
Evasion Attacks against Banking Fraud Detection Systems

Michele Carminati, Luca Santini, Mario Polino, and Stefano Zanero

Politecnico di Milano

{michele.carminati, mario.polino, stefano.zanero}@polimi.it

luca2.santini@mail.polimi.it

Abstract
Machine learning models are vulnerable to adversarial sam-

ples: inputs crafted to deceive a classifier. Adversarial samples
crafted against one model can be effective also against related
models. Therefore, even without a comprehensive knowledge
of the target system, a malicious agent can attack it by training
a surrogate model and crafting evasive samples. Unlike the
image classification context, the banking fraud detection do-
main is characterized by samples with few aggregated features.
This characteristic makes conventional approaches hardly ap-
plicable to the banking fraud context.

In this paper, we study the application of Adversarial Ma-
chine Learning (AML) techniques to the banking fraud detec-
tion domain. To this end, we identify the main challenges and
design a novel approach to perform evasion attacks. Using
two real bank datasets, we evaluate the security of several
state-of-the-art fraud detection systems by deploying evasion
attacks with different degrees of attacker’s knowledge. We
show that the outcome of the attack is strictly dependent on
the target fraud detector, with an evasion rate ranging from
60% to 100%. Interestingly, our results show that the increase
of attacker knowledge does not significantly increase the at-
tack success rate, except for the full knowledge scenario.

1 Introduction

Nowadays, machine learning techniques are applied to sev-
eral data-driven tasks: from image identification [22], face
recognition [30], and natural language processing [33] to mal-
ware [3, 27], and intrusion detection [28]. Machine learning
has gained importance also in the banking fraud detection do-
main [6,11,18,26]. Those systems present prominent benefits,
but, unfortunately, they suffer from the typical weakness of
machine learning models: it is possible to significantly reduce
their robustness and alter their performance through adversar-
ial samples [8, 19, 25]. Adversarial samples are inputs crafted
starting by legitimate samples that are iteratively perturbed
to make the detector to misclassify them. There are many

studies on how to craft adversarial samples that propose dif-
ferent approaches based on the gradient computation, which
have advantages and drawbacks depending on the domain of
application. There are also many works about transferability,
the property that captures the ability of an attack against a
machine learning model to be effective against a different,
potentially unknown, model [17, 23]. This property allows a
malicious user to design an attack against a machine learning-
based system also in the case in which he does not know the
target system [16, 24]. AML has been studied mainly in the
field of image classification in which, due to some intrinsic
characteristics of images, researchers obtained remarkable
results. In recent years, many studies applied AML to other
fields such as malware detection, where researchers had to
overcome the challenges of that domain [3, 20].

In this paper, we study the application of AML techniques
to the banking fraud detection domain, which, unlike the im-
age classification one, is characterized by samples with few
aggregated features. This characteristic makes conventional
approaches hardly applicable to this context. Ergo, we present
a novel approach to perform evasion attacks against banking
fraud detection systems that adapts and extends some exis-
tent methods for crafting adversarial samples and mitigate
the challenges of the fraud detection domain. We study dif-
ferent threat models characterized by attackers with different
degrees of knowledge: Black-Box, with zero knowledge of
the target system; Gray-Box, with partial knowledge of the
system; White-Box, with complete knowledge of the system.
Using two real anonymized bank datasets with only legit-
imate transactions, we show how a malicious attacker can
compromise state-of-the-art banking fraud detection systems
by deploying evasion attacks, with an evasion rate ranging
from 60% to 100%. The contributions are the following:

• We present a novel machine learning-based approach to
perform evasion attacks against fraud detection methods
under different degrees of knowledge and simulating the
behavior of different types of fraudsters.

• We study the application of state-of-the-art AML algo-

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 285

rithms in the fraud detection domain, identifying the
challenges of existing approaches.

• We evaluate of state-of-the-art fraud detection methods
by measuring their performance against evasion attacks.

2 Background And Related Works

In recent years, the use of Internet banking services has in-
creased, allowing users to carry out operations remotely. As
a result, the number of bank frauds has also increased, and
every year banks have losses of billions of euros due to frauds.
Banking Fraud Detection. A banking fraud detection sys-
tem identifies fraudulent transactions as deviations from his-
torical user behaviors. Current state-of-the-art fraud detec-
tion systems are based on machine learning, which can be
divided into two categories: supervised and unsupervised
learning-based. Examples of fraud detectors based on unsu-
pervised (and semi-supervised) machine learning techniques
are Banksealer [10, 11], self-organizing maps [36] and peer
group analysis [34]. The most used technique for supervised
fraud detection are Neural Networks (NN) [6, 18], Logistic
Regression, Support Vector Machines, Decision Trees, and
Hidden Markov Models [2]. However, Random Forest algo-
rithm [35] achieves the best performance in this domain.
AML for Fraud Detection. Adversarial samples are inputs
crafted by iteratively perturbing legitimate instances to make
the detector to misclassify them. Traditional AML algo-
rithms have shown good performances in the image detection
field [8, 19, 25, 29]. In fact, it is possible to obtain an adver-
sarial image that is misclassified by the classifier but at the
human eyes seems identical to the original one. We refer the
reader to Appendix B for an overview of the leading solutions
applied in the area. AML algorithms have also been applied to
other areas, such as malware detection [3,20], achieving good
results. As far as we know, in literature, there are no applica-
tions of AML algorithms to the fraud detection domain. The
only security evaluation of a fraud detection system was done
by Carminati et al. [12] through a mimicry attack. Indeed,
there are several challenges in applying AML algorithms to
this domain. As shown in Figure 1, when a user performs
a transaction, this transaction is processed by the banking
system and, then, classified. The result of the processing is an
aggregated transaction, whose features are an aggregation of
the current transaction with past transactions. Existing AML
algorithms take as input the aggregated transaction, and, ap-
plying perturbations to the original features, return as output
a new aggregated transaction. Instead, an attacker that wants
to perform an evasion against fraud detection frameworks
attack needs to inject in the banking system raw transactions
(not aggregated ones), since they represent the only input pro-
vided by customers in online banking applications. So an
attacker, after applying the AML algorithm, should find the
raw transaction that, after being processed, leads to the same

Data
AggregationTransaction	

Executed

ML	Classifier

Raw	
Transaction

UserID Amount Timestamp IBAN IBAN_CC IP ...

Aggregated
Transaction

Amount Count1d Sum1d Mean1d Count7d ... SameIBANcount1d ...

BANKING	SYSTEM

User Legitimate

FraudFraud	Detector

Figure 1: Scheme of the interaction between user and typical
banking system

aggregated transaction returned by the AML algorithm. This
operation is very complicated because, in many cases, the cor-
responding raw transactions may not exist (i.e., the aggregated
transaction contains linked features with conflicting values).
Therefore, existing AML-based approaches are not directly
applicable for performing an evasion attack against a banking
fraud detection system. We can overcome some limitations
by inserting some constraints in the perturbations allowed
during the execution of the AML algorithm. In Appendix B.1,
we evaluate the theoretical performances of an AML-based
attack considering an internal attacker that directly injects
aggregated transactions into the banking system.

3 Threat Model

An essential step in designing AML-based attacks is to define
the threat model. Thus, we adapt to our domain the attack
taxonomy described in [4, 5, 17]. We describe the attacker’s
goal, knowledge, and capability of manipulating data.

3.1 Attacker’s Goal
We define the attacker’s goal in terms of the security violation,
the attack specificity, and the error specificity.
Security Violation. The objective of the attacker can be: (1)
compromising the integrity of the data (i.e., transactions) or
the model used by the detector, affecting the detection reliabil-
ity; (2) compromising the availability of the detector, denying
its functionalities to others (i.e., banking customers and ana-
lysts); (3) compromising the confidentiality of the data (i.e.,
transactions) and model used by the detector, thus obtaining
unauthorized information such as privacy violating data or
inner parameters of the model.
Attack Specificity. The attack can be targeted if it targets
a specific user or group of users, or a generic if it targets a
generic user or group of users selected randomly.
Error Specificity. In generic multi-class classification prob-
lems, the attacker may want a sample misclassified as a spe-

286 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

cific class or as any of the classes of interest. In a binary
classification problem, like the fraud detection one, the at-
tacker wants the detector to classify a malicious transaction
(i.e., frauds) as legitimate or vice versa.

In our threat model, the attacker performs an evasion attack,
which is an integrity violation that can be generic or targeted.
The attacker carries out malicious transactions on behalf of
the user and wants the detector to classify them as legitimate.

