
PEPR 2022

Expanding differentially private 
solutions: Introducing PipelineDP

mgt@google.com, dvadym@google.com, sushko@google.com

Miguel Guevara & 
Vadym Doroshenko &
Yurii Sushko 

mailto:mgt@google.com
mailto:dvadym@google.com
mailto:sushko@google.com


PEPR 2022 2

Anonymous data
Anonymized data reduces privacy and security risks.

It can provide comparable statistical insights.

It can be even better, as it removes some of the collection 
noise (e.g., random outliers).



PEPR 2022

Differential Privacy

An algorithm is differentially private if the output doesn’t change “much” 
when a single person is added to the database.

3



PEPR 2022

● Tricky to implement correctly
(like cryptography)

● Lots of implementation subtleties

● Adding noise can make data less useful

● Add noise to data

● Formal guarantees

Simple conceptually Difficult in practice

4

Challenges of differential privacy



PEPR 2022 5

An open source Python framework for differentially 
private aggregations to large datasets using batch 

processing systems such as Apache Spark and 
Apache Beam



PEPR 2022 6

Goals of PipelineDP

Easy and accessible to 
non-experts

Scalable with support for 
Apache Spark and Beam

Practical to achieve 
reasonable utility

01 02 03



PEPR 2022

SELECT WITH DIFFERENTIAL PRIVACY aggregation_function(value)
FROM table
GROUP BY key

where aggregation_function is COUNT, SUM, MEAN, PERCENTILE etc.

7

PipelineDP computes statistical queries

Python equivalent of



PEPR 2022

Example dataset of restaurant visits

8

visitor_id restaurant_id rating

v1 r1 5

v1 r2 4

v2 r3 2

... ... ...



PEPR 2022

SELECT WITH DIFFERENTIAL PRIVACY ANON_MEAN(rating)
FROM restaraunt_visits
GROUP BY restaraunt_id

9

PipelineDP computes statistical queries

Python equivalent of

… or, in plain English, calculate the average rating of each restaurant.



PEPR 2022

restaraunt_visits = … # Load data of restaurants visits 
backend = pipeline_dp.LocalBackend() # Run locally

budget_accountant = pipeline_dp.NaiveBudgetAccountant(
                                 total_epsilon=1, 
                                 total_delta=1e-6) # Set the budget

# Create DPEngine which will execute the logic
dp_engine = pipeline_dp.DPEngine(budget_accountant, backend) 

# Define privacy ID, partition key and value extractors
data_extractors = pipeline_dp.DataExtractors(
  partition_extractor=lambda row: row.restaurant_id, # group by key 
  privacy_id_extractor=lambda row: row.user_id,
  value_extractor=lambda row: row.rating) # Value to aggregate

10



PEPR 2022

# Configure the aggregation parameters
params = pipeline_dp.AggregateParams(
  # DP method
  noise_kind=pipeline_dp.NoiseKind.LAPLACE,
  # DP metrics to compute
  metrics=[pipeline_dp.Metrics.MEAN],
  # Limits visits contributed by a visitor
  max_partitions_contributed=3,  # A visitor can contribute up to 3 days
  max_contributions_per_partition=2)  # … and up to 2 visits per day

# Create a computational graph for the aggregation
dp_result = dp_engine.aggregate(restaraunt_visits, params,  
   data_extractors)

11



PEPR 2022

# Assume having running Spark cluster.
restaraunt_visits = … # Load data of restaurants visits with Spark 
backend = pipeline_dp.SparkBackend() # Run on Spark cluster

budget_accountant = pipeline_dp.NaiveBudgetAccountant(
                                 total_epsilon=1, 
                                 total_delta=1e-6) # Set the budget

# Create DPEngine which will execute the logic
dp_engine = pipeline_dp.DPEngine(budget_accountant, backend) 

# Define privacy ID, partition key and value extractors
data_extractors = pipeline_dp.DataExtractors(
  partition_extractor=lambda row: row.restaurant_id, # group by key 
  privacy_id_extractor=lambda row: row.user_id,
  value_extractor=lambda row: row.rating) # Value to aggregate

12



PEPR 2022

It performs DP computations and 
manages a budget per pipeline.

13

What PipelineDP is and isn’t

It does not enforce privacy 
budget usage per analysts, 

dataset etc.

It does not perform any data 
access management.



PEPR 2022 14

Architecture
Beam API Local API Spark API

DP engine
Core DP logic:
  contribution bounding
  partition selection
  noise addition
  aggregations

Beam 
implementation

Local 
implementaion

Spark 
implementation

map, filter, join, combine, …PipelineBackend



PEPR 2022

pipelinedp.io

15



PEPR 2022

Thanks
Miguel Guevara & 
Vadym Doroshenko & 
Yurii Sushko

mgt@google.com, dvadym@google.com, sushko@google.com

mailto:mgt@google.com
mailto:dvadym@google.com
mailto:sushko@google.com

