HyperLeech: Stealthy System Virtualization with Minimal Target Impact through
DMA-Based Hypervisor Injection

Ralph Palutke
Friedrich-Alexander-Universitdit Erlangen

Matthias Wild
Friedrich-Alexander-Universitdit Erlangen

Abstract

In the recent past, malware began to incorporate anti-forensic
techniques in order to hinder analysts from gaining mean-
ingful results. Consequently, methods that allow the stealthy
analysis of a system became increasingly important.

In this paper, we present HyperLeech, the first approach
which uses DMA to stealthily inject a thin hypervisor into
the memory of a target host, transparently shifting its oper-
ation into a hardware-accelerated virtual machine. For the
code injection, we make use of external PCILeech hardware
to enable DMA to the target memory. Combining the advan-
tages of hardware-supported virtualization with the benefits
provided by DMA-based code injection, our approach can
serve analysts as a stealthy and privileged execution layer that
enables powerful live forensics and atomic memory snapshots
for already running systems. Our experiments revealed that
HyperLeech is sufficient to virtualize multi-core Linux hosts
without causing significant impact on a target’s processor and
memory state during its installation, execution, and removal.
Although our approach might be misused for malicious pur-
poses, we conclude that it provides new knowledge to help
researchers with the design of stealthy system introspection
techniques that focus on preserving a target system’s state.

1 Introduction

The ongoing arms race between malware authors and security
practitioners lead to increasingly sophisticated approaches
on both sides. Recently, malware began to incorporate anti-
forensics to evade analysis. Sparks and Butler [58] presented
a novel rootkit technique that subverts the memory transla-
tion process of the Windows operating system, and exploits
Translation Lookaside Buffer (TLB) incoherencies to hide ma-
licious memory. Palutke and Freiling [42], as well as Torrey
[61], further enhanced this concept by dynamically virtualiz-
ing a victim system’s view on the physical memory, relying
on a kernel extension. Other approaches use Direct Kernel
Object Manipulation (DKOM)), first discussed by Butler [6],

Simon Ruderich
Friedrich-Alexander-Universitdit Erlangen

Felix C. Freiling
Friedrich-Alexander-Universitdt Erlangen

to alter important kernel structures, as memory forensics and
live analysis often rely on their integrity [5, 22, 59]. In ad-
dition, Zhang et al. [68] bypass state-of-art memory acquisi-
tion by manipulating the physical address layout on x86 plat-
forms. Besides attacks that target software-based approaches,
Rutkowska [53] demonstrated a method to attack Direct Ac-
cess Memory (DMA)-based acquisition by remapping parts
of the Memory Mapped I/O (MMIO) address space. Zdzi-
chowski et al. [66] listed further approaches in a recent meta
study, surveying the landscape of modern anti-forensics. Ap-
proaches like these indicate the necessity for novel analysis
techniques that are robust against anti-forensics.

To deliver ideal analysis results, an approach must meet two
requirements which seemingly contradict each other: First, the
soundness of a particular analysis method indicates its robust-
ness against anti-forensics, meaning its degree of accuracy
based on the actual data of the current target state. Second, a
method’s target impact implies the amount of modifications it
introduces to a target’s memory and processor state during its
installation, operation, and removal. From a forensics point
of view, a low target impact is desirable, as it prevents both a
potential loss of evidence and the chance for evasive malware
to alter its behavior [31]. Running an analysis tool at the same
or even a lower privileged domain gives malware the chance
to intercept its functionality and falsify results. Consequently,
a sound analysis cannot be guaranteed. To keep control over
a system’s operation, security software steadily migrated to
higher privileged layers [32]. In contrast to malware infec-
tions, the deployment of privileged analysis software mostly
depends on a system’s regular loading mechanisms. These
have a quite significant impact on the target state and usually
require root access, both disadvantageous from a forensics
perspective. Furthermore, analysis methods are usually de-
ployed after a system has been infected, which gives malware
the chance to tamper with their installation. Hence, analysts
began to use increasingly stealthy approaches to conceal the
deployment of their methods. Stiittgen and Cohen [60] in-
ject a minimal memory acquisition module into an already
existing host kernel module with only a small target impact.

USENIX Association

23rd International Symposium on Research in Attacks, Intrusions and Defenses 165

Besides the installation of an analysis method, both its execu-
tion and removal, as well as the extraction of results, which
often makes use of existing communication channels, alter
the target state to an even higher degree. In addition, these
communication channels might already be compromised, so
that the integrity of the transferred data cannot be guaranteed.

With the rise of anti-forensics, security practitioners started
to use DMA from external hardware in order to analyze a
system [7, 15, 36, 44]. This allows the transparent access of a
system’s memory without notably impacting its state, as DMA
does not interfere with a processor’s operation. Since these
devices are often hot pluggable, DM A-based approaches offer
a significant advantage when targeting production systems,
where down times are often not acceptable. As hot plugging
allows a method to be deployed even after the infection of a
system, it is especially useful for malware analysis. In addi-
tion, DMA usually bypasses authorization checks enforced
by the operating system. As a downside, Gruhn and Freiling
[21] showed that these approaches suffer from a lack of atom-
icity, since the target is not suspended during the analysis or
acquisition process. Consequently, they cannot produce fully
sound analysis results.

Virtualization-based approaches provide the transparent
analysis of a system from the more privileged hypervisor
layer. The respective target is booted inside a virtualized exe-
cution environment (respectively VM), enabling the isolated
analysis of the system through Virtual Machine Introspection
(VM) [18]. Since investigators are mostly confronted with
already infected systems running on bare metal, these cannot
be virtualized by conventional technologies like KVM [20]
or Xen [4], however. This led analysts to use on-the-fly vir-
tualization, initially introduced by Rutkowska [52] and Zovi
[69], which installs a thin hypervisor through a kernel driver,
and migrates the running system into a hardware-accelerated
VM for further analysis [29, 39, 47, 65]. Although on-the-fly
virtualization greatly improves the analysis of a system, it
falls short in several categories. Loading a kernel driver re-
quires root privileges and has significant impact on the target
state. Furthermore, an already infected kernel might subvert
the installation process altogether.

In this paper, we present HyperLeech, the first approach
combining transparent DMA-based code injection and on-
the-fly virtualization. In contrast to existing solutions, our
approach enables the sound analysis of a target system with
negligible impact on its processor and memory state. In detail,
we

e are the first to use DMA from an external PCILeech
device to stealthily inject a hypervisor into a target’s
memory, bypassing common access restrictions,

e use Intel’s Virtual Machine Extensions (VMXSs) to virtu-
alize a running target by transparently shifting it into a
hardware-accelerated VM, and hide our system by set-

ting up Extended Page Tables (EPTs), providing an ab-
straction of the physical memory,

e devise the process of removing our system without leav-
ing detectable traces,

e implement a prototype that is capable of virtualizing run-
ning multi-core Linux hosts without notably impacting
the target’s processor and memory state,

e evaluate the target impact caused by the injection, exe-
cution and removal of our system,

e point out the performance impact caused by the injection
of our system, and

e discuss possible mitigation strategies, as our approach
might be misused as a powerful rootkit.

The remainder of this paper is outlined as follows: Sec-
tion 2 provides fundamental background knowledge that is
necessary to understand our design concepts. In Section 3, we
present an architectural overview of the HyperLeech system,
and describe its injection and removal. Section 4 evaluates
the impact on both the target’s state and performance, and
discusses possible mitigation strategies. Section 5 briefly sur-
veys related work and possible use cases. Concluding remarks
and future research directions are given in Section 6.

2 Technical Background

For a better understanding of our design choices, we briefly
outline important technical fundamentals. Consequently, we
introduce the PCILeech framework (Section 2.1), explain the
mechanics of hardware-supported virtualization provided by
Intel’s VT-x (Section 2.2), and shed light on the Advanced Pro-
grammable Interrupt Controller (APIC) (Section 2.3). Read-
ers familiar with the topics can skip these sections.

2.1 PClILeech

Originally developed by Frisk [15], the PCILeech project
is a generic attack framework that allows external devices
to use DMA over Peripheral Component Interconnect Ex-
press (PCle) to inject code into the physical memory of a
target system. Due to PCle offering hot plug functionality, a
variety of PCILeech devices can be attached to a system at
runtime. Similarly, such devices can be unplugged at any time
without causing significant interruptions. PCILeech supports
various hardware configurations which need to be flashed
with dedicated firmware. For this work, we made use of the
PCle Screamer device [3] which is based on the XC7A35T
Xilinx 7 Field-Programmable Gate Array (FPGA) providing
native 64-bit DMA with access rates about 100 MB/s. Over
the Universal Serial Bus 3 (USB3) interface, the device is
connected to an external controller system which is used to

166 23rd International Symposium on Research in Attacks, Intrusions and Defenses

USENIX Association

control the PCILeech software. To attach PCle Screamer to a
free PCle slot of the target host, some systems might require
specific adapters due to different form factors of PCle (e.g.,
Express Card, mPCle, Thunderbolt). For HyperLeech, we
only made use of PCILeech’s native DMA support to inject
our custom hypervisor into a running target system. Hence,
no additional software needs to be deployed on the target side.

