
Characterizing Off-path SmartNIC* for
Accelerating Distributed Systems

Xingda Wei, Rongxin Cheng, Yuhan Yang

Rong Chen & Haibo Chen

IPADS, Shanghai Jiao Tong University

* We use the shorter version-–SmartNIC -–to term off-path SmartNIC in this talk.

The demand for low latency & the trend for fast networking

Applications require lower latency, even on the order of microseconds & high throughput

– E.g., VR/AR, high frequency trading, etc.

The networking is ultra-fast in terms of low latency & high throughput (bandwidth)

– Represent example: RDMA (Remote Direct Memory Access) & SmartNIC

2

Source: https://redian.news/wxnews/78686

0 50 100 150 200

VR/AR
High-frequency trading

Stock exchange
Online gaming

E-commerce
Audio/Video

Latency requirements (ms)

Before SmartNIC, RDMA is prevalent

From a system perspective, RDMA provides two primitives:

– Two-sided RDMA : SEND/RECV (like messaging in traditional network)

– One-sided RDMA: offloading primitive for memory READ/WRITE

3

C
lie

nt

NIC

Se
rv

er

DRAM

NIC

C
lie

nt

NIC

Se
rv

er
DRAM

NIC
SEND RECV READ WRITE

Optimizing systems w/ RDMA: basic approaches

Case study: in-memory key-value store (KVS), e.g., Redis

– Key operation: Get(K) -> V where K,V are stored on a server

– Get(K) requirement: high throughput & low latency

4

C
lie

nt

NIC

Se
rv

er

DRAM

NIC
Index Values

Read Index Read Value (V)

Get(K) V

Traditional KVS: TCP/IP

Optimizing systems w/ RDMA: basic approaches

Using two-sided RDMA to optimize KVS

– Accelerate the network path with faster alternative

– Pros: the server CPU is left unoptimized/changed

C
lie

nt

NIC

Se
rv

er

DRAM

NIC
Index Values

Read Index Read Value (V)

Get(K) V

Cons: server CPU may
become the bottleneck,
e.g., 150M reqs/sec(NIC) vs.
70M reqs/sec (CPU)

SEND RECV

Setup: ConnectX-6 200Gbps RDMA NIC
(RNIC), server: 24 cores Intel Xeon Gold 5316

Year (StRoM: Smart Remote Memory, Eurosys’20)

Optimizing systems w/ RDMA: basic approaches

Using one-sided RDMA to optimize KVS

– Client directly execute the Get with the help of remote memory READ

– NIC can process READ much faster than server CPU

6

C
lie

nt

NIC

Se
rv

er

DRAM

NIC
Index Values

Read Index Read Value (V)

Get(K) V

C
lie

nt

NIC

Se
rv

er

DRAM

NIC

Index Values

Read IndexGet(K) V

SEND RECV READ READ

Offloaded computation

Cons:
network amplification!

Host DRAM Host DRAM

NIC cores

Network

One-sided
Two-sided

From RNIC SmartNIC: larger offloading design spaces

The central processing unit RDMA-capable NIC (RNIC) are NIC cores

– ASIC that implements one-sided and two-sided operations (not programmable)

SmartNIC extends RNIC to support programmable capabilities

NIC cores

Network

One-sided
Two-sided

SoC cores & mem

DRAM

7

App-specific
computation

From one-sided RDMA to SmartNIC, does it help?

SmartNIC: RNIC equip with a programmable SoC (RNIC + SoC)

Back to our initial case study: Get(K) -> V in key-value storage

– We can use the programmability of SmartNIC to execute the Get() w/o amplification

8

C
lie

nt

RNIC

Se
rv

er

Host DRAM

RNIC

Index Values

IndexGet(K) V

RDMA
READ

RDMA
READ

Index Values
C

lie
nt

RNIC

Se
rv

er
Host DRAM

RNIC
Index

Get(K) V

SoC
V

SEND RECV

From one-sided RDMA to SmartNIC, does it help?

Our (naïve) SmartNIC-KVS is 14% of the RDMA-KVS !! (workload: YCSB-C (100% Get))

– RDMA-KVS: DrTM-KV [SOSP’15]

– SmartNIC-KVS: leverage SEND/RECV to offload Get to the NIC SoC

9Index Values
C

lie
nt

RNIC

Se
rv

er
Host DRAM

RNIC
Index

Get(K) V

SoC
V

SEND RECV

0

15

30

45

60

Th
ro

ug
hp

ut
 (M

re
qs

/s
ec

)

DrTM-KV
SmartNIC-KV

We decide to first characterize the
SmartNIC before using it!

