Privacy Design Flaws

Eivind Arvesen, Group Cyber Security Manager (Sector Alarm)

PEPR '22 – Conference on Privacy Engineering Practice and Respect June 23rd 2022

Background

Background Flaws VS Bugs

«Flaws in the design» VS «Bugs in the code»

Avoiding the Top 10 Software Security Design Flaws
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/
Top-10-Flaws.pdf

Background Motivation

- Privacy as an emergent property of the system in question
- Lack of explicit best practices that are concrete, actionable for technical roles that are not privacy experts
- Make privacy engineering basics common knowledge amongst developers & architects
- To enable easier discussion of architectural defects between technical privacy roles

Background Two types of risks

Privacy risks are risks that you manage on behalf of data subjects – who are the ones who will be directly affected by the consequences if any risks are realized!

The flaws

The Flaws From the CFP

- False anonymity
- Data leakage
- Mistaking data protection for privacy
- Failing to consider contextual requirements
- Unclear or changing purposes
- Assumed trust
- Misunderstanding data and definitions
- Insufficient data minimization
- Failure of protective controls
- Ethical issues

The flaws

Mistaking data protection for privacy

Description: Believing that a solution or system is privacy friendly by virtue of securing its data well.

Identify: Ask yourself whether you're able to explain why the solution is privacy friendly without referencing security controls.

Example: Smittestopp (v. 1)

- Aggressive data collection
- •Breaking with regulatory requirements + best practice
- Argued that the parties involved were trustworthy hence there was no issue

Avoid: Build competence, assess purpose limitation, lawful basis, degree of data minimization, ...

The flaws False anonymity

Description: Misinterpreting risks around (deidentified) personal data

Identify: Risk-assessment

Example: Researchers de-anonomizing/re-identifying users in the Netflix Prize Dataset:

Researchers deanonymized the users in Netflix Prize dataset, which contained anonymous movie ratings of 500,000 subscribers – by correlating with IMDB data (knowing only a tiny bit about each person from before), uncovering their apparent political preferences and other potentially sensitive information.

Avoid: Err on the side of caution wrt. anonymization techniques.

The flaws Assumed trust

Description: System implicitly builds on /

assumes trust.

Identify: Threat modeling

Example: Facebook/Cambridge Analytica

CA built psychological profiles of Facebook users to sell individual psychological targeting as a service, via a personality quiz. This app was able to obtain unusually rich info about users' friends via FB's Graph API because of permissive API scopes (TOS: only to help improve in app experience)

Avoid: Limitations need enforcing. Principle of least privilege.

The flaws Data leakage

Description: System makes sensitive data available unintentionally

Identify: Threat modeling – what would attackers actually be able to do (vs. what you would expect your users to do)

Example: Android logging contact tracing apps information in system logs

Privacy preserving, Rolling proximity identifiers (sent in BLE advertisements) – which are anonymous, but can be re-derived locally from Diagnosis keys (shared upon positive COVID diagnosis) based on RPI's you have met over a previous time window – were logged locally.

Avoid: Data classification schemes and policies; Logging policy (particularly wrt sensitive data).

Discussion & Conclusion

Discussion

The problem, summarized

We see that:

- There are multiple classes of generalizable privacy defects
- Some of these flaws result in bad outcomes, recognized from Security
- The basics of Privacy Engineering do not yet seem to be widely disseminated
 - is at least not foundational Software Engineering / Architecture knowledge

Discussion

Privacy by design (Ann Cavoukian, 1995)

- 1. Proactive not reactive; preventive not remedial
- 2. Privacy as the default setting
- 3. Privacy embedded into design
- 4. Full functionality positive-sum, not zero-sum
- 5. End-to-end security full lifecycle protection
- 6. Visibility and transparency keep it open
- 7. Respect for user privacy keep it user-centric

Conclusion

Solutions – Principles to abide by

- Privacy by design
- Architectural risk analysis; threat modeling
- Developing taxonomies, cheatsheets, standards, design patterns and architectural references

Conclusion

Source of Inspiration

- «<u>Avoiding the Top 10 Software Security Design Flaws</u>» IEEE Center for Secure Design
- OWASP Top Ten
- OWASP Application Security Verification Standard

- ISO 27001
- NIST Cybersecurity Framework

Conclusion

Resources

- OWASP Top 10 Privacy Risks
- Privacy Patterns (UC Berkeley)
- LINDDUN (Threat modeling methodology)

- ISO 27701
- NIST Privacy Framework

Thanks!

Eivind Arvesen

© EivindArvesen (Twitter)

<u>eivind.arvesen@gmail.com</u> https://www.EivindArvesen.com