2.2 Intel VT-x

To improve the performance of VMs, modern processors pro-
vide hardware-supported virtualization. Intel [24, vol. 3C] in-
troduced several Virtual Machine Extensions (VMXs) which
expand a processor’s instruction set to allow unmodified
guests to be executed inside a hardware-accelerated VM. It
provides the new processor mode VMX operation which is
further divided into the execution modes VMX root and VMX
non-root. The former describes a privileged mode that runs
a hypervisor (or Virtual Machine Monitor (VMM)), used to
control the VMs and schedule hardware resources. VMX non-
root, on the other hand, serves unmodified guest systems as a
transparent and restricted execution environment. The proces-
sor uses VMX transitions to switch between the two operation
modes. With the occurrence of certain events (e.g., accesses
to specific registers, execution of restricted instructions, or the
interaction with emulated devices) in VMX non-root mode,
the processor generates a VM exit which transfers control to
the hypervisor. Subsequently, the hypervisor has the chance
to handle the fault and resume the guest. To launch and con-
trol a VM, the hypervisor must configure a Virtual Machine
Control Structure (VMCS) for each core. Besides comprising
the entire state of the guest, this central management struc-
ture determines the events that are to be intercepted by the
hypervisor.

Next to VMX, Intel processors provide Extended Page Ta-
bles (EPTs) that support the virtualization of a VM’s physical
memory. When enabled, a second level address translation
maps the guest’s physical memory to the real memory of the
host machine. Similar to the conventional paging structures,
EPTs provide several access flags that prohibit unauthorized
memory accesses. Breaching these access privileges leads
to an EPT violation which is intercepted and handled by the
hypervisor. This gives the hypervisor the chance to restrict
the guest from accessing certain memory regions.

2.3 Intel APIC

With the emergence of Symmetric Multiprocessing (SMP)
architectures, Intel introduced the APIC system to deliver
and control external interrupts. Its architecture consists of
two components which communicate over the system bus.
The I/0 APIC routes external interrupts to one or more Lo-
cal Advanced Programmable Interrupt Controllers (LAPICs),
each belonging to a particular processor core. The LAPICs

Analysis Host Target Host
Memory
Agent

Target

A -
Hypervisor

DMA

\ 4 4
PCILeech [«—USB3 PCle Screamer

Figure 1: Architectural overview of the HyperLeech system.

receive interrupts not only from the I/O APIC, but also from
the processors’ interrupt pins and other internal sources, and
forward them to their respective cores for specific handling.
The LAPIC appears as a memory-mapped device, provid-
ing its physical base address through the TA32_APIC_BASE
Model Specific Register (MSR). The kernel initializes this reg-
ister by parsing the host’s Advanced Configuration and Power
Interface (ACPI) tables during the early boot phase. Over
time, Intel introduced several successors which enhanced the
design of the APIC. While the XAPIC only brought a few
minor changes, the x2APIC appears as the latest iteration
which is accessed through certain MSRs instead of MMIO.
Both modes are supported by modern processors, and can be
switched by specifying a certain bit in the IA32_APIC_BASE
MSR. This requires the system to be rebooted, however.

Besides interrupts triggered by external devices, the LAPIC
provides the possibility to generate Non-maskable Interrupts
(NMIs). In contrast to maskable interrupts, NMI delivery can-
not be trivially deactivated. Each LAPIC provides several
Local Vector Table (LVT) registers that are used to config-
ure the delivery of different NMI types. Among others, these
include timer interrupts, thermal sensor interrupts, and per-
formance counter overflows. The mask bit in an LVT allows
to disable the delivery of the corresponding NMI type by
preventing the LAPIC from forwarding the interrupt to its
processor. Once set, further incoming NMIs of the same type
set the pending bit in the same LVT to signal an outstanding
interrupt. The pending NMI is not delivered to the processor
until the mask bit in the respective LVT has been cleared.
While being disabled only one upcoming NMI can be kept
pending. Any additional NMI is lost.

3 System Overview

This section provides an architectural overview of the Hyper-
Leech system, and illustrates its injection (Section 3.2) and
removal (Section 3.3) mechanisms. The basic architecture

USENIX Association

23rd International Symposium on Research in Attacks, Intrusions and Defenses 167

of our prototype comprises several components which are
grayly depicted in Figure 1. HyperLeech targets a physical
host which is subject to be analyzed. As the target will exclu-
sively be accessed from external hardware, no login creden-
tials are required to inject our hypervisor into its memory. To
access the memory of the target host, we flash the PCILeech
firmware to the PCle Screamer FPGA, and attach it to a free
PClIe slot on the target side. PCle Screamer allows native
64-bit DMA operations, and thus access to the target’s entire
physical memory. Over USB3, PCle Screamer is connected
to an analysis machine that is used to execute the controlling
agent software. The agent, written in Go, serves the analyst
as an interface for controlling our hypervisor through the
PClILeech host software.

3.1 Mode of Operation

For the installation and removal of our hypervisor, the agent
uses DMA to inject multiple code stages into the target mem-
ory. This is possible as x86-64 ensures cache coherency re-
garding DMA operations, preventing processors from retriev-
ing inconsistent data [24, chap. 11.3.2]. The stages are de-
signed to preserve memory and processor state, so that the tar-
get is not notably impacted by the injection (see Section 4.1).
Apart from this, we outsource most computational tasks to the
remote agent in order to further reduce target modifications.

Prior to the code injection, the agent needs to determine
the location of the target kernel. Due to the usage of Ker-
nel Address Space Randomization (KASLR), modern Linux
kernels are randomly placed in physical memory. Therefore,
the agent scans the entire physical memory until it matches a
pre-registered signature of the kernel’s first code page. To cor-
rectly terminate the scanning process, the agent issues DMA
read operations to probe the amount of memory installed in
the target host. As certain memory ranges do not respond
to DMA (e.g., MMIO areas which are used to map certain
devices), a timeout is employed on each read operation to
prevent the agent from stalling.

Once the kernel is found, the agent writes special injection
stages (see Section 3.2) into the target’s physical memory.
These stages hijack the control flow of the target kernel, and
subsequently install a thin hypervisor that virtualizes the sys-
tem at runtime. Despite being able to write arbitrary memory
over DMA, taking over the system’s operation is mandatory
to actually execute the injected code. For a stealthy operation,
we designed a lightweight, VMX-based custom hypervisor
that mostly avoids any interference with the target’s operation.
Limited to DMA, the agent cannot obtain contextual informa-
tion of the running system, as it is restricted to a physical view.
Therefore, the agent risks potentially corrupting the target by
overwriting the memory which is currently in use. To mini-
mize this risk, the agent searches for regions that are unlikely
to be used. During our research, we determined the first two
KiBs of a Linux kernel’s code segment to be the perfect injec-

tion spot as it mostly consists of nop instructions which do not
have any functional purpose. As of that, modifying this nop
area does not corrupt the kernel’s execution. Prior to overwrit-
ing any memory, the agent stores the original content to the
analysis machine, so it can be restored in due time. Since the
nop area does not hold enough space for the actual hypervisor,
the stages request the target kernel to allocate further memory.
This is not an issue from a forensics perspective, as occupying
currently unused memory should not corrupt evidential data
in most cases. After receiving the necessary information, the
agent sets up the hypervisor’s memory layout, and copies the
appropriate page tables and the binary of the hypervisor to
the previously allocated memory. Withdrawing control from
the target leads the hypervisor to take over and virtualize the
running cores. At this point, the hypervisor is in full control,
ready to fulfill stealthy analysis tasks or perform memory
forensics. Eventually, the agent removes the injection stages,
restoring the original target memory.

Using DMA, an analyst can now instruct the agent to trans-
parently interact with the hypervisor, allowing to send com-
mands or receive data. Compared to conventional commu-
nication channels that rely on the file system or a network
card, exchanging data over DMA is both stealthier and less
intrusive to the target state. Especially for targets that might
be compromised, covert communication is an important re-
quirement for the integrity of the transferred data.

To deinstall our system, the agent overwrites parts of the
target’s kernel space with removal stages (see Section 3.3)
which have the purpose of transparently devirtualizing the
system. After that, the hypervisor signals the agent to restore
the overwritten memory including the hypervisor area. At this
point, the target is resumed without leaving any traces of our
system.

