A Closer Look: Evaluating Location Privacy Empirically

Liyue Fan, Assistant Professor in Computer Science UNC Charlotte

Outline

- Location privacy: state of research
- Challenges of adoption
- Local, online privacy methods
- Evaluation: methods and data
- Results new
- Discussion and take-aways

Fan and Gote. "A Closer Look: Evaluating Location Privacy Empirically". In SIGSPATIAL'21.

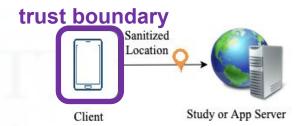
Importance of Location Privacy

- Location data enables numerous applications
 - recommendations [Levandoski et al. 2012]
 - mental health research [Canzian and Musolesi 2015, Palmius et al. 2016]
- Location data is sensitive
 - home/work location
 - visit to a hospital, political or religious event
- Location privacy solutions are needed.

FTC Brings First Case Against
Developers of "Stalking" Apps

October 22, 2019

Settlement resolves charges that Retina-X's products created security vulnerability and violated consumers' privacy

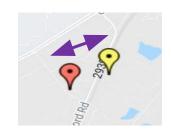

FOR RELEASE

real-time data about the rmation to anyone via a

ftc.gov

Location Privacy Research

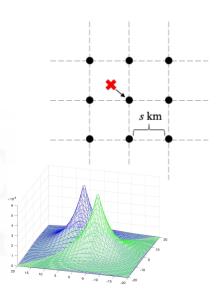
- Numerous location privacy methods proposed in the last two decades
 - 60+ studied in [Primault et al. 2019]
- Our focus: local & online
 - users have a sense of control
 - data is available immediately
- Promise for practical deployment
 - Analogous to the LDP model for non-location data
 - Android users specify location sharing preferences for apps
 - Effort to open-source local online privacy methods, e.g., Geopriv4j [Fan and Gunja 2020]

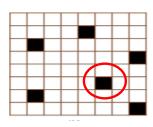


Location

- approximate location (network-based)
- precise location (GPS and network-based)

Adoption of Location Privacy

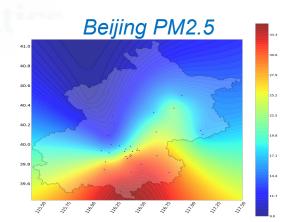

- Challenge 1: understand the impact of location privacy on usefulness
 - Prior studies evaluate simple measures
 - Not clear how location privacy may affect applications



- Challenge 2: understand the empirical privacy protection
 - Privacy models of existing methods are not comparable
 - Not clear how current methods mitigate practical attacks
- Challenge 3: understand computational overheads
 - Important for deployment but under-studied

Local, Online Privacy Methods

- Generalization-based: report approximate data
 - Rounding [Krumm 2007, Micinski et al. 2013]
 - Spatial Cloaking [Krumm 2007]
- Perturbation-based: "add" noise to data
 - Noise [Krumm 2007]
 - Various-size Hilbert Curve [Pingley et al. 2009]
 - Geo-indistinguishability (Laplace) [Andrés et al. 2013]
- Dummy-based: hide among dummies
 - SpotME [Quercia et al. 2011]
 - Moving in the Neighborhood [Kido et al. 2005]

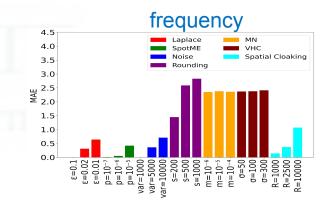

Data & Method

Real GPS traces

Table 1: Dataset Summary

Dataset	#Users	Frequency	Resolution	Avg. # Traj's	Avg. # Loc's
GeoLife[25]	182	1 to 5 seconds	182×182	54	15640
RioBuses[6]	14149	every minute	170×170	9	2661

- Preprocessing
 - Spatial discretization: 2D grid cells, ~300m x 300m each
 - Temporal: subsample every 5 minutes
- Applications (new)
 - Co-location detection
 - Air pollution exposure

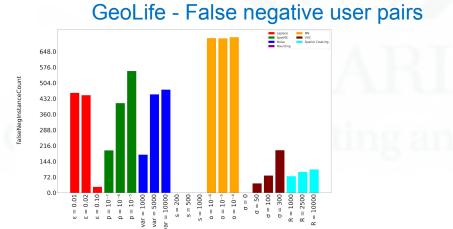

Utility Measures

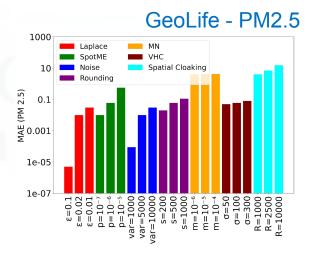
- Record-level errors vs. trace-level mobility pattern errors
 - [Canzian and Musolesi 2015]

