Expanding differentially private solutions: Introducing PipelineDP

Miguel Guevara & Vadym Doroshenko & Yurii Sushko

mgt@google.com, dvadym@google.com, sushko@google.com

PEPR 2022
Anonymous data

Anonymized data reduces privacy and security risks.

It can provide comparable statistical insights.

It can be even better, as it removes some of the collection noise (e.g., random outliers).
Differential Privacy

An algorithm is differentially private if the output doesn’t change “much” when a single person is added to the database.

Definition 2.4 (Differential Privacy). A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{[X]}$ is (ϵ, δ)-differentially private if for all $S \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{[X]}$ such that $\|x - y\|_1 \leq 1$:

$$\Pr[\mathcal{M}(x) \in S] \leq \exp(\epsilon) \Pr[\mathcal{M}(y) \in S] + \delta,$$
Challenges of differential privacy

- Simple conceptually
 - Add noise to data
 - Formal guarantees

- Difficult in practice
 - Tricky to implement correctly (like cryptography)
 - Lots of implementation subtleties
 - Adding noise can make data less useful
An open source Python framework for differentially private aggregations to large datasets using batch processing systems such as Apache Spark and Apache Beam
Goals of PipelineDP

01	Easy and accessible to non-experts
02	Scalable with support for Apache Spark and Beam
03	Practical to achieve reasonable utility
PipelineDP computes statistical queries

Python equivalent of

```python
SELECT WITH DIFFERENTIAL PRIVACY aggregation_function(value)
FROM table
GROUP BY key

where aggregation_function is COUNT, SUM, MEAN, PERCENTILE etc.
```
Example dataset of restaurant visits

<table>
<thead>
<tr>
<th>visitor_id</th>
<th>restaurant_id</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>r1</td>
<td>5</td>
</tr>
<tr>
<td>v1</td>
<td>r2</td>
<td>4</td>
</tr>
<tr>
<td>v2</td>
<td>r3</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
PipelineDP computes statistical queries

Python equivalent of

```sql
SELECT WITH DIFFERENTIAL PRIVACY ANON_MEAN(rating)
FROM restaraunt_visits
GROUP BY restaraunt_id
```

... or, in plain English, calculate the average rating of each restaurant.
restaurant_visits = ... # Load data of restaurants visits
backend = pipeline_dp.LocalBackend() # Run locally

budget_accountant = pipeline_dp.NaiveBudgetAccountant(
 total_epsilon=1,
 total_delta=1e-6) # Set the budget

Create DPEngine which will execute the logic
dp_engine = pipeline_dp.DPEngine(budget_accountant, backend)

Define privacy ID, partition key and value extractors
data_extractors = pipeline_dp.DataExtractors(
 partition_extractor=lambda row: row.restaurant_id, # group by key
 privacy_id_extractor=lambda row: row.user_id,
 value_extractor=lambda row: row.rating) # Value to aggregate
Configure the aggregation parameters
params = pipeline_dp.AggregateParams(
 # DP method
 noise_kind=pipeline_dp.NoiseKind.LAPLACE,
 # DP metrics to compute
 metrics=[pipeline_dp.Metrics.MEAN],
 # Limits visits contributed by a visitor
 max_partitions_contributed=3, # A visitor can contribute up to 3 days
 max_contributions_per_partition=2) # ... and up to 2 visits per day

Create a computational graph for the aggregation
dp_result = dp_engine.aggregate(restaraunt_visits, params, data_extractors)
Assume having running Spark cluster.
restaraunt_visits = ... # Load data of restaurants visits with Spark
backend = pipeline_dp.SparkBackend() # Run on Spark cluster

budget_accountant = pipeline_dp.NaiveBudgetAccountant(
 total_epsilon=1,
 total_delta=1e-6) # Set the budget

Create DPEngine which will execute the logic
dp_engine = pipeline_dp.DPEngine(budget_accountant, backend)

Define privacy ID, partition key and value extractors
data_extractors = pipeline_dp.DataExtractors(
 partition_extractor=lambda row: row.restaurant_id, # group by key
 privacy_id_extractor=lambda row: row.user_id,
 value_extractor=lambda row: row.rating) # Value to aggregate
What PipelineDP is and isn’t

- It performs DP computations and manages a budget per pipeline.
- It does not enforce privacy budget usage per analysts, dataset etc.
- It does not perform any data access management.
Architecture

- Beam API
- Local API
- Spark API

DP engine
- Core DP logic:
 - contribution bounding
 - partition selection
 - noise addition
 - aggregations

Pipeline Backend
- map, filter, join, combine, …

- Beam implementation
- Local implementation
- Spark implementation
Differentially private data aggregation

Write fast, flexible pipelines that use modern techniques to aggregate user data in a privacy-preserving manner.

Get started Source code
Thanks

Miguel Guevara & Vadym Doroshenko & Yurii Sushko

mgt@google.com, dvadym@google.com, sushko@google.com