3.2 Injection

We designed the injection process in multiple injection stages,
so that no relevant data is corrupted during the virtualization
of the target system. We minimized dependencies on the target
kernel, as the system could have already been compromised,
and thus subvert the injection process. One exception is to
query the target kernel to allocate some memory for the hy-
pervisor area. This seems acceptable, however, as we doubt
that malware could forge the allocation without risking severe
system failures. Figure 2 gives an overview of the injection.
While stage I1 only consists of a few bytes overwriting a ker-
nel function to hijack the control flow, 12 and I3 are written
to the previously mentioned nop area. In contrast, I4 and I5
are directly placed within the hypervisor area. Upcoming, we
shed light on the individual injection stages.

Stage I1: Control Flow Hijacking Once the target kernel’s
base address was found, an injection location which allows
to take over a processor’s execution is chosen. In contrast

168 23rd International Symposium on Research in Attacks, Intrusions and Defenses

USENIX Association

Physical Target Memory

e R 3. 14.

: 2.y \ 4
12 (13 Il 14 |15

4 IA
i .
Idle Hypervisor
nop area Routine Area
Kernel Code Segment kmalloc Space

Figure 2: View of physical memory after the injection stages
I1 to IS5 were written to the target memory. The hypervisor
area was vicariously allocated by the target kernel. Arrows
represent jumps to subsequent stages. The dashed arrow sym-
bolizes the abort of the injection, jumping back to the kernel’s
idle routine.

to the base of the kernel which differs after each boot due
to KASLR, offsets within its code segment only depend on
the actual kernel version. This is because the Linux kernel is
linearly mapped in both physical and virtual memory. Con-
sequently, addresses of arbitrary kernel symbols can be stati-
cally computed for a particular target by adding the respective
offsets to the previously determined kernel base address.

To actually hijack the target kernel, we chose to hook its
idle routine (intel_idle), as it is regularly executed by each
processor and allows to run code with ring 0 privileges which
are required for the virtualization. Other valid injection spots
include a system’s scheduler as well as its interrupt handlers.
For the later, special care has to be taken since the injected
code needs to run in interrupt context, however. To decrease
the latency a processor takes to enter our hook, even multiple
injection locations could be selected. As long as the hook
is placed within the target’s kernel space and is regularly
executed, almost any location could be used to hijack the
control flow. This prevents the target system from mitigating
our injection by monitoring specific memory regions.

As soon as a core starts idling, intel_idle is invoked, en-
tering a sleeping state to save power until it is woken up again.
Before placing the hook, the agent saves the respective mem-
ory to be able to restore it later on. Acquiring memory over
non-atomic protocols like DMA introduces a race condition,
as the kernel might alter the area before it enters the hook. As
the kernel’s code segment should be mapped non-writable at
all times, it usually is never modified, however. Nevertheless,
a custom kernel might remap its code ranges to be writable.
Even mainline kernels might sometimes alter parts of their
code segments when using instrumentation frameworks like
Ftrace. When activated, Ftrace dynamically modifies the first
few bytes of a kernel function, so that subsequent invocations

detour to a custom handler before returning to the originally
intended code. Therefore, we avoided to overwrite these first
few bytes with our hook. Instead, the agent replaces the fol-
lowing bytes with a relative jump to stage 12. As we could
have chosen any other spot in the kernel code, monitoring the
idle loop is not a reliable method to generically detect our
approach. To virtualize every core, the hook must remain until
all processors have passed the residual stages. Our current im-
plementation relies on target kernel functionality to determine
the number of target cores (num_online_cpus). However,
enumerating the Non-Uniform Memory Access (NUMA) hier-
archy could possibly provide a more target independent way.
After entering the hook, the core jumps to stage 12.

Stage I2: Processor Serialization Until having allocated
further memory for the hypervisor, we use the kernel’s stack
to temporarily store register content that is about to be mod-
ified, preventing a loss of processor state. As discussed in
Section 4.1, this appears to be insignificant from a forensics
perspective. The subsequent process is sequentialized by the
possession of a global lock which prevents the target cores
from concurrently entering the following stages. In case the
lock has already been occupied, a core immediately detours
to a specifically prepared trampoline that is responsible for
executing the instructions overwritten by our hook, before
resuming the original execution within the idle loop (dashed
arrow in Figure 2). Thus, no processor stalls while the lock is
held by another core. The trampoline mechanism is also used
for processors that were already virtualized, as these must be
prevented from reentering the subsequent stages. To deter-
mine the current processor’s virtualization state, 12 attempts
to force a VM exit which is only generated in VMX non-root
mode. In case of an already virtualized core, this forces a
context switch to the hypervisor which in turn informs 12
about the current processor’s operation mode. Whenever a
non-virtualized core acquires the lock, it is allowed to enter
the subsequent stages, eventually leading to its virtualization.

Stage 13: Hypervisor Setup To prevent the target from
disrupting the installation of our hypervisor, I3 temporarily
disables all interrupts until the processor reaches the end
of 14. Besides maskable interrupts, modern processors sup-
port NMIs for critical asynchronous event delivery like hard-
ware interrupts or watchdogs. These special kind of inter-
rupts cannot be trivially disabled with the cli instruction,
however. To temporarily deactivate NMI delivery, I3 recon-
figures each processor’s LAPIC, disabling the valid flags of
its LVT registers (see Section 2.3). Additionally, it consults
the TA32_APIC_BASE MSR to determine the system’s current
APIC mode, as both xAPIC and x2APIC are supported by
modern processors. Consequently, our implementation offers
different ways to access a LAPIC. As NMIs must be disabled
before switching to the hypervisor’s memory layout, there

USENIX Association

23rd International Symposium on Research in Attacks, Intrusions and Defenses 169

is no way to map the LAPICs’ physical addresses. There-
fore, we decided to rely on the kernel’s APIC_BASE symbol
to make use of the already established kernel mapping. From
a forensics view, we do not expect this symbol to be a critical
target dependency, as it is defined as a kernel constant.

For the memory of the actual hypervisor, I3 manually calls
the kernel’s kmalloc function to allocate additional space.
Our experiments revealed that a single two MiB page seems
to be a sufficient size. Most of the hypervisor area serves for
dynamic memory allocations during the setup of the hyper-
visor. Other parts are used to store its code, data, stacks, and
page tables. The resulting base address of the hypervisor area
is then translated to its physical counterpart, and provided to
the agent using DMA. After receiving the information, the
agent copies relevant parts of the hypervisor to the newly
allocated area. These include a custom memory layout which
exclusively maps the hypervisor and the injection stages. De-
pending on the specific use case, mapping certain parts of
the guest’s address space might be conceivable. Eventually,
the processor’s TLBs are flushed, the newly created memory
layout is enabled, and Process Context Identifierss (PCIDs)
are deactivated to prevent caching leftovers.

Stage 14: NMI Handling Entering stage 14 first sets up
a processor individual stack which is subsequently used to
store the state of the core. To prevent stack overflows from
corrupting any memory, the stacks are surrounded by non-
presently mapped pages.

Before NMIs can be safely reenabled, 14 registers a custom
handler which ensures NMIs that would otherwise be lost to
be reinjected into the guest. This additionally requires the
installation of both a custom Global Descriptor Table (GDT)
and Interrupt Descriptor Table (IDT). During the execution
of the hypervisor, the handler records upcoming NMIs within
a bitmap which indicates if a processor has an NMI pending.
To distinguish the running cores, and thus mark the correct
bit within the pending bitmap, the hypervisor’s NMI handler
compares the stack pointer of the current processor with the
hypervisor’s stack ranges. As every virtualized core has its
own stack which is known to the hypervisor, these informa-
tion can be used to distinguish the processors without the need
to consult the target kernel. Until properly acknowledged by
clearing the pending flag in the respective LVT, an NMI is not
forwarded to the corresponding processor core. This, however,
prevents further NMIs of the same type from being delivered
independent of the valid flag of the corresponding LVT regis-
ter. As a solution, the hypervisor consults the pending bitmap
to determine if an NMI must be reinjected to the current vir-
tualized core every time it is about to reenter the guest. This
is necessary, as watchdog tasks could potentially misbehave
due to missing NMIs, and thus corrupt the target state. To
inject an NMI into the guest, the hypervisor sets the valid
flag of the VM-entry interruption-information field within
the corresponding VMCS, and specifies the interruption type

field to indicate an NMI. This automatically invokes the guest
kernel’s NMI handler as soon as the guest is resumed. From
the perspective of the guest, it is not distinguishable if an NMI
appeared during its own operation or due to an injection from
our hypervisor. The guest’s NMI handler then clears the pend-
ing flag in the respective LVT, allowing NMIs of the same
type to be delivered again. Lastly, 14 reenables all interrupts,
and jumps to the final stage.