3.2 Attacker’s Knowledge
We modeled the attacker with different degrees of knowledge,
extending the characterization of Biggio et al. [5], by adding a
term representing the knowledge the attacker has concerning
the past transactions of users. In fact, in the fraud detection
domain, we need to extract aggregated features to capture
user behavior. To perform transaction aggregation, an attacker
needs the last transactions of the user. In our approach, the
adversary needs just one month of the target victim’s transac-
tion history. Regarding our dataset, one month of transactions
corresponds to observe an average of 18±28 transactions per
victim. The high standard deviation is due to the fact that our
dataset is highly skewed1, with the majority of users perform-
ing few transactions. For example, in a real case, the attacker
retrieves the victim’s transaction history from the banking
application, thanks to a malware injected into the victim’s
devices. We use the following terms to describe attacker’s
knowledge: training data D; feature set X (i.e., how to aggre-
gate samples); learning algorithm along with the loss function
to minimize f ; trained parameters/hyper-parameters w; past
data (i.e., transactions) of the victim user H . In summary,
the attacker’s knowledge can be characterized by the tuple
Θ = (D,X , f ,w,H)2. Based on the previous assumptions, we
can configure four scenarios:
White-Box. The attacker is assumed to know everything. For
example, he or she is an intern at the bank and collected
all the information. Even if this is a strong assumption, it
is advantageous to perform a worst-case evaluation of the
fraud detectors. It also provides an upper bound that we can
use to compare to other more restrictive scenarios. The tuple
describing this setting is Θwb = (D,X , f ,w,H)1.
Gray-Box. The attacker has partial knowledge about the de-
tection system. In particular, he/she knows how the fraud
detector aggregates data to compute the features (X) but not
the training data, the learning algorithm, and the trained hyper-
parameters (D̂, f̂ , ŵ). As motivated before, we assume that the
attacker has retrieved one month of past transactions (H̃) to
compute an estimation of the aggregated features. The tuple
describing this setting is Θgb = (D̂,X , f̂ , ŵ,H̃) 1.

1By considering only users with more than 5 monthly transactions, statis-
tics about the number of transactions per user are the following: µ = 18.41,
σ = 27.91, σ2 = 779, median = 11, mode = 6, Q1 = 7, Q3 = 19.

2The term x indicates a full knowledge of term x, x̃ indicates a partial
knowledge of term x, and x̂ indicates zero knowledge of x.

Black-Box with Data. The attacker has no knowledge about
the detection system (X̂ , f̂ , ŵ), but he/she has at his/her dis-
posal the same training set used by the target system ((D and
H) consisting of all the banking transactions of the last few
months. Thank to this dataset, the attacker can compute a pre-
cise estimate of the aggregated features. The tuple describing
this setting is ΘbbI = (D, X̂ , f̂ , ŵ,H)1.

Black-Box. The attacker has no knowledge about the detec-
tion system and training data (D̂, X̂ , f̂ , ŵ). However, as mo-
tivated before, we assume that the attacker has retrieved one
month of past transactions (H̃) to compute an approximation
of the aggregated features. Also, the attacker has at his/her
disposal a set of transactions different from the ones used by
the target detection system (i.e., an old leaked dataset or a
dataset belonging to another financial institution). The tuple
describing this setting is Θbb = (D̂, X̂ , f̂ , ŵ,H̃)1.

3.3 Attacker’s Capability

This characteristic highlights the power of the attacker con-
cerning the system. It outlines the attacker’s influence of
manipulating data and the domain-specific data manipula-
tion constraints. If the attacker can manipulate only the test
set, the attack is called exploratory or evasion. If the attacker
can manipulate both the test set and the training set, the attack
is called causative or poisoning. In this work, we focus on
evasion attacks. Therefore, the attacker can manipulate the
test set and execute transactions on behalf of the user. Then,
the fraud detection system will process these transactions fol-
lowing the procedure described in Figure 1. State-of-the-art
fraud detectors extract information from the past user’s trans-
actions to compute aggregated features that capture the user’s
spending behavior. As anticipated in Section 2, the attacker
is, therefore, subjected to a strong limitation: he or she can di-
rectly modify only some features, while others also depend on
the past behavior of the user. We go deeper into this concept
in Appendix B.1. As anticipated in Section 3.2, our approach
needs just a short transaction history (one month) of the target
victim and the possibility to perform transactions. There are
several ways to recover the data to perform an evasion attack.
The attacker can infect bank customers’ device with a Trojans
(e.g., Zeus, Citadel). Alternatively, the attacker can use phish-
ing techniques to retrieve the victim’s bank access credentials
and One Time Password (OTP). At this point, the attacker can
obtain the transactions carried out by the user and execute
them on his or her behalf. The attacker retrieves the transac-
tion history of the victim from the banking application and
computes aggregated features (e.g., total money spent in one
month, average daily money spent). With this information, the
attacker performs one or more evasive transactions without
being detected. A careful reader will notice that transaction
history can also be obtained by passively observing a user
with a persistent malware sample for a while.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 287

4 Datasets Analysis and Engineering

Our dataset comes from an important banking group; we
worked on two real datasets that have been thoroughly in-
spected and cleaned from frauds. Data is anonymized by
removing personal information related to users and replaced
with hashed values that preserve equality. In Table 1, we show
the number of users and transactions for each dataset. The
most relevant features are: the transaction amount (Amount);
the hashed unique ID associated to the user (UserID); the date
and the time of the execution of the transaction (Timestamp);
the hashed IP Address of the connection from which the
transaction is performed (IP); the hashed International Bank
Account Number of the beneficiary (IBAN); the country code
of the beneficiary IBAN (IBAN_CC); the country code and
the autonomous system number from which the connection
comes (CC_ASN); the identifier of a session (SessionID).

4.1 Feature Extraction Strategies
To design a good fraud detection algorithm, a feature selec-
tion and extraction strategy need to be chosen [1, 15, 31].
A strategy, which captures the user spending pattern, is a
combination of direct derivable features (e.g., amount, coun-
try) and aggregated ones (e.g., average, total). In practice,
it consists of grouping transactions by features and, then,
computing aggregated metrics. First, we selected the direct
derivable features and aggregated features used in previous
works [1, 9, 12, 32, 35]. Then, with the support of the banking
domain experts, we combine them using different strategies
that capture different aspects of user spending profiles. Finally,
for each fraud detector algorithm considered in this work, we
selected the strategies that performed best with our data in
detecting synthetic frauds (see Section 4.2 using the holdout
validation method. In particular, we empirically evaluated
each strategy by using a wrapper approach [21] that maxi-
mizes the True Positives (TPs) and minimizes False Positives
(FPs). Table 2 summarizes the three best strategies – we will
refer to them as A, B, and C – that we selected for the fraud
detectors. For an exhaustive description of each feature and
aggregation function, we refer the reader to Appendix A.

4.2 Dataset Augmentation: Synthetic Frauds
To train the supervised learning models considered in this pa-
per, we enrich datasets with synthetic frauds generated thanks

Table 1: Number of transactions and users for each dataset
DATASET USERS TRANSACTIONS TIME INTERVAL

2012-2013 53,243 548,833 01/2012 - 08/2013

2014-2015 58,481 470,801 10/2014 - 02/2015

to the collaboration with domain experts and based on fraud
scenarios that replicate typical real attacks performed against
online banking users. In particular, we focus on most spread
malicious schemes, which are driven by banking Trojans or
phishing: information stealing and transaction Hijacking. In
the information-stealing scheme, the attacker exploits a phish-
ing campaign or a Trojan that infects the victim device to
steal the credentials and the OTP that the victim inserts in
the web pages of the targeted bank. The attacker can then
use the stolen credentials to perform transactions on behalf of
the victim. The connection comes from the attacker device,
not from the victim one. In the transaction hijacking scheme,
the Trojan infects the victim device and hijacks legitimate
bank transfers made by the user. The main challenge of such
an attack is that connections come from the victim’s device
(i.e., from the same IP, Session ID, and ASN). Typically, a
fraudster may act according to different strategies: he or she
may execute a single transaction with a high amount or mul-
tiple transactions with lower amounts. Therefore, to define
these fraud patterns, we use three variables: Total Amount,
the target amount that the attacker wants to steal; Number of
Frauds, the number of frauds in which the attacker wants to
divide the attack; Duration of the Attack, the total duration
time of the attack. So, for example, if the attacker performs an
attack with Total_Amount = e 10,000, Number_of_Frauds =
24, Duration = 1 day, he carries out one fraud of about e 417
per hour for one day. Using different combinations of the
values of these three variables and the two schemes described
above, we inject frauds in the dataset by randomly selecting
the victims. The banking datasets are known to be extremely
unbalanced, usually containing from 0.1% [31] to 1% [11] of
frauds. Therefore, common oversampling and undersampling
techniques are used to overcome this problem. In this work,
we generate about 1% of frauds.