SmartNIC is more complex than we have thought

Many SmartNIC architectures exist (More complex than we thought)

We focus on off-path SmartNIC, a widely used SmartNIC architecture

– Representative example: NVIDIA Bluefield-2 SmartNIC

11

NIC cores SoC cores & mem

DRAM

Host DRAM

NIC cores SoC cores & mem

PC
Ie

1

PCIe0

PCIe
Switch

DRAM

Cache

Host DRAMCache

Discovered via
exp + doc

Our work: the most comprehensive characterization on SmartNIC

Existing studies exist[1][2][3], which provides valuable insights

– The mostly focus on the offloading computation power of the SmartNIC

– A known takeaway is that: SmartNIC’s SoC cores are wimpier than the host

13

[1] Offloading distributed applications onto smartnics using ipipe. SIGCOMM’19
[2] Performance characteristics of the bluefield-2 smartnic, arXiv
[3] A dbms-centric evaluation of bluefield dpus on fast networks. ADMS’22 13

Cache

DRAM

L1 L2 L3 DRAM
SoC 4x 4x N/A 2x
Host 1x 1x 1x 1x

Benchmark SoC Host
Multi-core Coremark 0.2x 1x

Single-core Coremark 0.5x 1x
DPDK hash_perf 0.3x 1x

DPDK readwrite_lf_perf 0.3x 1x

Memory access speed [1] (lower is better)

CPU scores[1] (higher is better)

Focus of existing work

Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs

14

Network

Traditional NICs (RDMA or non-RDMA)

Path #1: Client → NIC → Host memory

Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs

15

SmartNIC

Network
Path #1: Client → NIC → Host memory

Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs

16

SmartNIC

Path #1: Client → NIC → Host memory

Path #2: Client → NIC → SoC memory
Network

Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs

17

SmartNIC

Path #1: Client → NIC → Host memory

Path #2: Client → NIC → SoC memory

Path #3: SoC memory ←→ host memory

Network

Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs

18

SmartNIC

Path #1: Client → NIC → Host memory

Path #2: Client → NIC → SoC memory

Path #3: SoC memory ←→ host memory

Network

Performance
characterization on all them!

What do we characterize ?

1. SmartNIC hardware implication to the communication performance

2. Design guideline on building systems with SmartNICs

19

0

1

2

3

4

5

READ WRITE SEND/
RECV

RNIC (1) SNIC (1)

Finding 1. SmartNIC < RNIC for path #1

The path #1 is long on the SmartNIC

– Due to the intervention of PCIe switch

– The one-way switch pass latency (300ns) is non-

trivial for microsecond-scale computing

Client

SoC

Host

READ WRITE SEND/RECV

Primitives evaluated

WRITE

RNIC vs. SmartNIC

Evaluation setup:
ConnectX-6 (RNIC) vs. Bluefield -2 (SmartNIC)
Both NICs use the same NIC cores

20

Latency (us)

Payload: 64B

Finding 2. Path #2 is fast except for S/R

Communication with the SoC is faster except for

the SEND/RECV (S/R)

– Due to the reduced PCIe pass (i.e., PCIe0)

– SEND/RECV is bottlenecked by the SoC cores

21

Client

SoC

Host
READ WRITE

Primitives evaluated

S/R

WRITE

RNIC vs. SmartNIC

Evaluation setup:
ConnectX-6 (RNIC) vs. Bluefield -2 (SmartNIC)
Both NICs use the same NIC cores

Path #2

0

1

2

3

4

5

READ WRITE SEND/
RECV

RNIC (1) SNIC (1)

SNIC (2)

Latency (us)

Fast interconnect
other than PCIe

Path #1

Payload: 64B

Finding 3. Anomalies exist paths involving SoC

Example. Degraded bandwidth (for READ) with large data transfer

– Observation: SoC supports a smaller PCIe MTU than host

– Result: more PCIe packets processed, may cause HoL

Advice: proactively segmented large READ

22

Host SoC
PCIe MTU 512B 128B

Client

SoC

Host

READ READ

PCIe packets
transferred

0

100

200

300

256KB 1MB 9MB 64MB
READ payload (Bytes)

SNIC (1) SNIC (2)

Bandwidth (Gbps) Suspect meet HoL

Finding 4. Path #3 has trade-offs

Many alternatives to implement Path #3

– The simplest (& easiest to use one): RDMA

Yet, RDMA needs to pass RNICs & PCIes

– For networking support

23

Client

SoC

Host

READ WRITE SEND/RECV

Primitives evaluated

0

1

2

3

4

5

READ WRITE SEND/
RECV

RNIC (1) SNIC (1)
SNIC (2) SNIC (3)

