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Data Analyst

Department of Education

Wants (a view of) the data
h

College Degree
DUKE UNIVERSITY BACHELORS

Data Custodian iz

Internal Revenue Service

Has earnings data (~150m tax payers)
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Data Analyst

Department of Education

Data Custodian
Internal Revenue Service

Must comply with regulation (US Title 26)
Bound by law to protect all information provided on Has defined and prioritized analytic tasks

tax returns (even fact of filing).

Can describe “fitness-for-use” standards for tasks

Must avoid privacy attacks




Data Custodian
Internal Revenue Service

Must comply with regulation
Bound by law to protect all information provided on

tax returns (even fact of filing).

Must avoid privacy attacks

Bad outcome:
Lost insights, inability to

complete analysis, incorrect
conclusions, faulty decision-

making
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Data Analyst

Department of Education

Has defined and prioritized analytic tasks

Can describe “fitness-for-use” standards for tasks

Higher Risk

Bad outcome:
Privacy breach, violation of

regulation, loss of institutional

trust




Informal privacy protection methods

“Informal” privacy protection:
(1) Ad-hoc distortion of income statistics

(2) Suppression of all statistics for groups deemed too small
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Adoption of differential privacy

“Informal” privacy protection:
(1) Ad-hoc distortion of income statistics erential privacy

(2) Suppression of all statistics for groups deemed too smalli
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Steadily increasing requests for data

“Informal” privacy protection:
(1) Ad-hoc distortion of income statistics

(2) Suppression of all statistics for groups deemed too smalli

R, U-S. DEPARTMENT OF EDUCATION R U.S. DEPARTMENT OF EDUCATION PR, U-S. DEPARTMENT OF EDUCATION TP VS DEPARTMENT OF EDUCATION
¥ College Scorecard &/ College Scorecard ) College Scorecard \ ) el eeereea

FIND THE RIGHT FIT. FIND THE RIGHT FIT. FIND THE RIGHT FIT. FIND THE RIGHT FIT.
Find out about colleges: their programs, costs, admissions, results, and more. Find out about colleges: their programs, costs, admissions, results, and more. Find out about colleges: their programs, costs, admissions, resuts, and more. Find out about colleges: their programs, costs, admissions, results, and more.
CUSTOM SEARCH  NAME SEARCH  SHOW M| CUSTOM SEARCH  NAME SEARCH  SHOW M| CUSTOM SEARCH  NAME SEARCH  SHOW M| CUSTOM SEARCH  NAME SEARCH  SHOW M|

>

From
INSTITUTION level
To
PROGRAM level

“Breakouts” by From MEDIAN (P50) COUNTS
GENDER and To Students earning above
PELL STATUS P25, P50, and P75 1.5 * Poverty Threshold



Increased risk for the data custodian

Tough questions for the data custodian
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How much additional risk for more
detailed statistics?

How much Iis my privacy risk growing
with each annual release?

What if one individual appears in
multiple cohorts?

How should | respond: how much
more distortion? How much more
suppression?
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Adoption of differential privacy

“Informal” privacy protection:
(1) Ad-hoc distortion of income statistics | erential privacy

(2) Suppression of all statistics for groups deemed too smalli
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Differential privacy can help the
custodian understand incremental
risk and respond appropriately.



Differential privacy

a standard for computations on data
that limits the personal information that could be revealed by the output.

Guarantee of
R R R AR AR R R R R R RE R R Iimited disclosure ................................................... .
about input

DP analytics
output
FIRST LAST ZIP SEX AGE ECOG ICD-10 _-" _ _ _ ."
Differentially Private (DP)
g Analytics — >

 Every individual protected.

 Every attribute protected.

Sensitive individual-level data * The guarantee holds, regardless of
compute power or knowledge of
potential attacker.

e Resists current and future attacks



A workflow for deploying differential privacy

Elicit Requirements Prototype Algorithm Identify Parameters
. _® Algorithmic strategy to @ Epsilon shares
® Statistics requested % compute released statistics ™ # e User contributions

® Privacy/accuracy

. with differential privacy ® Suppression conditions
requirements

— Interactively with analysts / stakeholders ———

Finalize & Deploy

~ ® Finalize algorithm and

$ parameters

® Deploy and generate final
data product

® \isualize privacy loss vs
fitness-for-use tradeoffs

B Adjust “levers” — algorithm
| parameters




Outcome measures
“fithess-for-use”
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i Pure DP:
.+ g_total = 2.0

o . User contribution:%
. | Suppression threshold: 15 : : record =

NO CONTROVERSY —Custodian & Analyst Both Win!

4 )
e Are we using error-optimal DP algorithms?

35%

e Can we get more data?
\_ J
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Outcome measures
“fithess-for-use”

Release description Measures describing “fitness-for-use”
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Relative Error
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Analyst can add or remove to the released statistics)
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35%

Custodian sets bound on privacy loss
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Analyst can adjust algorithm parameters ]
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Data Custodian
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Outcomes

Utility

More student earnings statistics than previous releases,
with comparable accuracy.

Assurance and risk management

A rigorous, guantifiable privacy guarantee to guide
decision-making about privacy risk.

Ease-of-use

Streamlined communication about privacy / accuracy
tradeoffs.

Data Analyst

Department of Education
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Conclusions and challenges

* Differential privacy encourages * Calculating and communicating
custodians and analysts to error to analysts and stakeholders
carefully consider data uses and Is challenging (and could incur its
fithess-for-use standards. own privacy loss!)

A move from “universal” data
products to customized data  Data consumers don’t want to see
products. high error outputs; they prefer them
to be suppressed, even when error
« Tools to support iterative IS quantified.

exploration and negotiation are
essential, but don’t exist in most
privacy platforms.
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Thank you!

Questions?

g%u l-T www.tmlt.io/connect

LABS miklau@tmilt.io
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