5 Approach

We generate evasive transactions by exploiting an Oracle that
predicts the anomaly of a transaction. The Oracle is not 100%
accurate, and its performance depends on the degree of the
attacker’s knowledge (see Section 3.2. We can use this Oracle
to generate candidate transactions that will likely not be con-
sidered fraudulent by the targeted fraud detector. As shown in
Figure 2, our approach is composed of two phases: training
phase, in which we train the Oracle, and a runtime phase,
in which we generate the evasive transactions. During the
training phase, we train the Oracle by aggregating historical
transactions, as described in Section 4.1. In particular, the
Oracle is a surrogate fraud detector that models the spending
behaviors of users. It is based on a machine learning model
that is used in the runtime phase to classify the candidate
transactions that the attacker wants to perform. During the
runtime phase, depending on the attacker’s knowledge, he or
she observes and collects the transactions the victim carries

288 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Table 2: Summary of the features used in our models. Direct features are data not aggregated. Data is aggregated with several
time-frames; i.e., ‘mean30d’ is the mean computed over 30 days while ‘mean7d’ is the mean computed over 7 days

STRATEGY DIRECT FEATURES AGGREGATED FEATURES

A amount

count1h, count1d, count30d, sum1h, sum1d, sum30d,
iban_count1h ,iban_count1d ,iban_count30d, iban_sum1h, iban_sum1d, iban_sum30d,

ip_count1h, ip_count1d, ip_count30d, ip_sum1h,ip_sum1d,ip_sum30d,
distance_from_mean, iban_distance_from_mean, ip_distance_from_mean,

mean, iban_mean, ip_mean, is_new_iban, is_new_ip.

B

amount,
time_x, time_y,

is_national_iban, is_national_asn,
operation_type, confirm_sms

count7d, count30d, mean7d, mean30d, std7d, std30d,
ip_count7d, ip_count30d, ip_sum7d, ip_sum30d,

iban_cc_count7d, iban_cc_count30d, iban_cc_sum7d, iban_cc_sum30d,
asn_count7d, asn_count30d, asn_sum7d, asn_sum30d,

count, mean, std, count_iban, mean_iban, count_session, mean_session, is_new_iban.

C

amount,
time_x, time_y,

is_national_iban, is_international,
confirm_sms

count1d, sum1d, mean1d, count7d, sum7d, mean7d, count30d, sum30d, mean30d,
iban_count1d, iban_count7d, iban_count30d,

iban_cc_count1d, iban_cc_count7d, iban_cc_count30d,
ip_count1d, ip_count7d, ip_count30d, asn_count1d, asn_count7d, asn_count30d,

mean, iban_count, iban_mean, session_count,
is_new_iban, is_new_iban_cc, is_new_ip, is_new_cc_asn.

out. Based on the information collected, the attacker gener-
ates raw candidate transactions that are aggregated and given
in input to the Oracle. The Oracle classifies each candidate
transaction, and if it labels it as a fraud, we discard it; other-
wise, we use it in the evasion attack by injecting it in the user
banking activity.

Assumptions. Our approach is based on three assumptions:

• Assumption I The attacker has a dataset of banking
transactions for training the Oracle (e.g., an old dataset
belonging to the same or a different bank).

• Assumption II The attacker can retrieve or observe the
transactions carried out by the victim and the funds avail-
ability.

• Assumption III The attacker can execute transactions
on behalf of the victim.

The first assumption is necessary because the attacker needs
a bank dataset to train the Oracle. In general, we can state
that if the dataset has been obtained from the same bank
against which the attack is carried out, the attack reaches
better performances. As explained in Section 2, the second
assumption is necessary because, depending on the attacker’s
knowledge, to process a single transaction, it is necessary
to aggregate the previous ones. Hence, the attacker needs to
obtain the victim’s transactions. Moreover, the attacker needs
to know the funds availability and if the victim is making
new transactions during the attack so that he or she is always
up to date and can adequately manage those events. The
last assumption is necessary to ensure that the attacker can
carry out fraud in the real banking system. From a feasibility
point of view: the first assumption is more difficult to satisfy
because banks rarely release their data publicly, while the

second and third assumptions can be satisfied with a banking
Trojan [14].

5.1 Candidate Transaction Generation

Algorithm 1 Find Timestamps. X is the list of timestamps
in which the user has performed a transaction, F is the list of
time windows sizes, ε is a small time delta greater than zero
used to fall in the time window

1: procedure FINDTIMES(X ,F)
2: T ← [] . T initially empty list
3: for f inF , x inX do
4: wstart ← x
5: wend ← wstart + f
6: T .append(wstart + ε, wend + ε) . ε < min(F)
7: end for
8: return T
9: end procedure

To generate candidate transactions, we efficiently explore
the space of possible values of each transaction feature. In
truth, the raw candidate transaction features that the attacker
can directly control are only the timestamp and the amount.
We assume that IBAN and IBAN_CC refer to the IBAN of
the malicious recipient (i.e., new IBAN never seen in other
transaction) while the IP and the ASN depend on the attacker
strategy. Therefore, the attacker has to choose the amount
to steal at each transaction. The choice of the value depends
on the strategy chosen by the attacker: conservative or risky.
However, a too high amount would lead the Oracle to classify
the transaction as fraud, a too low amount does not allow the
attacker to maximize the profit. In Section 6, we exhaustively
compare different strategies characterized by high, medium,

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 289

Data
Aggregation Classification

UserID Amount Timestamp IBAN IBAN_CC IP ... Amount Count1d Sum1d Mean1d Count7d ... SameIBANcount1d ...

Past
Transactions
of	the	Victim

Legitimate

Fraud

Amount
Selection

Injection

Banking
Datasets

Data
Aggregation Train	Oracle

Oracle	Model

raw
candidate

fraud

aggregated
candidate

fraud

raw
transactions

UserID Amount Timestamp IBAN IBAN_CC IP ...

Amount Count1d Sum1d Mean1d Count7d ... SameIBANcount1d ...

aggregated
 transactions

Training	phase

Runtime	phase

Timestamp
Selection

Candidate	Transaction	Generation

Figure 2: Approach Overview

and low amounts. Once the attacker has selected the amount
to steal, he/she identifies the best moment to perform the
transaction (i.e., timestamp). A naive approach would be to
explore all the possible timestamps within the period in which
the attack occurs, but this would lead to a massive number
of transactions. To avoid this issue, we bucketize (i.e., group)
the timestamps based on the historical transactions using the
algorithm described in Pseudocode 1. This procedure takes
in input the list of selected time windows sizes and the times-
tamps in which the user has performed a transaction – the
attacker has retrieved them from the victim’s historical trans-
actions. Then, for each time-windows size and timestamp, it
builds the aggregated time windows in which the customer is
active. The time windows have the objective of capturing the
user’s short-term, mid-term, and long-term behavior. We look
for the most used sizes in literature [9, 32]: We use one hour
and one day for the short-term, seven days for the mid-term,
and one month for the long-term. The final output of this
step is a raw candidate transaction aggregated with previous
transactions and given as input to the classification phase.

5.2 Oracles and Fraud Detectors.

In our system, we have two detectors. One is the Bank Fraud
Detector used as a simulation of the system that the attacker
is trying to bypass. The other is the Oracle that the attacker
is using to build fraudulent transactions. Both detectors are
based on some of the most used algorithms in literature [2]
and deployed in banking institutions.

Random Forest. [7] model is an ensemble of decision trees.
It combines the concept of bagging where individual models
in an ensemble are built through sampling with replacement
from the training data, and the random subspace method,

where each tree in an ensemble is built from a random subset
of attributes. Thus, predictions are obtained by aggregating the
outputs from individual trees in the ensemble. Majority voting
is used to determine the prediction outcome (i.e., the label
fraudulent or legitimate). This algorithm, from literature [31]
seems to outperform the other in the field of fraud detection.

Neural Networks. They are learning models built of simple
elements called neurons, which take as input a real value, mul-
tiply it by weight, and run it through a non-linear activation
function. By constructing multiple layers of neurons, each of
which receives part of the input variables, and then passes on
its results to the next layers, the network can learn very com-
plex functions. We used the sigmoid function as the activation
function for the output layer in order to use this model for the
classification.

Logistic Regression. It is a widely used technique in prob-
lems in which the dependent variable is binary. It computes
the output using a logistic function. Based on a threshold, it
possible to estimate probabilities and classify transactions.

XGBoost. EXtreme Gradient Boosting is based on an ensem-
ble of methods. It trains and predicts using several models at
once to produce a single better output. It exploits the concept
of bagging and boosting to perform the classification. It has
achieved excellent results in many domains [13].