Evaluation setup:
ConnectX-6 (RNIC) vs. Bluefield -2 (SmartNIC)
Both NICs use the same NIC cores

Latency (us)

Higher latency
than other paths

Finding 4. Path #3 has trade-offs

RDMA, though simple, has two problems for Path #3

– High latency due to additionally passes hardware units

– Bandwidth interference to the others

24

RDMA of path #3 overuses
the PCIe bandwidth

Client

SoC

Host

Client à SoC à Host

Path #2

Path #3

200Gbps

256Gbps

What is the performance of
path#2 + path#3?

Case study: file replication
in LineFS [SOSP’21]

Finding 4. Path #3 has trade-offs

RDMA, though simple, has two problems for Path #3

– High latency due to additionally passes hardware units

– Bandwidth interference to the others

25

RDMA of path #3 overuses
the PCIe bandwidth Client

NIC

PCIe1

SoC

PCIe0

Host

…

Case study: file replication
in LineFS [SOSP’21]

PCIe 1 & 2 bandwidth
Bi-directional: 256Gbps

Data passes PCIe1 twice
1. NIC à SoC
2. SoC à NIC

Path#2 + Path#3
Peak at 128Gbps!

Client

SoC

Host

Client à SoC à Host

Path #2

Path #3

200Gbps

256Gbps

Finding 4. Path #3 has trade-offs

DMA: another alternative for path #3

– Unlike RDMA, the SoC has a DMA engine for path #3 (i.e., DOCA DMA)

– DMA bypasses PCIe for communication between SoC and host

26

Path #3 (RDMA) Path #3 (DMA)

0

1

2

3

4

READ WRITE

RDMA DMALatency (us)

DMA always
better?

Finding 4. Path #3 has trade-offs

The engine capabilities of RDMA and DMA is different

– RDMA engine (NIC) is more powerful than DMA engine (SoC)

– So RDMA is faster for transferring small data

27

Path #3 (RDMA) Path #3 (DMA)

RDMA is executed
by the NIC

DMA is executed
by the SoC

0

5

10

15

20

25

30

16B 64B 256B 1KB 4KB 16KB 64KB

READ payload (Bytes)

DMA RDMAThpt (Mreqs/sec)

Client

SoC

Host

READ WRITE

Primitives evaluated

Key takeaway of the above findings

Each communication path of SmartNIC is not perfect

– Inferior performance or performance anomalies needs to take care

28

SmartNIC

Network

Path #1: Client → NIC → Host memory

1. Inferior performance vs. RNIC

Key takeaway of the above findings

Each communication path of SmartNIC is not perfect

– Inferior performance or performance anomalies needs to take care

29

Path #1: Client → NIC → Host memory

SmartNIC

Path #2: Client → NIC → SoC memory
Network 1. Faster access

2. Anomalies, e.g., more PCIe packets

Key takeaway of the above findings

Each communication path of SmartNIC is not perfect

– Inferior performance or performance anomalies needs to take care

30

SmartNIC

Network

Path #1: Client → NIC → Host memory

Path #2: Client → NIC → SoC memory

Path #3: SoC memory ←→ host memory

1. RDMA: poor PCIe utilization + high
latency

2. DMA: poor throughput

Back to our key-value store example

Our characterization explains why naïve KVS on SmartNIC is slow

1. SoC has wimpy cores (known)

2. Path #3 is slow in terms of latency (RDMA) and throughput (DMA)

NIC cores are under-utilized on the SmartNIC

Which are much faster than the SoC

31
Index Values

C
lie

nt

RNIC

Se
rv

er

Host DRAM

RNIC
Index

Get(K) V

SoC
V

SEND RECV

0

15

30

45

60

Th
ro

ug
hp

ut

(M
re

qs
/s

ec
)

RDMA-KVS SmartNIC-KVS

How to help?

Observation: a single path is not optimal, but concurrency can help!

A single alternative does not utilize the full power of SmartNIC

– E.g., Bottlenecked by slow SoC–DMA and SoC in our naïve KVS design

Observation: concurrently utilize the SmartNIC power

– E.g., we can utilize the unused RNIC!