Stage I5: Processor Virtualization To preserve the full
register state of a processor, all previous stages had to be im-
plemented in plain assembly code. With a custom stack being
set up during the previous stage, IS5 is implemented in the
high-level programming language C. The stage is responsible
for the setup of our hypervisor and the actual virtualization
of a processor. Consequently, it allocates relevant data struc-
tures like the VMCS within the hypervisor area. With all
the preparations done, the processor releases the global lock
before entering the virtualization process. Provided Intel Vir-
tualization Technology (VT-x) was not deactivated in the Uni-
fied Extensible Firmware Interface (UEFI) or BIOS settings
(which is not the case in most modern machines), IS enables
VMX operation, and copies the previously saved processor
state to the VMCS. Similar to a hypervisor rootkit [42, 52, 69],
this allows to transparently launch the target system inside a
hardware-assisted VM, and resume its original execution with
its current state. To remain stealthy, we configure the VMCS
so that the hypervisor intercepts only a minimal set of events.
Thus, hardware is directly passed to the guest without the
hypervisor’s interference. This increases the overall perfor-
mance of the guest while reducing detectable side channels.
Depending on the specific use case, it might be necessary to
configure the interception of additional events, however. Due
to the hypervisor area being allocated by the target kernel,
it should never be accessed by accident. To prevent the tar-
get from purposely accessing the hypervisor area, we set up
EPTs to redirect read accesses to a 4 KiB guard page. Write
accesses are configured to generate an EPT violation in order
to keep the originally stored memory on the analysis machine
up to date. Consequently, the hypervisor intercepts the write
accesses, and notifies the agent to update its copy. The remain-
ing physical address space is identity mapped. Eventually, the
hypervisor resumes the target’s original execution inside the
idle routine, now running as a virtualized guest. As we chose
a symmetric hypervisor design, the entire injection process
needs to be repeated for each core. From there on, the hy-
pervisor can be used for any specific task while stealthily
controlling the target system.

3.3 Removal

Similar to the injection, the removal of the hypervisor requires
the agent to copy several removal stages to the target memory.
These stages devirtualize the target, and clean up its memory

170 23rd International Symposium on Research in Attacks, Intrusions and Defenses

USENIX Association

Physical Target Memory
R2 R4 R1 R3
A A
4 .
. iret
3. | !
nop area Idle Hypervisor
Routine Area
Kernel Code Segment kmalloc Space

Figure 3: View of physical memory after the removal stages
R1 to R4 were written to the target memory. The arrows rep-
resent jumps to subsequent stages. The dashed arrow symbol-
izes the abort of the removal process, returning to the kernel’s
idle routine. The dotted arrow depicts a mode switch to the
hypervisor running in VMX root mode.

and processor state. Rebooting the system will also remove
the hypervisor, as it only resides in memory and is currently
not configured to intercept and emulate system shutdowns.
This is not a conceptual limitation, however. Figure 3 illus-
trates the injected removal stages within the physical memory
of the target host. Once again, the first stage R1 appears as a
hook within a permanently invoked kernel function, enabling
HyperLeech to take over control. R2 and R4 are placed within
the nop area, and R3 is part of the hypervisor’s code base. The
remains of this section provide brief information about the
individual removal stages.

Stage R1: Control Flow Hijacking To devirtualize the tar-
get system, a context switch to VMX root mode is mandatory.
As we cannot rely on the guest to trigger a VM exit, we de-
cided to reinstall a hook within the idle routine (intel_idle)
to withdraw control from the target kernel. Like with the in-
jection process, entering the hook transfers each processor to
the subsequent stages. Once again, care had to be taken to
inject the following stages before installing the hook.

Stage R2: Processor Serialization Similarly to the injec-
tion process, the trampoline mechanism prevents certain cores
from entering the subsequent stages (dashed arrow in Fig-
ure 3). This time, however, already devirtualized processors
detour to our trampoline, execute the overwritten instructions,
and return to the idle loop. In addition, a global lock once
again ensures the serialization of the following stages. Failing
to acquire the global lock also results in the immediate return
to the idle routine after detouring to the trampoline. Here
on after, R2 forces another context switch to the hypervisor
which provides the next stage (dotted arrow in Figure 3).

Stage R3: Processor Devirtualization Stage R3, now be-
ing executed in VMX root mode, first determines if the guest’s
current instruction pointer refers to the code of R2. This veri-
fies that the context switch was indeed caused by R2 indicat-
ing a valid unload process. Although standard kernels would
not map any legitimate code to their nop area, a custom ker-
nel might deviate from this behavior, forcing our hypervisor
to be unloaded. Therefore, the agent is required to approve
the removal process beforehand. Otherwise, the hypervisor
simply ignores the unload request, even if it came from the
correct address range. In case of a legitimate removal, stage
R3 disables interrupt delivery. NMIs that occurred up to this
point would be lost after the hypervisor’s deinstallation, as
these could not be reinjected into the guest anymore. This,
however, would block further NMIs from being delivered, as
the target kernel would not be aware of the pending interrupt.
To avoid this issue, our hypervisor aborts the devirtualization
in case of a pending NMI, reinjects it, and waits for the tar-
get to reenter the idle loop, restarting the removal process.
As this time window is relatively small, NMIs barely came
across during our experiments, however. After disabling in-
terrupts, VMX operation can safely be terminated, effectively
devirtualizing the core. Then, R3 restores the suspended guest
processor state by consulting the respective VMCS. Via the
iretq instruction, the remaining processor state is restored
and control detours to stage R4.

Stage R4: Hypervisor Cleanup Once a processor was de-
virtualized, stage R4 restores the memory layout of the target
and releases the global lock, allowing further cores to pro-
ceed with the removal. Afterwards, interrupts are reenabled,
as these can now be handled by the target. To conceal any
traces, the last core entering R4 signals the agent to restore the
hypervisor area. As the saved copy was constantly updated
during the interception of write accesses, it always contains
the current state. It is then freed by issuing the kernel’s kfree
function. From there on, the target has no chance to detect any
evidence of the previously existing hypervisor. Subsequently,
R4 jumps back into the idle routine, resuming the original
execution of the target. After all cores have been devirtualized,
the agent restores the memory of the injected removal stages,
preventing traces from being left over.

4 Discussion

We tested our implementation on a target host running an Intel
Sandy Bridge i5-2400 processor supporting VT-x, with four
GiB of memory, and a Fujitsu D3062-A1 motherboard. We
installed Debian Stretch with the Linux kernel version 4.9.88-
1.deb9ul as its operating system. Since HyperLeech is mostly
operating system agnostic, only minor adaptions are required
to support newer target kernels. Inserting the PCle Screamer
card [3] which is flashed with the PCILeech firmware version

USENIX Association

23rd International Symposium on Research in Attacks, Intrusions and Defenses 171

......... x; (e)

Y E i \:V Y
Snges, Strrures Sue | | VMM | Guard C> Srcures | | Swe | | VMM |Guad
Kernel Code Kernel Data Kernel Stacks Hypervisor Area Kernel Code Kernel Data Kernel Stacks Hypervisor Area

i <
. | Y

- <[P | Pl]S | v o
Kernel Code Kernel Data Kernel Stacks Hypervisor Area Kernel Code Kernel Data Kernel Stacks Hypervisor Area

Figure 4: Impact on the target memory during the injection (top left), execution (top right), and removal (bottom right) of the
HyperLeech system. Bottom left depicts the memory state after our system was fully removed. Memory structures represent
kernel structures that reference the hypervisor area due to the allocation via kmalloc. During the execution, these references are
redirected to the hypervisor’s guard page. Saved state depicts processor registers that are temporarily saved on the kernel stacks.

3.5 [17], grants DMA to the target’s memory. On the analysis
machine, we used Windows 10 Enterprise (revision 1709)
which required the installation of the FTDI USB drivers [1]
to communicate with the PCILeech firmware.

4.1 Target Impact

This section discusses the modifications of the target’s pro-
cessor and memory state, which arise due to the injection,
execution, and removal of the HyperLeech system. Our main
design consideration was to reduce the impact on the target
while minimizing dependencies on kernel functionality.

Injection During the installation and removal of our sys-
tem, the agent replaces certain parts of the target memory
with the injection stages (Figure 4, top left). To preserve the
original memory, the agent saves the respective areas for later
restoration. Executing injected code within the target kernel
typically leads to further modifications. Thus, each stage is
designed to best preserve the target’s memory and processor
state. As multiple cores could enter the first two injection
stages in parallel, we use the kernel stacks to store processor
state (called saved state in Figure 4) that is about to be mod-
ified. This also simplifies our implementation, as it renders
error-prone synchronization mechanisms obsolete. Pushing
state onto the kernel stacks cannot corrupt data that is still re-
quired by the target, as even red-zones are disabled for proper
interrupt handling. Upon entering stage I3, the remaining in-
jection is serialized by a global lock. Consequently, we store
further data directly within the memory of stage I3 (and thus
in the kernel’s nop page), as it is restored anyway and does not
require any synchronization. With I4 being entered, custom
stacks for each processor are allocated within the hypervisor
area. These are subsequently used to store a processor’s state.