Active Learning. It is a variant of AI2 [32] applied to the
banking dataset. It is an active learning approach that com-
bines an ensemble of unsupervised learning (i.e., Autoen-
coder) with supervised learning techniques (Random Forests).
Combining the anomaly scores computed by the unsupervised
models, it ranks transactions and presents them to the analyst
for review; subsequently, the feedback collected is used to
train a Random Forest.

290 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Banksealer. [11] It represents one of the systems currently
deployed in the banking institution we collaborated with. It
characterizes the users of the online banking web application
using a local, global, and temporal profile built during a train-
ing phase. Each type of profile extracts different statistical
features from the transaction attributes, according to the type
of model built. It works under semi-supervised settings and,
once, the profiles are built, it processes new transactions and
ranks them according to their predicted risk of fraud. The
experiments with this system are particularly insightful, since,
as we will see in Section 6.4, they demonstrate that current
solutions are not ready to “smart” attackers.

The Oracle and the bank fraud detector are characterized by
the machine learning algorithm, the dataset used for training
the model, and the feature extraction method. In Table 3, we
show the complete summary of the Oracle and bank fraud
detector models. We assign to each of them an ID that, from
now on, we use to refer to them. For the hyperparameters
tuning of those models, we use the holdout method, in which
we select the last month of transactions as the validation set
and the other data for the training set. For the models O1-
O2-O3-O4-B1, which are Random Forest models, we use,
respectively, 200, 500, 200, 100, 100 estimators, and a max
depth of 14, 8, 14, 14, 14. The Neural Network (B2) has two
hidden layers with 32 and 16 units and a ReLU (Rectified
Linear Unit) function as the activation function. Finally, there
is the output layer with a Sigmoid activation function. The
two hidden layers have l2 regularizers with λ = 10−4, the loss
function we use is the binary cross-entropy optimized with
Adam optimizer. The XGB classifier (B3) has 200 estima-
tors and a max depth of 20, with a learning rate of 0.1. The
Logistic Regression classifier (B4) has an l2 regularization
with parameter C = 1

λ
= 10. The active learning model (B5)

is based on an AutoEncoder with a single encoding layer with
a size of 25 units; it has a dropout regularization with dropout
rate = 0.2. To validate each model, we use the commonly
used metrics of accuracy, precision, recall, and f1-score (see
Appendix C). To estimate the performances of the detectors
under attack, in Table 4, we show the validation scores of
each model. It is interesting to notice that the results obtained
by Banksealer (B6), currently deployed in a real banking en-
vironment, are the lowest between the considered algorithms.
This is because it was not possible to tune it like other algo-
rithms, but we kept the parameters left by banking analysts,
which tends to distrust from transactions coming from foreign
countries only.

6 Experimental Evaluation

We evaluate our evasive approach against the state-of-the-art
fraud detectors described in Section 5.2 and simulating an
attacker with different degrees of knowledge that perform
attacks by following different strategies.

Table 3: Overview of the Oracle (O1-O4) and detectors mod-
els (B1-B6). For the feature extraction strategies see Table 2

ID DATASET FEATURES EXTRACTION ALGORITHMS

STRATEGY

Oracle

O1 2012-13 A RANDOM FOREST

O2 2014-15 A RANDOM FOREST

O3 2012-13 B RANDOM FOREST

O4 2012-13 C RANDOM FOREST

Detectors

B1 2014-15 B RANDOM FOREST

B2 2014-15 B NEURAL NETWORK

B3 2014-15 B XGBOOST

B4 2014-15 B LOGISTIC REGRESSION

B5 2014-15 C ACTIVE LEARNING

B6 2014-15 BANKSEALER [11]

6.1 Attack Scenarios
As described in Section 5.1 the attacker does not have the
complete control of all the features: the beneficiary IBAN and
IBAN_CC are fixed (usually a money mule), the IP address
is a national address from which the attacker makes the con-
nection (possibly using a VPN), the Session ID is generated
for each transaction. Therefore, the features that can be fully
manipulated by the attacker are the amount and the timestamp.
The timestamps are selected by using the algorithm described
in the Section 5. Regarding the amount, we set up three dif-
ferent scenarios that represent the strategies that an attacker
could use to choose the amount and the number of frauds to
be committed. In this way, we can compare the results of the
approach against different choices of the amount.

Scenario 1. In this first scenario, the attacker has the goal to
execute 20 transactions per user of e 2,500, so the idea is to
do many transactions with a medium-low amount.

Scenario 2. The attacker has the goal to execute 10 transac-
tions per user of e 10,000, so few transactions with medium
amounts are executed.

Scenario 3. The attacker aims to execute 5 transactions per

Table 4: Scores of fraud detectors on validation data
MODEL ID ACCURACY PRECISION RECALL F1-SCORE

B1 99.7% 70.9% 96.2% 81.7%

B2 99.5% 63.9% 86.7% 73.6%

B3 99.6% 69.0% 93.6% 79.5%

B4 98.9% 34.1% 46.2% 39.2%

B5 99.5% 66.1% 89.7% 76.1%

B6 98.4% 8.5% 11.5% 9.8%

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 291

Table 5: Summary of all the scenarios
SCENARIO 1 SCENARIO 2 SCENARIO 3

Total Victims 80 160 320

Total Frauds 1600 1600 1600

Frauds per User 20 10 5

Money per Fraud e 2,500 e 10,000 e 15,000

Money per Victim e 50,000 e 100,000 e 75,000

user of e 15,000. The attacker wants to steal as much money
as possible in the short term and tries to execute a few trans-
actions with a high amount.

For each scenario, we inject about 1% (1600) of frauds3.
We choose the parameters of the three scenarios to maintain
the same overall number of frauds injected and the same total
amount stolen. A summary of the configuration of the three
scenarios is shown in Table 5.

6.2 Metrics

We evaluate the performance using 4 metrics: Injection Rate,
Evasion Rate, Attack Detection Rate, and Money Stolen.

Injection Rate. It indicates the percentage of frauds that the
attacker carries out against the user in relation to the number
of frauds targeted - i.e., it is the proportion of frauds that the
Oracle classifies as legitimate with respect to the number of
frauds that the attacker wants to perform. This metric depends
on the threshold that we set in the Oracle. The Oracle decides
whether or not a fraud is likely to be uncovered. This metric
is also useful to compare experiments based on the level of
confidence. The lower the classification threshold we set, the
lower the injection rate we have. In this way, the risk of fraud
being detected drops within specified limits.

Evasion rate. It is the percentage of frauds concealed from
the fraud detection system with respect to the frauds carried
out against the user.

Attack Detection Rate.. If we consider an attack as the set
of frauds that the attacker performs against the single user,
the Attack Detection Rate is the percentage of attacks that are
detected by the fraud detection system. Therefore, the Attack
Detection Rate can be seen as the probability that the system
detects the attacker if he or she performs the attack against
one single user.

Money Stolen. It represents the money in euro (e) that the
bank loses. This metric is significant because it is depen-
dent on all three previous metrics and the attack strategy of
the attackers (Scenario). Also, it gives an idea of the mone-
tary impact that these attacks can have on a real bank. With

3The 1% is chosen because it is a reasonable number of transactions that
the bank can inspect manually with its specialized bank analysts.

these metrics, we can capture all the main aspects to com-
pare the different experiments and measure the validity of our
approach.

Defined with N the number of the targeted victims, F the
number of frauds that the attacker wants to perform, K the
amount of money for each fraudulent transaction, Xn the num-
ber of transactions classified as legitimate by the Oracle, and
Yn with Yn <= Xn the number of transactions classified as
legitimate by the fraud detector, we can define the metrics as
follows:

In jection rate = 1/N ·∑n Xn/F
Evasion rate = 1/N ·∑n Yn/Xn
Attack Detection Rate = ∑n(Xn−Yn)/N
MoneyStolen = ∑n Y n ·K

6.3 Experimental Settings

We perform an attack for each scenario and each degree of
knowledge of the attacker. The degree of knowledge of the
attacker are described in Section 3; the scenarios are summa-
rized in Table 5. The combinations of Oracles and detectors
per degree of knowledge are summarized in Table 6. We inject
a number of frauds approximately equal to 1% of transactions
in the dataset, and we use different fraud detectors. In or-
der to choose classification thresholds, we consider that the
bank usually has the workforce to inspect about 1% of trans-
actions that are carried out each month. Thus, after sorting
transactions by anomaly score, we classify the first 1% of
transactions as fraud and the remaining ones as legitimate.
We train the fraud detectors the dataset 2014-15 using months
from October to January, while February is the one subject to
the evasion attacks. We randomly select the victims, exclud-
ing those users with less than 5 transactions in the dataset. We
perform each experiment 10 times and compute the average
value for each metric in order to have a more reliable estimate
and not biased by the selected users.