Frequency & 2D range queries

Table 3: Laplace Utility Experiment - GeoLife

Utility/Params	ϵ						
Othrty/Faranis	0.001	0.01	0.02	0.04	0.05	0.1	
Hamming	0.74	0.41	0.20	0.03	0.01	0.00	
Haversine (in m)	1494.96	121.57	46.52	7.34	2.83	0.02	
Tot Dist (in %)	99.18	91.16	73.06	18.14	6.43	0.00	
Max Dist (in %)	98.25	89.98	72.27	17.88	6.15	0.00	
Std Dev Displacement (in %)	98.74	85.26	58.36	12.85	4.47	0.00	
Max Dist Home (in %)	69.94	26.41	16.68	2.97	0.00	0.00	
Rad Gyration (in %)	98.02	89.84	72.40	17.92	6.18	0.00	
# Diff Places (in %)	96.87	90.66	72.94	18.16	6.15	0.00	
# Significant Places (in %)	14.97	22.75	12.57	3.59	1.20	0.00	
Avg Mobility Error (in %)	82.28	70.87	54.04	13.07	4.37	0.00	

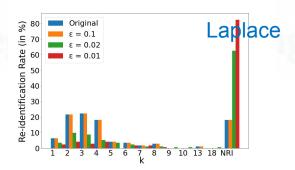

Record-level utility often, but not always, aligns with trace-level utility

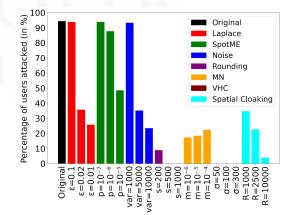

Utility for Applications

· Co-location detection

• Air pollution exposure

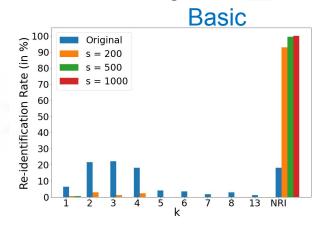
new

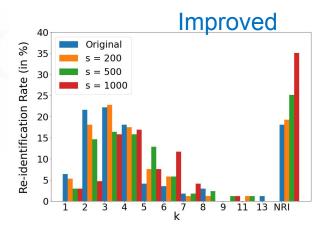



Choosing privacy methods & params is important for utility.

Empirical Privacy Measures

- Re-identification attack
 - Knowing any k locations of the target, how likely is the target uniquely identified?
 - We find the smallest k for each user

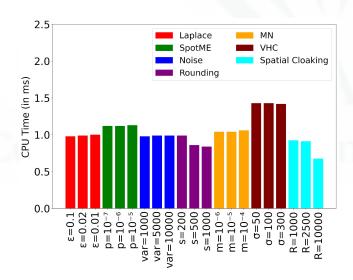

- Inference attack
 - Knowing all but one locations of the target, how likely to infer the last location?



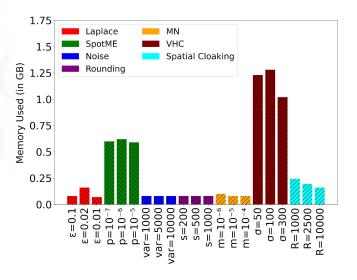
Both DP and traditional methods provide protection against attacks.

Improved Attacks

- An adversary knows the privacy method & param value
- Rounding results



Traditional, deterministic methods may fail to protect privacy in improved attack.


PEPR 2022

Overheads

 CPU time to sanitize each location

Peak memory requirement

All methods are very efficient in CPU time.

Conclusions and Discussion

- This study enables app developers and researchers to comparatively evaluate existing location privacy methods
- All methods are open-sourced in Java

☐ fan-group / geopriv4j

- Generic utility often but not always aligns with task-paseu umity
- Basic attacks: both differential privacy-based and traditional methods provide protection
- Improved attacks: deterministic methods may fail to provide adequate protection
- Choosing the right methods and params is important
- Many studied methods have low CPU and memory requirements

Acknowledgements

- Students
 - · Grad alum: Sriram, Ishan, Julius
 - Undergrads: Ethan, Ashley

Questions? Contact Liyue <u>liyue.fan@uncc.edu</u>

