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Importance of Location Privac

« Location data enables numerous applications

* recommendations [Levandoski et al. 2012]
* mental health research [Canzian and Musolesi 2015, Palmius et al. 2016]

* Location data is sensitive

* home/work location
« visit to a hospital, political
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* Location privacy solutions are
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Location Privacy Research

« Numerous location privacy methods proposed in the last two decades

* 60+ studied in [Primault et al. 2019]

e QOur focus: local & online

» users have a sense of control
* data is available immediately

Client Study or App Server
* Promise for practical deployment

* Analogous to the LDP model for non-location data
» Android users specify location sharing preferences for apps
« Effort to open-source local online privacy methods, e.g., Geopriv4j [Fan and Gunja 2020]

@ Location

e approximate location (network-based)
e precise location (GPS and network-based)
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Goals of this work

Adoption of Location Privacy

e Challenge 1: understand the impact of location privacy
on usefulness

* Prior studies evaluate simple measures
* Not clear how location privacy may affect applications

e Challenge 2: understand the empirical privacy protection

* Privacy models of existing methods are not comparable
* Not clear how current methods mitigate practical attacks

e Challenge 3: understand computational overheads
* Important for deployment but under-studied
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Local, Online Privacy Methods

» Generalization-based: report approximate data o o o
* Rounding [Krumm 2007, Micinski et al. 2013] x,
. . o ® L
 Spatial Cloaking [Krumm 2007] skm
——

* Perturbation-based: “add” noise to data

* Noise [Krumm 2007]
* Various-size Hilbert Curve [Pingley et al. 2009]
» Geo-indistinguishability (Laplace) [Andrés et al. 2013]

*  Dummy-based: hide among dummies

» SpotME [Quercia et al. 2011] H
* Moving in the Neighborhood [Kido et al. 2005]

8
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Data & Method

» Real GPS traces

* Preprocessing

Table 1: Dataset Summary

Dataset #Users | Frequency | Resolution | Avg. # Traj’s | Avg. # Loc’s
Geolife[25] 182 1 to 5 seconds 182x182 54 15640
RioBuses[6] | 14149 | every minute 170x170 9 2661

» Spatial discretization: 2D grid cells, ~300m x 300m each
» Temporal: subsample every 5 minutes

» Applications (new)

« Co-location detection
« Air pollution exposure

PEPR 2022
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Utility Measures

* Record-level errors vs. trace-level mobility

pattern errors

[Canzian and Musolesi 2015]

Table 3: Laplace Utility Experiment - GeoLife

Frequency & 2D range queries

Utility/Params

(=

0.001 0.01 0.02 0.04 0.05 0.1
Hamming 0.74 0.41 0.20 0.03 0.01 0.00
Haversine (in m) 1494.96 | 121.57 | 46.52 | 7.34 2.83 0.02
Tot Dist (in %) 99.18 01.16 73.06 18.14 6.43 0.00
Max Dist (in %) 98.25 89.98 1227 17.88 6.15 0.00
Std Dev Displacement (in %) 98.74 85.26 58.36 12.85 4.47 0.00
Max Dist Home (in %) 69.94 26.41 16.68 2.97 0.00 0.00
Rad Gyration (in %) 98.02 89.84 72.40 1792 6.18 0.00
# Diff Places (in %) 96.87 90.66 72.94 | 18.16 | 6.15 0.00
# Significant Places (in %) 14.97 22375 12:57 | 3.59 1.20 | 0.00
Avg Mobility Error (in %) 82.28 70.87 54.04 13.07 4.37 0.00
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Record-level utility often, but not always, aligns with trace-level utility
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Utility for Applications .,
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Choosing privacy methods & params is important for utility.
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Empirical Privacy Measures

* Re-identification attack  |nference attack
» Knowing any k locations of the target, : .
how likely is the target uniquely * Knowing all but one locations
identified? of the target, how likely to
» We find the smallest k for each user infer the last location?
ey Laflace i = rorins

Both DP and traditional methods provide protection against attacks.
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Improved Attacks

» An adversary knows the privacy method & param value

* Rounding results
Basic Improved
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Traditional, deterministic methods may fail to protect privacy in

imzproved attack.
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Overheads

=
)
£
)
=
>
o
o)
| -
>
o
£
)
S
X
©
o)
al

CPU time to sanitize each

location

Spatial Cloaking

MN

HE VHC

I Laplace

1.5 EEE SpotME
HEE Noise

1.25 HE Rounding

e wn un I
- N o o
(=} o

ul) pasn Aloway

1.75

(a

O

Spatial Cloaking

MN

N VHC

El Laplace
Il SpotME
EEN Rounding

Il Noise

o n o n
~N — — o
(sw un) swil Ndd

b
~N

0000T=Yd
005Z=Y
000T=Y
00e=0
00T=0
0G6=0
»-0T=W
s-0T=W
o-0T=W
000T=S
006=s
00¢=s
0000T=4eAn
000G=4eA
000T=4eA
s-0T=d
9-0T=d
-0T=d
T0°0=3
¢0'0=3
T°0=3

e
o

0000T=Y
00S¢=Y
000T=MY
00€=0
00T=0
0G=0
»-0T=W
s-0T=W
o-0T=W
000T=S
006=S
00Z=s
0000T=4en
000G=4eAn
000T=4eAn
s-0T=d
0-0T=d
.~01=d
T0°0=3
¢0'0=3
T°0=3

Q
)

All methods are very efficient in CPU time.
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Conclusions and Discussion

« This study enables app developers and researchers to comparatively evaluate
existing location privacy methods

« All methods are open-sourced in Java -
(4 fan-group / geopriv4j
« Generic utility often but not always aligns with task-vaseu uuiny

» Basic attacks: both differential privacy-based and traditional methods provide
protection

» Improved attacks: deterministic methods may fail to provide adequate protection
* Choosing the right methods and params is important
« Many studied methods have low CPU and memory requirements
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