Black-Box. The attacker has zero knowledge of the fraud
detector, but he or she has obtained an old bank dataset (2012-
13), different with respect the one used by the fraud detector.
After having retrieved the transactions performed by the vic-
tim in January, he or she uses the model O1 as Oracle to
perform the evasion attack.

Black-Box with Data. The attacker has no knowledge about
the fraud detector and has retrieved the dataset (2014-15)
used for the training both the Oracle and the fraud detector.
Therefore, the attacker uses all transactions of the victim to
train the Oracle, which in this case coincides with model O2.

Gray-Box. The attacker has acquired partial knowledge about
the system. He or she knows how to extract the final features
that the detector uses as input for the machine learning algo-
rithm. Also, the attacker has retrieved the transactions per-
formed by the victim in January. Then, he or she extracts the
same features used by the fraud detector; the attacker uses

292 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Table 6: Oracle used against each bank fraud detector depend-
ing on attacker’s knowledge

ORACLE DETECTOR

ID DATASET FEAT. MODEL ID DATASET FEAT. MODEL

BLACK-BOX

O1 2012-13 A RF

B1 2014-15 B RF

B2 2014-15 B NN

B3 2014-15 B LR

B4 2014-15 B XGB

B5 2014-15 C AL

B6 2014-15 BANKSEALER

BLACK-BOX WITH DATA

O2 2014-15 A RF

B1 2014-15 B RF

B2 2014-15 B NN

B3 2014-15 B LR

B4 2014-15 B XGB

B5 2014-15 C AL

B6 2014-15 BANKSEALER

GRAY-BOX

O3 2012-13 B RF

B1 2014-15 B RF

B2 2014-15 B NN

B3 2014-15 B LR

B4 2014-15 B XGB

O4 2012-13 C RF B5 2014-15 C AL

WHITE-BOX

B1 2014-15 B RF B1 2014-15 B RF

B2 2014-15 B NN B2 2014-15 B NN

B3 2014-15 B LR B3 2014-15 B LR

B4 2014-15 B XGB B4 2014-15 B XGB

B5 2014-15 C AL B5 2014-15 C AL

B6 2014-15 BANKSEALER B6 2014-15 BANKSEALER

an Oracle based on the Random Forest algorithm, which has
shown to be the best fraud detection system. We used model
O3 and O4 as Oracles for attacking respectively fraud detec-
tors B1-B2-B3-B4 and B5. We do not perform the Gray-Box
experiment on the fraud detectors B6, since the partial knowl-
edge acquired by the attacker can not be directly applied to
perform the attack. In fact, the feature used by B6 can not
be directly used by the Oracle without re-engineering them.
This is due to the fact that B6 uses a combination of statistical
and machine-learning-based detectors with ad-hoc features.
Therefore, an attacker would resort to the Black-Box attack.
White-Box. The attacker has full knowledge of the system,
including the dataset used for the training. The attacker repro-
duces the real system and uses it as Oracle so that he or she
can perform a “perfect” attack.

6.4 Discussion on Results
In Table 7, we present the results of the experimental eval-
uation against the attacks for each scenario and degree of
knowledge of the attacker (i.e., Black-Box, Black-Box with

data, Gray-Box, and White-Box).

Black-Box. Regarding the Black-Box attack, the best strategy
for the attacker is the one represented in Scenario 3. In fact,
except for the case in which the fraud detector is based on
Logistic Regression (B4) and BankSealer (B6), in Scenario 3
we get attack detection rate values lower than in the other two
Scenarios and much higher values in terms of money stolen.
The values of evasion rate, however, remain stable in all three
scenarios, except in the case where the attack is directed to the
hybrid fraud detector (B5). This detector achieves excellent
results in terms of evasion rate and attack detection rate in
Scenario 1, where the attack is always detected (Attack Detec-
tion Rate = 100%). The performances of this fraud detector
decrease significantly with the increase of the amount of the
fraud; in Scenario 3, the Attack Detection Rate is reduced to
36%. The worst fraud detector is B4, which in Scenario 1 is
completely evaded. The performance of the attack against it
remains almost perfect also in the other two scenarios. Mod-
els B2 and B3 obtain similar values in all the metrics for all
the scenarios.

Black-Box with Data. Even for this type of attack, the best
strategy for the attacker is the one applied in Scenario 3, in
which the money stolen reaches the highest values. The fraud
detectors that best counteract the attack are B1 and B5. In
Scenario 1, they have an evasion rate of 45% and 57% re-
spectively, while the other detectors have values much higher
76%-89%-99%-99%-94%. Also, in this setting, the fraud de-
tector B4 is easily evaded in all three scenarios, reaching at
most an attack detection rate of 4% in Scenario 3. Models B2-
B3 continue to be similar, obtaining almost the same values
in all the scenarios.

Gray-Box. Also, for the Gray-Box attack, the best strategy
for the attacker is the one applied in Scenario 3, which obtains
the highest values in terms of money stolen. The worst perfor-
mances of the attack are obtained in Scenario 2, against fraud
detector B1, which has an attack detection rate of 93% and
an evasion rate of 52%. We note significant deterioration in
detection performances of detector B5, which has an evasion
rate of 90% and a detection rate of 28%, values much lower
than those obtained in other settings. Detector B4 is easily
evaded, with an evasion rate of even 100% in all three scenar-
ios. As in the other settings, detectors B2-B3 are evaded with
an average evasion rate of 85%.

White-Box. Having complete knowledge of fraud detectors,
we can perform perfect attacks. We can effectively test the
robustness of each fraud detector against a perfect attacker,
which steals the maximum amount of money but is never de-
tected. By conservatively tuning the Injection Rate, we were
able to achieve 100% Evasion Rate and 0% Attack Detection
Rate against all detectors in all scenarios. The worst perfor-
mances are obtained by model B4, which in Scenario 3 leads
the bank to a loss of about 23 million euros. Much better are
the performances of detector B6 that, instead, in Scenario 2

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 293

Table 7: Experimental results for all the evasion scenarios, attacker’s knowledge, and fraud detectors: In green the best results
from the detector point of view, in red the worst result from the detector point of view

RANDOM FOREST (B1) NEURAL NETWORK (B2) XGBOOST (B3) LOGISTIC REGRESSION (B4) AL(B5) BS [11](B6)

BLACK-BOX

S
C

E
N

A
R

IO
1 Injection Rate 58.5% 58.5% 58.5% 58.5% 58.5% 58.5%

Evasion Rate 63% 85% 80% 100% 54% 95%

Attack Detection Rate 93% 44% 69% 0% 100% 6%

Money Stolen e 650,507 e 1,585,267 e 1,265,751 e 2,329,885 e 339,544 e 2,144,541

S
C

E
N

A
R

IO
2 Injection Rate 49.6% 49.6% 49.6% 49.6% 49.6% 50%

Evasion Rate 60% 89% 84% 99% 71% 81%

Attack Detection Rate 84% 27% 49% 1% 83% 20%

Money Stolen e 2,722,586 e 6,356,793 e 5,107,460 e 7,868,793 e 2,330,346 e 5,717,647

S
C

E
N

A
R

IO
3 Injection Rate 69.7% 69.7% 69.7% 69.7% 69.7% 71%

Evasion Rate 62% 88% 87% 98% 84% 75%

Attack Detection Rate 68% 22% 26% 5% 36% 26%

Money Stolen e 8,081,496 e 13,954,723 e 13,379,473 e 16,193,353 e 11,774,757 e 11,672,400

BLACK-BOX WITH DATA

S
C

E
N

A
R

IO
1 Injection Rate 59.6% 59.6% 59.6% 59.6% 59.6% 59.5%

Evasion Rate 57% 89% 76% 99% 45% 94%

Attack Detection Rate 95% 38% 74% 1% 97% 7%

Money Stolen e 540,849 e 1,764,979 e 1,108,691 e 2,357,735 e 408,383 e 2,145,080

S
C

E
N

A
R

IO
2 Injection Rate 55.7% 55.7% 55.7% 55.7% 55.7% 56%

Evasion Rate 57% 88% 78% 100% 65% 82%

Attack Detection Rate 83% 33% 59% 1% 77% 20%

Money Stolen e 3,330,573 e 7,079,843 e 5,391,816 e 8,852,717 e 3,132,262 e 6,694,115

S
C

E
N

A
R

IO
3 Injection Rate 59.7% 59.7% 59.7% 59.7% 59.7% 60%

Evasion Rate 59% 87% 83% 98% 78% 75%

Attack Detection Rate 66% 24% 34% 4% 45% 30%

Money Stolen e 6,329,751 e 11,646,219 e 10,498,652 e 13,775,411 e 8,651,346 e 9,504,000