Execution After HyperLeech has been installed (Figure 4,
top right), the agent restores the injection stages with their
original content. This leaves only minor modifications of the
kernel stacks and a few memory structures which reference
the hypervisor area due to the allocation via kmalloc. As the
configuration of EPTs redirects all read accesses targeting the
hypervisor area to a guard page, following these references
won’t find any suspicious traces. The target kernel assumes
this area to be legitimately in use anyway, and usually won’t
ever access it until it is freed again. Write operations that
target the hypervisor area are intercepted, and the originally
stored copy is updated on the analysis machine. We consider
the modifications of the kernel stacks to be practically unde-
tectable, as these are almost instantly overwritten by regular
kernel usage once the target is resumed.

Removal Removing our hypervisor requires the injection
of the removal stages which are repeatedly used to devirtual-
ize the system (Figure 4, bottom right). As with the injection,
R1 hijacks the target’s control flow, while R2 serializes the
remaining process. Once again, the kernel stacks are used to
preserve target processor state that is about to be modified in
the meantime. R3 devirtualizes a core and restores the current
guest processor state. The final core entering stage R4 frees
the hypervisor memory after its has been restored by the agent.
As the stored copy was constantly updated during the hyper-
visor’s operation, it always contains the current content. Here
on after, the hypervisor area is queued back into the kernel’s
slab allocator, effectively deleting the referencing memory
structures. As a last step, the removal stages are overwritten
by the agent, restoring the original target memory (Figure 4,
bottom left). With the exception of the negligible modifica-
tions of the kernel stacks, no processor or memory state is ever

172 23rd International Symposium on Research in Attacks, Intrusions and Defenses

USENIX Association

lost during the injection, execution, or removal of our system.
Moreover, the overwritten parts of the kernel stacks do not
contain any relevant data, and the modifications are almost
instantly overwritten as soon as the target resumes its execu-
tion. Especially for the purpose of memory forensics, where
evidential integrity plays an important factor, HyperLeech
seems to be a promising step in the right direction.

PCle Screamer Although the injection, operation, and re-
moval seemingly have no notable target impact, attaching the
PCle Screamer card introduces detectable modifications. This
is because the PCle bus is enumerated whenever the kernel
registers a new device. The enumeration introduces changes
to the file system and leads to modifications of the memory
and processor state. For the target, however, PCle Screamer
only appears as a Xilinx ethernet adapter which could further
be adapted by altering its device id. Thus, the target cannot
refer the device to our system, as it is not distinguishable
from any legitimately added hardware. Section 6 presents
an alternative injection method that avoids the necessity of
attaching hardware altogether, so that even changes caused
by the enumeration could be prevented.

4.2 Performance Impact

This section summarizes the performance impact of the injec-
tion. In this course, we measure the duration of the virtualiza-
tion of each target core (Core X), and compare the cumulative
sum to the time required by the full injection process. For
better results, we repeated the measurements for five itera-
tions after resetting the target each time. Table | summarizes
our results. Comparing the measurements of the individual
processors, the first core takes three times longer to finish the
injection. This is because the first core is responsible for exe-
cuting additional tasks, e.g., requesting the target to allocate
the hypervisor area, waiting for the agent to establish a cus-
tom memory layout, and copying the hypervisor to the target
memory. Compared to the cumulative sum of the measured
durations, finishing the full target virtualization lasted signifi-
cantly longer. This is due to preparation and cleanup steps of
the agent, as well as the virtualization being serialized by a
global lock during the second stage (see Section 3.2). Conse-
quently, only one core at a time is able to progress through
the remaining stages. While the lock is occupied, all other
processors resume the target’s original execution until they
retry the virtualization when entering the idle routine the next
time. Although the serial approach leads the entire injection
to last longer, no processor has to stall its original work.

As we designed our hypervisor to intercept only a minimal
set of events, its performance impact during its execution
appears to be minimal [2]. Depending on the actual use case,
this overhead might change, however.

Table 1: The time each core takes to be virtualized, measured
over five different runs. While Sum cumulates the durations
of each processor run, Full informs about the total duration
of the entire target virtualization. The bottom row visualizes
the mean values of the individual runs.

Core0) Corel Core2 Core3 Sum Full

225ms 66ms 64ms 7lms 426ms 6784 ms
233ms 66ms 63ms 7lms 433 ms 1652 ms
545ms 76ms 76ms 65ms 762ms 1561 ms
597 ms 72 ms 87 ms 64ms 821 ms 4029 ms
249 ms 71 ms 65 ms 64ms 449 ms 1627 ms
369ms 70ms 71lms 67ms 578 ms 3132 ms

4.3 Memory Acquisition

To counter anti-forensics, analysts often acquire a system’s
volatile memory for subsequent analysis [32]. This has the ad-
vantage that malware cannot actively hide once the snapshot
has been acquired. Vomel and Freiling [62] introduced the
three criteria correctness, atomicity, and integrity to assess
the quality of an acquisition method. Correctness determines
the differences between the dump and the actual memory
content acquired at a certain time. Thus, malware that tam-
pers with the acquisition process could impair the correct-
ness of a dump [5, 22, 68]. To consider a memory dump as
atomic, the acquisition process must not be affected by the
target system’s concurrent activity. Since memory is mostly
acquired at a system’s runtime, a correct memory image does
not inevitably imply atomicity. Lastly, the criterion integrity
measures to what extent memory content is altered by the
acquisition method itself. As most acquisition software di-
rectly runs on the target host, certain memory needs to be
overwritten by its own code and data. These criteria can be
mapped to the analysis requirements soundness and target
impact, defined in Section 1. While a sound analysis method
must inherently be correct and atomic, the target impact can
be seen as the pendant to the criterion integrity.

Various approaches emphasized the benefits of acquiring
volatile memory through on-the-fly virtualization [29, 39, 65].
Most rely on a copy-on-write mechanism that provides both
full atomicity and correctness for the acquired image. How-
ever, full integrity cannot be achieved, as the installation of
these systems has a substantial impact on the particular target
state. Other approaches perform DMA to acquire memory
without having a significant impact on the target state [7, 36].
However, as DMA does not interfere with a processor’s exe-
cution, atomicity cannot be guaranteed.

HyperLeech was specifically designed to minimize the tar-
get impact, and thus advances memory acquisition to achieve
much better integrity compared to existing approaches. The
previously mentioned copy-on-write mechanism could be in-
tegrated into our system. While it would also achieve full
atomicity and correctness, deploying our system to the target

USENIX Association

23rd International Symposium on Research in Attacks, Intrusions and Defenses 173

host would require severely less state modifications (see Sec-
tion 4.1). Section 6 discusses further enhancements that might
allow memory acquisition to even fully satisfy all three crite-
ria. Further conceivable use cases are outlined in Section 5.

4.4 Mitigation

As our system could also be misused as a malicious hypervisor
rootkit [42, 52, 69], we discuss approaches that either prevent
or at least detect its presence.

Prevention As HyperLeech relies on hardware support to
set up a VM, the virtualization of the target cores can be mit-
igated by disabling VT-x in the UEFI or BIOS respectively.
This, however, would also deprive the possibility to run legiti-
mate VMs, and is thus often not a valid option. Alternatively,
a target system might entirely prohibit the attachment of new
PCle devices, preventing our agent from accessing the tar-
get memory. However, this would also hinder a user from
legitimately connecting additional PCle hardware.

A better solution might be the restriction of DMA from
untrusted sources. Modern systems provide an Input/Output
Memory Management Unit IOMMU) which functions sim-
ilar to a standard Memory Management Unit (MMU), as it
traverses certain mapping tables which specify memory ac-
cess permissions. In contrast to regular memory accesses, an
IOMMU controls DMA issued by devices, however. Hence,
the target could configure the IOMMU to protect its kernel
memory from illegitimate accesses. Despite an IOMMU be-
ing the best way to prevent DMA-based injections, most mod-
ern systems still do not enable it by default. This includes
not only recent Linux distributions, but also Microsoft’s lat-
est operating system Windows 10 [8]. Only Apple enforces
the activation and usage of an IOMMU since MacOS High
Sierra [16]. However, even in case an IOMMU is in use, it has
to be properly configured by the kernel and firmware respec-
tively. Recently, Markettos et al. [37] elaborated how PCle
features like Address Translation Services (ATS) might en-
able a malicious device to act benignly, effectively bypassing
an even properly configured IOMMU. According to Morgan
et al. [40], a large part of today’s machines grants DMA to
all peripherals prior to the configuration of the IOMMU dur-
ing the boot sequence for compatibility reasons. Furthermore,
Markuze et al. [38] discuss the possibility to exploit trusted de-
vices, as these are often not restricted by the IOMMU. These
publications show that even the usage of a correctly config-
ured IOMMU might not be able to prevent our approach.

As a target’s processor, chipset, and mainboard must sup-
port the IOMMU in the first place, this might not even be a
possibility for older machines. Instead, a system might clear
the bus master enable flag to disable DMA for specific de-
vices or upstream bridges. Nevertheless, Windows 10 seems
to be the only system which, by default, uses this mechanism

to prevent hot-pluggable devices from using DMA during
screen locks, as stated by Delaunay [8].

