
How to break, then fix,
differential privacy on finite computers

Damien Desfontaines
damien@desfontain.es

@TedTed@hachyderm.io

Or: what do you do when x + y = privacy vulnerability?

Samuel Haney
sam.haney@tmlt.io

Differential privacy in one slide

Differential privacy: the impact of a single person must be undetectable.

99 100 101 102 103 104 105 106

Pr
ob

ab
ili

ty

989796

Randomized output

Counting the number of records:
the true answer is either 100 or 101

😈
🔍

What happens to our continuous line?

Why does this happen?

def add_noise(true_value, epsilon):

 sign = random.choice([-1, 1])

 u = random.uniform(0, 1)

 noise = sign * math.log(u) / epsilon

 return true_value + noise

This does not generate all possible
floating-point values between 0 and 1!

This creates “holes” — impossible
values — in the noise distribution…

And the “holes” propagate to the
sum.

def add_noise(true_value, epsilon):

 sign = random.choice([-1, 1])

 u = random.uniform(0, 1)

 noise = sign * math.log(u) / epsilon

 return true_value + noise

Let’s fix the noise generation!

Attempt 1: fixing the noise generation
to get a distribution without “holes”.

Attempt 2: combining multiple noise
samples together to make it intractable

to reverse-engineer the randomness.😈
But… what about the
sum at the very end?

Fun fact about floating-point addition…

Fun fact about floating-point addition…

😈
What if we add noise to 1.25?

It has precision 2-52.

If the noise is small…

Fun fact about floating-point addition…

😈

If the noise is small…

Fun fact about floating-point addition…

If the noise is small…
the sum’s precision is at least 2-53.😈

Fun fact about floating-point addition…

If the noise is large…

😈

Fun fact about floating-point addition…

If the noise is large…
the sum is a multiple of 2-53!😈

Takeaway: this is bad news

😈 When adding noise to a number of precision 2k,
we always get a multiple of 2k-1.

true value: 1.25

true value: 0

How do we fix it?

def add_noise(true_value, epsilon):

 sign = random.choice([-1, 1])

 u = random.uniform(0, 1)

 noise = sign * math.log(u) / epsilon

 return true_value + noise

We need to fix the entire routine,
not just the noise generation!

105

General aim

95

0.5

0

1

100

Generate the distribution
centered on the true value

Use the inverse of the
cumulative distribution function

105

Sample intervals instead

95 100

0.5

0

1

105

Interval refining

95 100
0

1

0.5

103

Interval refining

97 100
0

1

0.5

103

Interval refining

97 100
0

1

0.5

Rounding the interval

64-bit floating-point values

?

?

Termination condition

64-bit floating-point values

One more detail... interval arithmetic
Arbitrary precision

decimal values

64-bit floating-point values

- Simple security proof: “just like” infinite-precision sampling + rounding! 💡

- Fully generic: works with many distributions, adapts to other methods! ✨

- Fast: converges quickly, especially if we generate many bits at a time 🏎

Why this is neat

Takeaways

- Differential privacy can have vulnerabilities! 😱

- To fix them, ad hoc approaches are not robust enough 🚫

- But principled approaches can be simple (and fast) enough! 🎉

- What do you need to do? Nothing — just use a library with a proven fix 😇

Impact & mitigations

Library Status Comments

SmartNoise Core Vulnerable, won’t fix Project was deprecated

Diffprivlib Vulnerable, not fixed Snapping mechanism available for
Laplace, no fixes for other distributions

OpenDP Vulnerable, then fixed Configurable discretization parameter,
doesn’t generalize

GoogleDP Not vulnerable Fixed discretization parameter,
small privacy cost, doesn’t generalize

Tumult Analytics Not vulnerable Hyperparameter-free, generalizes ✨

Thanks to everyone who ships open-source code 💚

Stay in touch!

We’re Sam Haney and
Damien Desfontaines on

the PEPR Slack 🌶

Learn more!

About us: tmlt.io
About our code: tmlt.dev

Thank you 💖