GREY-BOX

S
C

E
N

A
R

IO
1 Injection Rate 56.8% 56.8% 56.8% 56.8% 41.7% -

Evasion Rate 65% 88% 84% 100% 64% -

Attack Detection Rate 92% 40% 63% 1% 91% -

Money Stolen e 697,747 e 1,687,563 e 1,413,702 e 2,261,085 e 500,553 -

S
C

E
N

A
R

IO
2 Injection Rate 60.5% 60.5% 60.5% 60.5% 42.2% -

Evasion Rate 52% 85% 73% 100% 78% -

Attack Detection Rate 93% 40% 70% 0% 49% -

Money Stolen e 2,778,662 e 7,370,974 e 5,427,974 e 9,652,461 e 3,739,336 -

S
C

E
N

A
R

IO
3 Injection Rate 68.6% 68.6% 68.6% 68.6% 63.6% -

Evasion Rate 65% 93% 93% 100% 90% -

Attack Detection Rate 66% 17% 20% 0% 28% -

Money Stolen e 8,268,764 e 14,634,344 e 14,062,925 e 16,412,751 e 11,777,417 -

WHITE-BOX

S
C

E
N

A
R

IO
1 Injection Rate 39.3% 68.3% 59.4% 99.5% 30.2% 97.3%

Evasion Rate 100% 100% 100% 100% 100% 100%

Attack Detection Rate 0% 0% 0% 0% 0% 0%

Money Stolen e 1,575,986 e 2,534,932 e 2,378,945 e 3,986,408 e 1,198,900 e 3,892,000

S
C

E
N

A
R

IO
2 Injection Rate 31.2% 69,1% 57.0% 99% 31.7% 22%

Evasion Rate 100% 100% 100% 100% 100% 100%

Attack Detection Rate 0% 0% 0% 0% 0% 0%

Money Stolen e 4,978,737 e 10,923,554 e 9,126,239 e 15,830,758 e 5,059,850 e 3,520,000

S
C

E
N

A
R

IO
3 Injection Rate 32.2% 78.2% 73.2% 96.7% 27.8% 22%

Evasion Rate 100% 100% 100% 100% 100% 100%

Attack Detection Rate 0% 0% 0% 0% 0% 0%

Money Stolen e 7,697,218 e 18,237,258 e 17,567,217 e 23,195,258 e 6,647,723 e 5,280,000

294 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

and 3, significantly reduces the losses of the bank. The results
show that the increase in the degree of knowledge of the at-
tacker does not lead to significant improvements in attack per-
formance. For example, in the attacks against model B2 based
on Neural Network, we have an evasion rate of 85-89-88% for
the Black-Box setting in Scenarios 1, 2, and 3, respectively
and 88-85-93% in the Gray-Box one. The injection rate and
the evasion rate are dependent on the classification threshold
used by the Oracle to determine if a transaction is a fraud or
legitimate and, therefore, to determine if the attacker has to
carry out the transaction. The stolen money depends both on
the injection rate and on the evasion rate and therefore gives
us a basis for comparing the different attacks. Even looking at
the stolen money, we do not notice excessive improvements
in the attacks in which the attacker has a higher degree of
knowledge of the system. So, we can state that the isolated
knowledge of the dataset and the knowledge of the feature
extraction method does not bring significant advantages in
conducting an attack following our approach. However, if the
attacker has both pieces of knowledge and also knows the ma-
chine learning algorithm employed by the fraud detector, he
can perform a White-Box attack that instead manages to hide
perfectly the frauds. The experiments also show that the bank
would lose a significant amount of money if many fraudsters
were using this method, but we must take into account that
this attack is not easily deployable in the real world because
there are significant obstacles. First of all, the attacker needs
a banking dataset, which is very difficult to obtain because
the banks keep their data very carefully and do not release
them. Besides, this approach is perilous for the attacker, in
the case of Black-Box the model based on random forest (B1)
has an attack detection rate higher than 68%, this means that
an attacker has about 32% chance of performing an entire
attack without being detected and then prosecuted by law
for the crime committed. One last important consideration
concerns fraud detectors: the results show that if the attack is
performed on a simple fraud detector, with low performance
(e.g., Logistic Regression, B4) also the Black-Box attack gets
excellent results: with an attack detection rate of 0% in the
case of the first scenario, 1% in the second and 5% in the case
of the third scenario. A similar consideration can be made
on the system currently deployed by the banking institution
we collaborated with (i.e., Banksealer, B6). Very different is
the case of the fraud detector based on Random Forest (B1),
which is much more robust detecting 93% of the attacks in
the first scenario, 84% in the second and 68% in the third. So
we can state that the choice of the fraud detector is crucial for
a bank to reduce money losses. In our experiments, the fraud
detector based on Random Forest has a bound of money loss
(determined by White-Box tests) of about one-third of the one
we have with the fraud detector based on Logistic Regression.

7 Limitations and Future Works

Besides the assumptions made in Section 5, there are few
more thing that needs to be clarified. Even if we had two
real datasets provided by a banking group, we had to rely
on domain experts (bank operators) to enrich our datasets
with synthetic frauds and compensate for the lack of labels.
This represents only a partial limitation; although we did
not have real fraud flagged, we accurately modeled synthetic
frauds, and the standard behavior of users was real and legit.
A possible limitation regards the source of datasets. Both
datasets used in the experiments belong to the same bank but
in different periods. Therefore, we were able to evaluate only
the transferability of an attack in the same domain. Also, this
limited data source partially affects the representativeness
of the experiment and may underestimate real-world fraud
detection mechanisms’ effectiveness. Financial institutions
have significantly more flexibility with training data to build
effective models and re-train them periodically. Interesting
future works can use heterogeneous datasets that span over
a longer time frame, perhaps from two or more banks, to
compare its performance results with the one presented in this
work, also evaluating the impact of the training dataset on the
effectiveness of the approach.

Unlike the current approach that models the spending be-
havior of each user, future works may investigate the possibil-
ity for an adversary to cluster banking customers to generate
a generic model per cluster. This could generalize the results
better and theoretically reduce some of the costs associated
with the attacks. Also, an extension of the present work, which
was focused on study how well the detector performed when
being attacked by evasion attacks, may consist in an evalua-
tion of the impact of the false positives of the different fraud
detection systems employed by banks. Even if some detection
systems are less susceptible to evasion attacks, they may be
characterized by high false-positive rates, thus costing money
in terms of analysis time and might be less likely adopted
by financial institutions. Finally, we believe that a promis-
ing future work may explore how the behavior of users can
change over time: in the long term, the change can derive
from variation in the purchasing power of the user, in the
short term there may instead be extraordinary expenses such
as the purchase of a car. This phenomenon is called “concept
drift” and must be taken into account by the fraud detection
system. To manage concept drift, often, the bank adopts an
online-training technique. The model is re-trained with the
last transactions after ensured that these are not frauds. An
attacker could then exploit the Oracle approach to perform a
data poisoning attack. He or she can conceal frauds and con-
sequently shift in his favor the classification boundary of the
fraud detector, creating the opportunities for new frauds. So it
would be interesting to deepen the study of a data poisoning
attack based on our Oracle approach.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 295

8 Conclusions

In this paper, we developed a novel approach to perform eva-
sion attacks by overcoming the issues we found in the ap-
plication of AML techniques to the field of banking fraud
detection. We validate this approach by simulating an attacker
that performs the attack against state-of-the-art fraud detection
systems under different conditions. Our approach assumes
that the attacker has a banking dataset at his disposal and can
control the transactions of his victims. The results of the exper-
iments show that a reasonable evasion rate is reachable even
in the case of a Black-Box attack, in which the attacker does
not have any information on the target fraud detection system.
These results are strictly dependent on the fraud detector and
range from the 60% of evasion rate in the case of a fraud
detector based on Random Forest to the 100% in the case of
a fraud detector based on Logistic Regression. A daunting
fact for a real attacker is that the probability that the attack is
detected after a certain number of successful frauds is about
66% in the case of fraud detectors based on Random Forest,
so it is very inconvenient to use the approach to execute a real
attack. An interesting future challenge would be the study of
a data poisoning attack based on our approach. Since many
fraud detectors use online training (i.e., they retrain regularly
using the transactions that have been classified as legitimate),
it may be possible to apply our approach to conceal frauds and
study how to drift the classification threshold of the detector
in order to compromise the detection performance.

References

[1] Alejandro Correa Bahnsen, Djamila Aouada, Aleksan-
dar Stojanovic, and Bjorn Ottersten. Feature engineering
strategies for credit card fraud detection. Expert Systems
with Applications, 51:134–142, 2016.

[2] Siddhartha Bhattacharyya, Sanjeev Jha, Kurian
Tharakunnel, and J Christopher Westland. Data mining
for credit card fraud: A comparative study. Decision
Support Systems, 50(3):602–613, 2011.

