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Differential privacy in one slide

Differential privacy: the impact of a single person must be undetectable.
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Randomized output

Counting the number of records: 
the true answer is either 100 or 101

😈
🔍



What happens to our continuous line?



Why does this happen?

def add_noise(true_value, epsilon):  

  sign = random.choice([-1, 1])

  u = random.uniform(0, 1)

  noise = sign * math.log(u) / epsilon

  return true_value + noise

This does not generate all possible 
floating-point values between 0 and 1!

This creates “holes” — impossible 
values — in the noise distribution…

And the “holes” propagate to the 
sum.



def add_noise(true_value, epsilon):  

  sign = random.choice([-1, 1])

  u = random.uniform(0, 1)

  noise = sign * math.log(u) / epsilon

  return true_value + noise

Let’s fix the noise generation!

Attempt 1: fixing the noise generation 
to get a distribution without “holes”.

Attempt 2: combining multiple noise 
samples together to make it intractable 

to reverse-engineer the randomness.😈
But… what about the 
sum at the very end?



Fun fact about floating-point addition…



Fun fact about floating-point addition…

😈
What if we add noise to 1.25?

It has precision 2-52.



If the noise is small…

Fun fact about floating-point addition…

😈



If the noise is small…

Fun fact about floating-point addition…

If the noise is small…
the sum’s precision is at least 2-53.😈



Fun fact about floating-point addition…

If the noise is large…

😈



Fun fact about floating-point addition…

If the noise is large…
the sum is a multiple of 2-53!😈



Takeaway: this is bad news

😈 When adding noise to a number of precision 2k,
we always get a multiple of 2k-1.

true value: 1.25

true value: 0



How do we fix it?

def add_noise(true_value, epsilon):  

  sign = random.choice([-1, 1])

  u = random.uniform(0, 1)

  noise = sign * math.log(u) / epsilon

  return true_value + noise

We need to fix the entire routine,
not just the noise generation!
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General aim
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Generate the distribution 
centered on the true value

Use the inverse of the 
cumulative distribution function
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Sample intervals instead
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Interval refining
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Interval refining

97 100
0

1

0.5



103

Interval refining
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Rounding the interval

64-bit floating-point values

?

?



Termination condition

64-bit floating-point values



One more detail... interval arithmetic
Arbitrary precision 

decimal values

64-bit floating-point values



- Simple security proof: “just like” infinite-precision sampling + rounding! 💡

- Fully generic: works with many distributions, adapts to other methods! ✨

- Fast: converges quickly, especially if we generate many bits at a time 🏎

Why this is neat



Takeaways

- Differential privacy can have vulnerabilities! 😱

- To fix them, ad hoc approaches are not robust enough 🚫

- But principled approaches can be simple (and fast) enough! 🎉

- What do you need to do? Nothing — just use a library with a proven fix 😇



Impact & mitigations

Library Status Comments

SmartNoise Core Vulnerable, won’t fix Project was deprecated

Diffprivlib Vulnerable, not fixed Snapping mechanism available for 
Laplace, no fixes for other distributions

OpenDP Vulnerable, then fixed Configurable discretization parameter,  
doesn’t generalize

GoogleDP Not vulnerable Fixed discretization parameter,
small privacy cost, doesn’t generalize

Tumult Analytics Not vulnerable Hyperparameter-free, generalizes ✨

Thanks to everyone who ships open-source code 💚 



Stay in touch!
 

We’re Sam Haney and 
Damien Desfontaines on 

the PEPR Slack 🌶

Learn more!
 

About us: tmlt.io
About our code: tmlt.dev

Thank you 💖