Detection Since the entire installation only requires a few
seconds (see Section 4.2), and no significant target state is
altered, detecting our system during the injection phase seems
unlikely. As soon as the target has been fully virtualized,
meaningful changes made to the kernel are reverted (see Sec-
tion 4.1). Here on after, detecting HyperLeech is practically
limited to finding indications of the actual virtualization. Intel
[24, vol. 3C] designed its virtualization extensions to be trans-
parent to a guest system. Nevertheless, researchers suggested
different kinds of side channels to detect a VM. In addition,
several researchers discussed the possibility to exploit timing
discrepancies to find out whether a system is running inside
a VM [19, 48, 54, 55]. As virtualization adds the additional
hypervisor layer beneath the already running system, certain
events must be intercepted to stay in control over the VM.
Both the context switches and the actual handling of these
events introduce a runtime overhead which can, theoretically
at least, be detected. As VMX provides the possibility to forge
internal clocks of the guest, this overhead can be concealed,
however. Moreover, George [19] mentioned that a guest could
rely on external timers, but these are often inaccurate and re-
quire the usage of additional protection to prevent them from
being forged. Since virtualization becomes more prevalent,
and HyperLeech could possibly attack already virtualized tar-
gets via nested virtualization (although currently not being
implemented), relying on the detection of virtualization might
not be sufficient in the future anyway.

5 Related Work

Initially presented with Tribble [7] and Copilot [44], vari-
ous projects used DMA to access a system’s memory over
protocols like PCI, PCle, or FireWire [67]. However, several
researchers showed that DM A-based approaches suffer from
concurrency issues and a lack of context information about
a target’s execution [21, 25]. This prohibits security related
tasks like tracing, debugging, and control flow analysis. Frisk
[15] extends common approaches, injecting kernel implants
which execute custom code within a target’s kernel space.
Duflot et al. [11] exploited vulnerable firmware of a network
card, using its DMA capabilities to take over the target host.
Both, however, significantly modify the state of the target
system. In contrast, HyperLeech is optimized to preserve a
system’s state and operate transparently with only a minimal
impact on the analyzed target.

King et al. [28] were the first to use software emulation
to stealthily virtualize a victim system. However, with the
advent of hardware-supported virtualization, rootkits were
able to shift already running systems into VMs without re-
quiring a reboot. While Rutkowska [52] targeted Windows

174 23rd International Symposium on Research in Attacks, Intrusions and Defenses

USENIX Association

Vista kernels, Zovi [69] attacked MacOS systems. Recently,
Palutke and Freiling [42] adapted this approach attacking
Linux systems, and enhanced it by locating their rootkit in
hidden memory, certain address ranges that are not even vis-
ible to the operating system’s kernel. Hypervisors have not
only been used for offensive purposes, however. Approaches
like [29, 39, 49, 65] perform live forensics, atomically ex-
tracting information from a guest’s memory via VMI [18].
While some of these approaches require the target system
to be booted inside a VM, others virtualize a system at run-
time [46]. Further projects instrument a guest by injecting
breakpoints into its memory, and hide these modifications by
exploiting TLB incoherencies [9, 34, 47]. Fattori et al. [13]
introduced an on-the-fly hypervisor that serves analysts as
debugger for guest operating systems. Moreover, several ap-
proaches perform stealthy system tracing [10, 45, 51, 57, 63].
Korkin and Tanda [30] present methods to transparently con-
trol memory accesses from a hypevisor. Nguyen et al. [41]
analyze malware, using a lightweight virtualized execution
environment, while Rhee et al. [50] rely on a hypervisor to pro-
tect kernel structures from rootkits. Sharif et al. [56] bridged
the semantic gap between the hypervisor and its guest by
transparently performing malware analysis from inside the
guest. In contrast, Jiang et al. [26] shift the analysis tech-
niques outside of the guest, overcoming the semantic gap by
systematically reconstructing internal semantic views. Yan
et al. [64] combined hardware virtualization and software
emulation to comprehend malware actions. To reveal mali-
cious processes hidden by rootkits, both Jones et al. [27] and
Litty et al. [35] suggested hypervisor-based methods to de-
tect hidden processes by reconstructing guest information.
While HyperLeech currently serves as a stealthy execution
layer only, all of the above mentioned approaches might be
adapted to our system. Existing approaches either need to be
deployed via kernel drivers, inferring significant changes to
the target system, or require the target to be booted inside a
VM. While loading a kernel driver implies root privileges and
support from the target kernel, booting the target inside a VM
excludes systems that already run on bare metal. Besides, cus-
tom kernels might prohibit to load kernel drivers altogether.
HyperLeech stealthily injects a hypervisor through DMA, al-
lowing the virtualization of a target without the necessity to
deploy a driver or to posses root privileges. In addition, the in-
stallation of our system cannot be easily inhibited by malware
or intrusion prevention systems that monitor the loading of
new kernel components. This is especially useful for forensic
approaches, as these often need to be deployed after a system
has potentially been compromised.

6 Conclusion and Future Work

To counter sophisticated anti-forensic approaches, the trans-
parent analysis of a potentially compromised system became
increasingly important. With this paper, we presented a novel

method which uses DMA provided by a PCILeech device
to inject a hypervisor into a running system’s volatile mem-
ory without requiring access privileges. With negligible im-
pact on processor and memory state, HyperLeech is capa-
ble of transparently virtualizing modern multi-core Linux
hosts, serving analysts as a stealthy and privileged execution
layer. Compared to our approach, others rely either on virtu-
alization based on the loading of a kernel extension, causing
severely more state modifications, or suffer from a loss of
context information and atomicity, being restricted to DMA.
As most of today’s systems do not offer appropriate protection
against DMA from external devices, we expect HyperLeech
to be functional on a wide variety of machines. In conclusion,
our approach advances modern system analysis and memory
forensics, enabling investigators to achieve sound results even
in compromised environments. In the following, we point out
further research directions for enhancing our current system.

Due to the configuration of EPTs, our hypervisor isolates
itself from the target guest. However, EPTs can only restrict
conventional memory accesses issued by the memory con-
troller, and can be bypassed via DMA. As our hypervisor is
placed within a memory region that was vicariously allocated
by the target kernel, the guest should never access this area by
accident. However, the target might intentionally issue DMA
operations to scan its own memory for conspicuous traces. To
protect the hypervisor from DMA, HyperLeech must properly
configure an IOMMU, using Intel’s Virtualization Technology
for Directed I/0 (VT-d). This way, the hypervisor would be
fully protected from both conventional memory accesses (via
EPTs) and DMA (via the IOMMU).

Attaching the PCle Screamer device to a target host intro-
duces a notable impact on the target state (see Section 4.1). To
avoid unintended modifications, already existing management
co-processors like Intel’s Management Engine (ME) [23] or
a Baseboard Management Controller (BMC) could be used
instead. These co-processors are typically used to execute
software that controls and monitors the actual host. Although
mostly being signed and protected, researchers showed var-
ious ways to deploy custom modified code to run on such
platforms [12, 43]. Furthermore, the open-source implemen-
tation OpenBMC could be adapted to run custom code on a
BMC without requiring to exploit a vulnerability [14]. Usu-
ally, these co-processors provide their own DMA engines en-
abling access to the host memory for efficient data exchanges.
Recently, Latzo et al. [33] presented a patch for OpenBMC
running on ASPEED’s AST2500 System-on-Chip (SoC), us-
ing it as a PCILeech device. From the host’s perspective,
the SoC appears as an arbitrary graphics card that connects
over PCle. This could allow the injection of the HyperLeech
system without the necessity to attach additional hardware.
Therefore, this would prevent the target system from detecting
modifications caused by the PCle enumeration. As a result,
analysts could acquire data in a completely sound way while
seemingly having no impact on the target at all.

USENIX Association

23rd International Symposium on Research in Attacks, Intrusions and Defenses 175

Furthermore, virtualized targets should be able to launch
their own VMs. This requires our hypervisor to provide nested
virtualization, as VMX allows only one hypervisor to run in
VMX root mode. Even in case the target already runs a hyper-
visor, our injection could be adapted to take over by withdraw-
ing control from certain routines that are repeatedly executed
in VMX root mode. Consequently, even virtualization-based
rootkits could not prevent our system from being deployed
unless they correctly configure an IOMMU, which so far has
neither been seen in the wild nor in academia. Support for
additional target operating systems and other platforms like
AMD and ARM is considered hereafter.

Eventually, HyperLeech should undergo a deeper evalua-
tion against other approaches to make a measurable statement
of its advantages regarding the analysis of environment-aware
malware from a forensics perspective.