[3] Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learn-
ing at test time. In Joint European conference on ma-
chine learning and knowledge discovery in databases,
pages 387–402. Springer, 2013.

[4] Battista Biggio, Giorgio Fumera, and Fabio Roli. Se-
curity evaluation of pattern classifiers under attack.
IEEE transactions on knowledge and data engineering,
26(4):984–996, 2013.

[5] Battista Biggio and Fabio Roli. Wild patterns: Ten years
after the rise of adversarial machine learning. Pattern
Recognition, 84:317–331, 2018.

[6] R Brause, T Langsdorf, and Michael Hepp. Neural data
mining for credit card fraud detection. In Proceedings
11th International Conference on Tools with Artificial
Intelligence, pages 103–106. IEEE, 1999.

[7] Leo Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[8] Nicholas Carlini and David Wagner. Towards evaluat-
ing the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57.
IEEE, 2017.

[9] Michele Carminati, Alessandro Baggio, Federico Maggi,
Umberto Spagnolini, and Stefano Zanero. Fraudbuster:
temporal analysis and detection of advanced financial
frauds. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 211–233. Springer, 2018.

[10] Michele Carminati, Roberto Caron, Federico Maggi, Ile-
nia Epifani, and Stefano Zanero. Banksealer: An on-
line banking fraud analysis and decision support system.
In IFIP International Information Security Conference,
pages 380–394. Springer, Berlin, Heidelberg, 2014.

[11] Michele Carminati, Roberto Caron, Federico Maggi, Ile-
nia Epifani, and Stefano Zanero. Banksealer: A decision
support system for online banking fraud analysis and
investigation. computers & security, 53:175–186, 2015.

[12] Michele Carminati, Mario Polino, Andrea Continella,
Andrea Lanzi, Federico Maggi, and Stefano Zanero. Se-
curity evaluation of a banking fraud analysis system.
ACM Transactions on Privacy and Security (TOPS),
21(3):11, 2018.

[13] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785–794. ACM, 2016.

[14] Andrea Continella, Michele Carminati, Mario Polino,
Andrea Lanzi, Stefano Zanero, and Federico Maggi.
Prometheus: Analyzing webinject-based information
stealers. Journal of Computer Security, 25(2):117–137,
2017.

[15] Andrea Dal Pozzolo, Olivier Caelen, Yann-Ael
Le Borgne, Serge Waterschoot, and Gianluca Bontempi.
Learned lessons in credit card fraud detection from
a practitioner perspective. Expert systems with
applications, 41(10):4915–4928, 2014.

[16] Hung Dang, Yue Huang, and Ee-Chien Chang. Evading
classifiers by morphing in the dark. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 119–133. ACM, 2017.

296 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

[17] Ambra Demontis, Marco Melis, Maura Pintor, Matthew
Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-
Rotaru, and Fabio Roli. Why do adversarial attacks
transfer? explaining transferability of evasion and poi-
soning attacks. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 321–338, 2019.

[18] Jose R Dorronsoro, Francisco Ginel, C Sgnchez, and
Carlos S Cruz. Neural fraud detection in credit card oper-
ations. IEEE transactions on neural networks, 8(4):827–
834, 1997.

[19] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. arXiv preprint arXiv:1412.6572, 2014.

[20] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial
examples for malware detection. In European Sympo-
sium on Research in Computer Security, pages 62–79.
Springer, 2017.

[21] Ron Kohavi and George H John. The wrapper approach.
In Feature extraction, construction and selection, pages
33–50. Springer, 1998.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[23] Nicolas Papernot, Patrick McDaniel, and Ian Goodfel-
low. Transferability in machine learning: from phe-
nomena to black-box attacks using adversarial samples.
arXiv preprint arXiv:1605.07277, 2016.

[24] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on
computer and communications security, pages 506–519.
ACM, 2017.

[25] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In
2016 IEEE European Symposium on Security and Pri-
vacy (EuroS&P), pages 372–387. IEEE, 2016.

[26] Kuldeep Randhawa, Chu Kiong Loo, Manjeevan Seera,
Chee Peng Lim, and Asoke K Nandi. Credit card fraud
detection using adaboost and majority voting. IEEE
access, 6:14277–14284, 2018.

[27] Konrad Rieck, Philipp Trinius, Carsten Willems, and
Thorsten Holz. Automatic analysis of malware behavior
using machine learning. Journal of Computer Security,
19(4):639–668, 2011.

[28] Robin Sommer and Vern Paxson. Outside the closed
world: On using machine learning for network intrusion
detection. In 2010 IEEE symposium on security and
privacy, pages 305–316. IEEE, 2010.

[29] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[30] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and
Lior Wolf. Deepface: Closing the gap to human-level
performance in face verification. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 1701–1708, 2014.

[31] Véronique Van Vlasselaer, Cristián Bravo, Olivier Cae-
len, Tina Eliassi-Rad, Leman Akoglu, Monique Snoeck,
and Bart Baesens. Apate: A novel approach for au-
tomated credit card transaction fraud detection using
network-based extensions. Decision Support Systems,
75:38–48, 2015.

[32] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Kor-
rapati, Constantinos Bassias, and Ke Li. Aiˆ 2: training
a big data machine to defend. In 2016 IEEE 2nd In-
ternational Conference on Big Data Security on Cloud
(BigDataSecurity), IEEE International Conference on
High Performance and Smart Computing (HPSC), and
IEEE International Conference on Intelligent Data and
Security (IDS), pages 49–54. IEEE, 2016.

[33] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. Grammar as a
foreign language. In Advances in neural information
processing systems, pages 2773–2781, 2015.

[34] David J Weston, David J Hand, Niall M Adams, Christo-
pher Whitrow, and Piotr Juszczak. Plastic card fraud
detection using peer group analysis. Advances in Data
Analysis and Classification, 2(1):45–62, 2008.

[35] Christopher Whitrow, David J Hand, Piotr Juszczak,
D Weston, and Niall M Adams. Transaction aggregation
as a strategy for credit card fraud detection. Data mining
and knowledge discovery, 18(1):30–55, 2009.

[36] Vladimir Zaslavsky and Anna Strizhak. Credit card
fraud detection using self-organizing maps. Information
and Security, 18:48, 2006.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 297

A Features extracted

The directly derivable features we use are:

• amount. Amount of the transaction in euro (e), without
any type of transformation.

• time_x, time_y. These two features are computed from
the Timestamp. The time is cyclical and we must be
careful when deciding how to encode it as input to the
machine learning model. If we encode hours as integers
we have a problem: the distance computed, for example
between 23 and 22 is 23− 22 = 1, while the distance
that it calculates between midnight and 23 is 0−23 =
−23.We need to change the encoding of the features
such that midnight and 23 are the same distance apart as
any other two hours. A common method for encoding
cyclical data is to transform the data into two dimensions
using a sine and cosine transformation. So time_x and
time_y are:t ← tsh · 3600+ tsmin · 60+ tssec, time_x =
cos t·2π

86400 , time_y = sin t·2π

86400

• is_national_iban. A Boolean value indicating if the ben-
eficiary’s IBAN is national.

• is_national_asn. A Boolean value indicating if the con-
nection of the coming transaction has a national IP Ad-
dress.

• is_international. A Boolean value indicating if the con-
nection comes from a country different from the one of
the beneficiary IBAN.

• operation_type. It is one-hot-encoded, so the three op-
erations become respectively op_type_1, op_type_2,
op_type_3

• confirm_sms. A Boolean value indicating if the transac-
tion requires a confirmation sms.

The features obtained by aggregating transactions are:

• group_function_time. Consider function, group, time as
variable. A function is computed on the user transactions
grouped by group for a rolling window of size time.

• group can be: IBAN, IBAN_CC, IP, CC_ASN, Ses-
sionID an none, if we want to group only by user and
take all the transactions of that user.

• function can be:

– count. It counts the number of transactions in the
considered window

– sum. It computes the sum of the transactions
amounts in the considered window

– mean. It computes the mean of the transactions
amounts in the considered window

– std. It computes the standard deviation of the trans-
actions amounts in the considered window

• time can be: 1 hour, 1 day, 7 days, 30 days and none, if
we want to aggregate all the transaction regardless of the
time

• time_since_last_group. Indicates the time in hours
elapsed from the last transaction among those obtained
by grouping the transactions by user and by group.

• group_distance_from_mean. Indicates the L1 distance
of the transaction amount with respect to the mean
amount of the transactions obtained by grouping the
transactions first by user then by group.

• is_new_iban. A Boolean value indicating if it is the first
time the user made a transaction to that IBAN.

• is_new_iban_cc. A Boolean value indicating if it is the
first time the user made a transaction to an IBAN from
that country.