32
Index Values

C
lie

nt

RNIC

Se
rv

er

Host DRAM

RNIC
Index

Get(K) V

SoC
V

SEND RECV

0

15

30

45

60

Th
ro

ug
hp

ut

(M
re

qs
/s

ec
)

RDMA KVS
SmartNIC KVS

SmartNIC KVS

+ RDMA

54M

8M

127M

0

50

100

150

200

250

1 3 5 7 9 11
Number of clients

Path 1 Path 2

Path 1+ 2

WRITE 0B Thpt (Mreqs/sec)

More findings: concurrent path can better utilize SmartNIC

Concurrent usage of Path #1 + Path #2

– Observation: SmartNIC seems to reserve NIC

cores for different paths

Path #2
Path #1

Concurrent = some clients issues Path #1 ops,
other issues Path #2

0

50

100

150

200

250

1 3 5 7 9 11
Number of clients

Path 1 Path 2

Path 1+ 2

READ 0B Thpt (Mreqs/sec)

More findings: concurrent path can better utilize SmartNIC

Concurrent usage of Path #1 + Path #3

– Typically, can achieve a higher bandwidth

But, we should take care of interference !

– RDMA is not a good primitive for path #3

34

Path #1 Path #3* (DMA)

Path #1

Path #3 (RDMA)

0

100

200

300

400

R
EA

D
 B

an
dw

id
th

(G

bp
s)

Path 1 Path 2 Path 3 Path 3* Path 1
+3

Path 1
+3*

Perf. + Bandwidth
Interference

Network limit
PCIe limit

A guideline on building systems with SnartNIC

Recap the key takeaways from our characterization

– Single path: Inferior performance or performance anomalies

– Concurrent paths: better performance

Our suggested guideline when given a user networked request (e.g., KVS get())

A#1

1. Derive alternatives

Request

A#2

…
…

1.1 Optimize

Opt. A#1 Opt. A#2

With the help of our characterization

2. Evaluate + Rank

A1 A2 A3

3. Select + Combine

SmartNIC

A#2
A#1

Distributed key-value storage Get() revisit

System requirements

– Low host CPU usage, low latency & high throughput

– Low host CPU utilization

1 + 2. Design alternatives (A1—A5) & optimize! :

36

C
lie

nt

RNIC

Se
rv

er

Host DRAM

RNIC
SoC

READ READ

A1

READ

A2

SEND RECV SEND RECV

READ

A3

READ READ

A4

READ READ

+ Index cache + value cache

A5

SEND/RECV

Evaluate different alternatives: throughput

The goal: low latency (when there is not so much client)

37

C
lie

nt

RNIC

Se
rv

er

Host DRAM

RNIC
SoC

READ READ

A1

READ

A2

SEND RECV SEND RECV

READ

A3

READ READ

A4

READ READ

A5

SEND/RECV

0

10

20

La
te

nc
y

(u
s)

Offload KVS request on the SoC w/ caching has
the lowerst latency

Evaluate different alternatives: throughput

The goal: high throughput (for a single SmartNIC-powered key-value store)

38

C
lie

nt

RNIC

Se
rv

er

Host DRAM

RNIC
SoC

READ READ

A1

READ

A2

SEND RECV SEND RECV

READ

A3

READ READ

A4

READ READ

A5

SEND/RECV

0
20
40
60
80

Pe
ak

 T
hp

t
(M

r/s
se

c)

Rank, select and then combine

None of the approaches achieve both low latency & high throughput

– A5(SEND/RECV) has the lowest latency, while A5(RDMA) has the highest throughput

– Note that A5 is not always possible due to memory constraint of SoC

Whenever possible, choose A5 (SEND/RECV) for the lowest latency

– If the SoC has been saturated, switch to A4 & A5 (RDMA)

Evaluation setup: YCSB-C 100% Get()

0

20

40

60

80

-20 0 20 40 60 80
Throughput (Mreqs/sec)

RDMA-KVS

SmartNIC-KVS (opt)
Latency (us)

Combine A4 + A5

More results & case studies in our paper

More findings and advices from our characterization

– e.g., Different communication path may access the cache or memory differently

More characterization on the concurrent combination of different paths

– A combination of different paths can yield better performance on microbenchmarks

More case studies

– How we improved LineFS [SOSP’21] by 1.3X with a combination of improved

alternative design & optimization on each alternative

40

Conclusion

Before using the SmartNIC, we must first characterize it!

– More complicated than traditional network card

– Many design details need to take care

This work: a comprehensive study on off-path SmartNIC (i.e., Bluefield-2)

– Reveal anomalies (& solutions to them) + guidelines on how to better utilize it

– Our methodology may also apply to other NICs

41Thanks and Q & A