Acknowledgements

We would like to thank UIf Frisk for his helpful comments
and detailed insights into the PCILeech project. Furthermore,
we thank Tobias Latzo for sharing his knowledge about co-
processor-based injections.

Availability

As part of this project, we make our prototype implementation
available upon request for research purposes.

References

[1] Ftdi drivers. http://www.ftdichip.com/Drivers/
D3XX/FTID3XXLibrary_v1.2.0.6.zip, 2018.

[2] Keith Adams and Ole Agesen. A comparison of soft-
ware and hardware techniques for x86 virtualization. In
Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2006, San Jose, CA, USA,
October 21-25, 20006, pages 2—13. ACM, 2006.

[3] Ramtin Amin and UIf Frisk. Pcileech.
https://github.com/ufrisk/pcileech-fpga/
tree/master/pciescreamer, 2019.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization.
ACM SIGOPS operating systems review, 37(5):164-177,
2003.

[5] Darren Bilby. Low down and dirty: anti-forensic rootk-
its. Proceedings of Ruxcon, 2006.

[6] Jamie Butler. Dkom (direct kernel object manipulation).
Black Hat Windows Security, 2004.

[7] Brian D Carrier and Joe Grand. A hardware-based mem-
ory acquisition procedure for digital investigations. Dig-
ital Investigation, 1(1):50-60, 2004.

[8] Jean-Christophe Delaunay. Practical dma attack on
windows 10. https://www.synacktiv.com/posts/
pentest/practical-dma-attack-on-windows-10.
html, 2018.

[9] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. SPIDER:
stealthy binary program instrumentation and debugging
via hardware virtualization. In Annual Computer Secu-
rity Applications Conference, ACSAC ’13, New Orleans,
LA, USA, December 9-13, 2013, pages 289-298, 2013.

[10] Artem Dinaburg, Paul Royal, Monirul I. Sharif, and
Wenke Lee. Ether: malware analysis via hardware virtu-
alization extensions. In Proceedings of the 2008 ACM
Conference on Computer and Communications Security,
CCS 2008, Alexandria, Virginia, USA, October 27-31,
2008, pages 51-62, 2008.

[11] Loic Duflot, Yves-Alexis Perez, and Benjamin Morin.
What if you can’t trust your network card? In Recent
Advances in Intrusion Detection - 14th International
Symposium, RAID 2011, Menlo Park, CA, USA, Septem-
ber 20-21, 2011. Proceedings, pages 378-397, 2011.

[12] Mark Ermolov and Maxim Goryachy. How to hack a
turned-off computer, or running unsigned code in intel
management engine. Black Hat Europe, 2017.

[13] Aristide Fattori, Roberto Paleari, Lorenzo Martignoni,
and Mattia Monga. Dynamic and transparent analysis
of commodity production systems. In ASE 2010, 25th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, Antwerp, Belgium, September 20-24,
2010, pages 417426, 2010.

[14] Linux Foundation. Openbmc - github.
github.com/openbmc/openbme, 2018.

https://

[15] Ulf Frisk. Direct memory attack the kernel. Proceedings
of DEFCON, 24, 2016.

[16] Ulf Frisk. Pcileech on macos. https://github.com/
ufrisk/pcileech/wiki/Target-macOS, 2018.

[17] Ulf Frisk. Pcileech on linux. https://github.
com/ufrisk/pcileech/wiki/PCILeech-on-Linux,
2019.

[18] Tal Garfinkel and Mendel Rosenblum. A virtual ma-
chine introspection based architecture for intrusion de-
tection. In Proceedings of the Network and Distributed

176 23rd International Symposium on Research in Attacks, Intrusions and Defenses

USENIX Association

http://www.ftdichip.com/Drivers/D3XX/FTD3XXLibrary_v1.2.0.6.zip
http://www.ftdichip.com/Drivers/D3XX/FTD3XXLibrary_v1.2.0.6.zip
https://github.com/ufrisk/pcileech-fpga/tree/master/pciescreamer
https://github.com/ufrisk/pcileech-fpga/tree/master/pciescreamer
https://www.synacktiv.com/posts/pentest/practical-dma-attack-on-windows-10.html
https://www.synacktiv.com/posts/pentest/practical-dma-attack-on-windows-10.html
https://www.synacktiv.com/posts/pentest/practical-dma-attack-on-windows-10.html
https://github.com/openbmc/openbmc
https://github.com/openbmc/openbmc
https://github.com/ufrisk/pcileech/wiki/Target-macOS
https://github.com/ufrisk/pcileech/wiki/Target-macOS
https://github.com/ufrisk/pcileech/wiki/PCILeech-on-Linux
https://github.com/ufrisk/pcileech/wiki/PCILeech-on-Linux

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

System Security Symposium, NDSS 2003, San Diego,
California, USA, 2003.

Ou George. Detecting the blue pill hy-
pervisor rootkit is possible but not triv-
ial. https://www.zdnet.com/article/

detecting-the-blue-pill-hypervisor-rootkit-
is-possible-but-not-trivial, 2006.

Yasunori Goto. Kernel-based virtual machine technol-
ogy. Fujitsu Scientific and Technical Journal, 47(3):
362-368, 2011.

Michael Gruhn and Felix C Freiling. Evaluating atomic-
ity, and integrity of correct memory acquisition methods.
Digital Investigation, 16:S1-S10, 2016.

Takahiro Haruyama and Hiroshi Suzuki. One-byte mod-
ification for breaking memory forensic analysis. Black
Hat Europe, 2012.

Intel. Intel management engine. https://www.intel.
com/content /www/us/en/support/articles/
000008927/software/chipset-software.html,
2017.

Intel. Intel 64 and ia-32 architectures software devel-
oper’s manual volume 3 (3a, 3b, 3¢ & 3d): System pro-
gramming guide, part 3. Part, 3, 2019.

Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Don-
ald E. Porter, and Radu Sion. Sok: Introspections on
trust and the semantic gap. In 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014, pages 605-620, 2014.

Xuxian Jiang, Xinyuan Wang, and Dongyan Xu.
Stealthy malware detection through vmm-based out-of-
the-box semantic view reconstruction. In Proceedings
of the 14th ACM conference on Computer and commu-
nications security, pages 128-138. ACM, 2007.

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Vmm-based hidden pro-
cess detection and identification using lycosid. In Pro-
ceedings of the 4th International Conference on Virtual
Execution Environments, VEE 2008, Seattle, WA, USA,
March 5-7, 2008, pages 91-100, 2008.

Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad
Verbowski, Helen J. Wang, and Jacob R. Lorch. Subvirt:
Implementing malware with virtual machines. In 2006
IEEE Symposium on Security and Privacy (S&P 2006),
21-24 May 2006, Berkeley, California, USA, pages 314—
327, 2006. doi: 10.1109/SP.2006.38. URL https://
doi.org/10.1109/SP.2006.38.

[29]

(30]

(31]

(32]

[33]

[34]

[35]

(36]

(37]

(38]

Michael Kiperberg, Roee Leon, Amit Resh, Asaf Al-
gawi, and Nezer Zaidenberg. Hypervisor-assisted
atomic memory acquisition in modern systems. In Pro-
ceedings of the 5th International Conference on Informa-
tion Systems Security and Privacy, ICISSP 2019, Prague,
Czech Republic, February 23-25, 2019, pages 155-162,
2019.

Igor Korkin and Satoshi Tanda. Detect kernel-mode
rootkits via real time logging & controlling memory
access. CoRR, abs/1705.06784, 2017.

Nisha Lalwani, MB Chandak, and RV Dharaskar. Split
personality malware: a security threat. In IJCA Proc.
National Conf. Innovative Paradigms in Engineering
and Technology (NCIPET 2012), number 14, 2012.

Tobias Latzo, Ralph Palutke, and Felix C. Freiling.
A universal taxonomy and survey of forensic mem-
ory acquisition techniques. Digital Investigation, 28
(Supplement):56-69, 2019.

Tobias Latzo, Julian Brost, and Felix Freiling. Bmcleech:
Introducing stealthy memory forensics to bmc. Digital
Investigation, 2020.

Tamas K. Lengyel, Steve Maresca, Bryan D. Payne,
George D. Webster, Sebastian Vogl, and Aggelos Ki-
ayias. Scalability, fidelity and stealth in the DRAKVUF
dynamic malware analysis system. In Proceedings of
the 30th Annual Computer Security Applications Confer-
ence, ACSAC 2014, New Orleans, LA, USA, December
8-12, 2014, pages 386-395, 2014.

Lionel Litty, H. Andrés Lagar-Cavilla, and David Lie.
Hypervisor support for identifying covertly executing
binaries. In Paul C. van Oorschot, editor, Proceedings of
the 17th USENIX Security Symposium, July 28-August
1, 2008, San Jose, CA, USA, pages 243-258. USENIX
Association, 2008.

Carsten Maartmann-Moe. Inception. http://www.
breaknenter.org/projects/inception/, 2011.

