policies for describing permission uses (3 cases).

D Email Template
Subject: Contradictory Privacy Policy Statements in <APP_NAME>
To Whom It May Concern:
We are a team of security researchers from the WSPR Lab in the Depart-
ment of Computer Science at North Carolina State University. We created
a tool to analyze privacy policies and found that the privacy policy for your
"<APP_NAME>" application (<PACKAGE>) that we downloaded in Septem-
ber 2017 may contain the following potential contradictory statements:
(1) The following statements claim that personal information is both collected
and not collected.
(A) <CONTRADICTORY_SENTENCE_1>
(B) <CONTRADICTORY_SENTENCE_2>
· · ·
Do you believe that these are contradictory statements? Any additional infor-
mation that you may have to clarify this policy would be extremely helpful. If
you have any questions or concerns, please feel free to contact us, preferably
by February 11th.
Thank you for your time!
Best Regards,

<EMAIL_SIGNATURE>

Figure 6: Email Template

602 28th USENIX Security Symposium USENIX Association

	Introduction
	PolicyLint
	Ontology Generation
	NER Domain Adaptation
	Subsumptive Relationship Extraction
	Ontology Construction

	Policy Statement Extraction
	DED Tree Construction
	SoC Sentence Identification
	Policy Extraction

	Policy Contradictions
	Policy Simplification
	Contradiction Types
	Contradiction Identification

	Privacy Study
	General Policy Characteristics
	Candidate Contradictions
	Deeper Findings
	Personal Information and Email Addresses
	Personal Information and Device Identifiers
	Personal Information
	Derived Data

	Notification to Vendors

	Limitations
	Related Work
	Conclusion
	Preprocessing Privacy Policies
	Training Sentence Generation
	Policy Statement Extraction
	Email Template