• is_new_ip. A Boolean value indicating if it is the first
time the user made a transaction coming from that IP
Address.

• is_new_cc_asn. A Boolean value indicating if it is the
first time the user made a transaction coming from that
country.

B Adversarial Machine Learning Approaches

There are many studies on how to craft adversarial samples.
Szegedy et al. [29] generate adversarial examples using

box-constrained optimization method Limited Memory Broy-
den Fletcher Goldfarb Shanno (LBFGS). Given an image x
and a function f (x), that maps image pixels vector to a dis-
crete label, and assuming that f has an associated loss func-
tion denoted by loss f , their method finds a different image x′

similar to x under L2 distance, yet is labeled differently by the
classifier. They model the problem as a constrained minimiza-
tion problem: minimize ‖x− x′‖2

2, subject to f (x′) = l
and x′ ∈ [0,1]n. In particular, they found an approximate so-
lution by solving the analogous problem: minimize ‖x−
x′‖2

2 + lossF,l(x′), subject tox′ ∈ [0,1]n. The final result is the
the minimum c > 0 for which x−x′ satisfies f (x′) = l, where
l is the target label.

Goodfellow et al., proposed the Fast Gradient Sign Method
(FGSM) [19] that is designed primarily to be as fast as pos-
sible instead of accurately producing an adversarial sample
(i.e., it is not meant to produce minimal perturbed adversar-
ial samples). Moreover, it is optimized for the L∞ distance
metric. Given an image x, it computes the adversarial sam-
ple x′ = x−ε · sign(∇lossF,t(x)), where t represents the target

298 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Table 8: Success Rate and Transferability of the three AML
methods

SUCCESS RATE TRANSFERABILITY

GRADIENT METHOD 99.3% 16.1%

JSMA 98.2% 16.1%

CARLINI & WAGNER L2 12% 9.3%

label and ε is chosen to ensure misclassification without ex-
cessively altering the image.

The attack proposed by Papernot et al. [25] is known un-
der the name of Jacobian Saliency Map Approach (JSMA)
and it is based on a L0 distance. This attack is based on a
greedy algorithm in which, at each iteration, a saliency map
is built based on the gradient of the output neural network
with respect to the input image. This saliency map indicates
the impact of each pixel (i.e., how much each pixel influences
the outcome of the classification) and, at each iteration, the
most significant pixel is perturbed. The method iterates until
either the sample is misclassified by the classifier or pixels
are modified more than a threshold.

Carlini&Wagner [8] designed three attacks tailored to three
distance metrics: L2,L0,L∞ distances. In L2 Attack, given an
image sample x, a target class t s.t. t 6= C∗(x), they find w
by solving this optimization problem: minimize‖ 1

2 (tanhw+

1)− x‖2
2 + c · f (1

2 (tanhw+1)), where f , which is defined as
f (x′) = max(max{Z(x′)i : i 6= t}−Z(x′)t ,−κ), is the objec-
tive function and κ is a parameter that allows to tune the
confidence of the adversarial sample. In L0 Attack, since the
L0 distance metric is non-differentiable it is not possible to
use the standard gradient descent, so they decided to use an
iterative algorithm. At each iteration they identify, through the
L2 attack, which pixel influence less the output of the classifier
and fix its value so that it will never be changed. By doing this,
the set of fixed pixels grows at each iteration, until a minimal
subset of modifiable pixels is identified. In L∞ Attack, since
the L∞ distance metric is not fully differentiable and standard
gradient descent does not perform, a different iterative attack
is put in place. At each iteration the following optimization
problem is solved: minimizec · f (x+ δ) +∑i[(δi− τ)+], in
which if δi < τ for all i, they reduce τ by a factor of 0.9 and
repeat; otherwise they terminate the search.

B.1 Evaluation of standard AML approaches
for Fraud Detection

As highlighted in Section 2, the issues in performing eva-
sion attacks based on standard AML algorithms in the fraud
detection domain are mainly practical. It would be challeng-
ing (if not infeasible) for an attacker to perform a real bank
transfer (i.e., a real transaction) representing the adversar-
ial sample returned as output by the AML algorithm. The

Algorithm 2 Craft Adversarial Samples. X is the benign
sample,sub Y ∗ is the NN output, F is the function learned by
the NN during training, ϒ is the maximum distortion, θ is the
change made to features, C is a confidence parameter

1: procedure GRADIENTMETHOD(X ,Y ∗,F,ϒ,θ,C)
2: X∗← X
3: while F(X∗) 6= Y ∗+C and ‖δX‖< ϒ do
4: G = ∇F(X∗)
5: S = sign(G)
6: A = abs(S)
7: X∗i← X ∗i +θis.t. imax = argmaxI(A) ·S
8: δX ← X∗−X
9: end while

10: return X∗

11: end procedure

reason resides in which features are modified and how. As
shown in Figure 3, the perturbed features are the aggregated
ones; hence, an attacker, to perform an evasion attack, should
then extract the direct features that correspond to valid, real
transactions under the constraints that, once aggregated, they
produce coherent aggregated features. If we add the practi-
cal domain constraints presented in Section 2, this problem
may be not feasible in terms of resources and return for an
attacker. However, for the sake of completeness, we evaluate
AML techniques to measure the theoretical performance of
such attacks in our domain. In particular, we make use of
the following algorithms: Carlini & Wagner l2 [8], Jacobian
Saliency Map Approach [25], and a simple approach based
on the computation of the gradient whose algorithm is shown
by Pseudocode 2.

For this evaluation, we use two models: a Neural Network,
necessary for applying the AML algorithms, and a Random
Forest classifier that acts as the bank fraud detector. We used
the dataset 2012-13 as the training set and the same features
used for the Oracle in the previous experiments, shown in Ta-
ble 2, to train the Artificial Neural Network with two hidden
layers: the first with 32 units and the second with 16 units. We
used ReLU as the activation function for the hidden layers,
while for the output layer, we used the Softmax function and
two neurons. We extracted frauds from dataset 2012-13, then
we perturbed these frauds using the three AML approaches
that are based on the neural network to compute the gradi-
ents. In order to test transferability, we used, as a bank fraud
detector, the model O1 from Table 3, which is trained on
the same dataset as the Neural Network and also uses the
same aggregation method. In order to evaluate our results,
we used the metrics defined by Papernot et al. [24]: success
rate and transferability. The success rate is the proportion
of adversarial samples misclassified by the Neural Network.
The transferability of adversarial samples refers to the ran-
dom forest (O1) misclassification rate of adversarial samples
crafted using the Neural Network. The results in Table 8 show

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 299

Figure 3: The heatmap shows how much each feature has been perturbed as a percentage of its initial value. For example,
1.0 means that the value of that feature has been doubled, it is increased by 100% compared with the initial value

poor performance, and also, to achieve those results, we need
to apply wide perturbations to the initial samples, as we can
see from the heatmap in Figure 3.

C Machine Learning Metrics

We present the most common metrics used to evaluate the
quality of a machine learning model. The terms True Positive
(TP), False Positive (FP), True Negative (TN), False Negative
(FN), are used to compare the results of the classifier under
test with trusted ground truth. The terms positive and negative
refer to the classifier prediction while the terms true and false
refer to whether that prediction corresponds to the external
ground truth. In our work, the positive class represents the
frauds, and the negative represents legitimate transactions.
The most used metrics derived with those terms are:

- Accuracy. It represents the percentage of correctly

classified instances and it is defined as Accuracy =
t p+tn

t p+tn+ f p+ f n .

- Precision. It is also called positive predictive value and
is defined as the fraction of relevant instances among the
retrieved instances and it can be defined as: Precision =

t p
t p+ f p .

- Recall. It is also known as sensitivity or true positive
rate. It is defined as the fraction of the total amount of
relevant instances that were actually retrieved and can
be defined as : Recall = t p

t p+ f n .

- F1-Score. It is the harmonic mean of the precision and
recall. F1 score reaches its best value at 1 (perfect pre-
cision and recall) and worst at 0 and can be defined as:
F1−Score = 2 · precision·recall

precision+recall

300 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

	Introduction
	Background And Related Works
	Threat Model
	Attacker's Goal
	Attacker's Knowledge
	Attacker's Capability

	Datasets Analysis and Engineering
	Feature Extraction Strategies
	Dataset Augmentation: Synthetic Frauds

	Approach
	Candidate Transaction Generation
	Oracles and Fraud Detectors.

	Experimental Evaluation
	Attack Scenarios
	Metrics
	Experimental Settings
	Discussion on Results

	Limitations and Future Works
	Conclusions
	Features extracted
	Adversarial Machine Learning Approaches
	Evaluation of standard AML approaches for Fraud Detection

	Machine Learning Metrics