A. Theodore Markettos, Colin Rothwell, Brett F. Gut-
stein, Allison Pearce, Peter G. Neumann, Simon W.
Moore, and Robert N. M. Watson. Thunderclap: Ex-
ploring vulnerabilities in operating system IOMMU pro-
tection via DMA from untrustworthy peripherals. In
26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019, 2019.

Alex Markuze, Adam Morrison, and Dan Tsafrir. True
IOMMU protection from DMA attacks: When copy is
faster than zero copy. In Proceedings of the Twenty-
First International Conference on Architectural Support

USENIX Association

23rd International Symposium on Research in Attacks, Intrusions and Defenses

177

https://www.zdnet.com/article/detecting-the-blue-pill-hypervisor-rootkit-
https://www.zdnet.com/article/detecting-the-blue-pill-hypervisor-rootkit-
is-possible-but-not-trivial
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://doi.org/10.1109/SP.2006.38
https://doi.org/10.1109/SP.2006.38
http://www.breaknenter.org/projects/inception/
http://www.breaknenter.org/projects/inception/

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

for Programming Languages and Operating Systems,
ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016, pages
249-262, 2016.

Lorenzo Martignoni, Aristide Fattori, Roberto Paleari,
and Lorenzo Cavallaro. Live and trustworthy forensic
analysis of commodity production systems. In Recent
Advances in Intrusion Detection, 13th International Sym-
posium, RAID 2010, Ottawa, Ontario, Canada, Septem-
ber 15-17, 2010. Proceedings, pages 297-316, 2010.

Benoit Morgan, Eric Alata, Vincent Nicomette, and Mo-
hamed Kaaniche. IOMMU protection against I/O at-
tacks: a vulnerability and a proof of concept. J. Braz.
Comp. Soc., 24(1):2:1-2:11, 2018.

Anh M. Nguyen, Nabil Schear, HeeDong Jung, Apeksha
Godiyal, Samuel T. King, and Hai D. Nguyen.
MAVMM: lightweight and purpose built VMM for mal-
ware analysis. In Twenty-Fifth Annual Computer Secu-
rity Applications Conference, ACSAC 2009, Honolulu,
Hawaii, USA, 7-11 December 2009, pages 441-450,
20009.

Ralph Palutke and Felix C. Freiling. Styx: Countering
robust memory acquisition. Digital Investigation, 24:
S18-S28, 2018.

Fabien Périgaud, Alexandre Gazet, and Joffrey Czarny.
Subverting your server through its bmc: the hpe ilo4
case. Recon Brussels, 2018.

Nick L Petroni Jr, Timothy Fraser, Jesus Molina, and
William A Arbaugh. Copilot-a coprocessor-based kernel
runtime integrity monitor. In USENIX Security Sympo-
sium, pages 179-194. San Diego, USA, 2004.

Jonas Pfoh, Christian A. Schneider, and Claudia Eckert.
Nitro: Hardware-based system call tracing for virtual
machines. In Advances in Information and Computer
Security - 6th International Workshop, IWSEC 2011,
Tokyo, Japan, November 8-10, 2011. Proceedings, pages
96-112, 2011.

Sergej Proskurin, Julian Kirsch, and Apostolis Zarras.
Follow the whiterabbit: Towards consolidation of on-
the-fly virtualization and virtual machine introspection.
In ICT Systems Security and Privacy Protection - 33rd
IFIP TC 11 International Conference, SEC 2018, Held
at the 24th IFIP World Computer Congress, WCC 2018,
Poznan, Poland, September 18-20, 2018, Proceedings,
pages 263-277, 2018.

Sergej Proskurin, Tamas K. Lengyel, Marius Momeu,
Claudia Eckert, and Apostolis Zarras. Hiding in the
shadows: Empowering ARM for stealthy virtual ma-
chine introspection. In Proceedings of the 34th Annual

(48]

[49]

(50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

Computer Security Applications Conference, ACSAC
2018, San Juan, PR, USA, December 03-07, 2018, pages
407-417, 2018.

T Ptacek, Nate Lawson, and P Ferrie. Don’t tell joanna,
the virtualized rootkit is dead. Black Hat, 2007.

Zhengwei Qi, Chengcheng Xiang, Ruhui Ma, Jian Li,
Haibing Guan, and David S. L. Wei. Forenvisor: A tool
for acquiring and preserving reliable data in cloud live
forensics. IEEE Trans. Cloud Computing, 5(3):443-456,
2017.

Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian
Jiang. Defeating dynamic data kernel rootkit attacks
via vmm-based guest-transparent monitoring. In Pro-
ceedings of the The Forth International Conference on
Availability, Reliability and Security, ARES 2009, March
16-19, 2009, Fukuoka, Japan, pages 74-81. IEEE Com-
puter Society, 2009.

Paul Royal. Alternative medicine: The malware ana-
lyst’s blue pill. Black Hat USA, 2008.

Joanna Rutkowska. Subverting vistatm kernel for fun
and profit. Black Hat Briefings, 2006.

Joanna Rutkowska. Beyond the cpu: Defeating hard-
ware based ram acquisition. Proceedings of BlackHat
DC, 2007, 2007.

Joanna Rutkowska. Security challenges in virtualized
environments. In Proceedings RSA conference 2008,
2008.

Joanna Rutkowska and Alexander Tereshkin. Is-
gameover () anyone. Black Hat, USA, 2007.

Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea
Lanzi. Secure in-vm monitoring using hardware virtu-
alization. In Proceedings of the 2009 ACM Conference
on Computer and Communications Security, CCS 2009,
Chicago, Illinois, USA, November 9-13, 2009, pages 477—
487, 2009.

Jiangyong Shi, Yuexiang Yang, Chengye Li, and Xiaolei
Wang. SPEMS: A stealthy and practical execution mon-
itoring system based on VMLI. In Cloud Computing and
Security - First International Conference, ICCCS 2015,
Nanjing, China, August 13-15, 2015. Revised Selected
Papers, pages 380-389, 2015.

Sherri Sparks and Jamie Butler. Shadow walker: Raising
the bar for rootkit detection. Black Hat Japan, 11(63):
504-533, 2005.

Johannes Stiittgen and Michael Cohen. Anti-forensic
resilient memory acquisition. Digital investigation, 10:
S105-S115, 2013.

178 23rd International Symposium on Research in Attacks, Intrusions and Defenses

USENIX Association

[60] Johannes Stiittgen and Michael Cohen. Robust linux
memory acquisition with minimal target impact. Digital
Investigation, 11(1):S112-S119, 2014.

[61] Jacob Torrey. More shadow walker: Tlb-splitting on
modern x86. Blackhat USA, 2014.

[62] Stefan Vomel and Felix C Freiling. A survey of main
memory acquisition and analysis techniques for the win-
dows operating system. Digital Investigation, 8(1):3-22,
2011.

[63] Carsten Willems, Ralf Hund, and Thorsten Holz. Cx-
pinspector: Hypervisor-based, hardware-assisted sys-
tem monitoring. Ruhr-Universitat Bochum, Tech. Rep,
page 12, 2013.

[64] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang,
and Heng Yin. V2e: combining hardware virtualization
and software emulation for transparent and extensible
malware analysis. ACM Sigplan Notices,47(7):227-238,
2012.

[65] Miao Yu, Zhengwei Qi, Qian Lin, Xianming Zhong,
Bingyu Li, and Haibing Guan. Vis: Virtualization en-
hanced live forensics acquisition for native system. Dig-
ital Investigation, 9(1):22-33, 2012.

[66]

[67]

[68]

[69]

Patrycjusz Zdzichowski, Michal Sadlon, Teemu Uolevi
Viisdnen, Alvaro Botas Munoz, and Karina Filipczak.
Anti-forensic study. NATO CCDCOE (NATO Coopera-
tive Cyber Defence Centre of Excellence), 2015.

Lei Zhang, Lianhai Wang, Ruichao Zhang, Shuhui
Zhang, and Yang Zhou. Live memory acquisition
through firewire. In Forensics in Telecommunications,
Information, and Multimedia - Third International ICST
Conference, e-Forensics 2010, Shanghai, China, Novem-
ber 11-12, 2010, Revised Selected Papers, pages 159—
167, 2010.

Ning Zhang, Kun Sun, Wenjing Lou, Yiwei Thomas
Hou, and Sushil Jajodia. Now you see me: Hide and
seek in physical address space. In Proceedings of the
10th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS 15, Singapore,
April 14-17, 2015, pages 321-331, 2015.

Dino A Dai Zovi. Hardware virtualization rootkits.
Black Hat 2006, August, 2006.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 179

	Introduction
	Technical Background
	PCILeech
	Intel VT-x
	Intel APIC

	System Overview
	Mode of Operation
	Injection
	Removal

	Discussion
	Target Impact
	Performance Impact
	Memory Acquisition
	Mitigation

	Related Work
	Conclusion and Future Work

