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The demand for low latency & the trend for fast networking 

Applications require lower latency, even on the order of microseconds  & high throughput

– E.g., VR/AR, high frequency trading, etc. 

The networking is ultra-fast in terms of low latency & high throughput (bandwidth) 

– Represent example: RDMA (Remote Direct Memory Access) & SmartNIC
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Before SmartNIC, RDMA is prevalent 

From a system perspective, RDMA provides two primitives: 

– Two-sided RDMA : SEND/RECV (like messaging in traditional network)

– One-sided RDMA: offloading primitive for memory READ/WRITE
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Optimizing systems w/ RDMA: basic approaches

Case study: in-memory key-value store (KVS), e.g., Redis

– Key operation: Get(K) -> V where K,V are stored on a server

– Get(K) requirement: high throughput & low latency 
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Optimizing systems w/ RDMA: basic approaches

Using two-sided RDMA to optimize KVS

– Accelerate the network path with faster alternative 

– Pros: the server CPU is left unoptimized/changed 
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Optimizing systems w/ RDMA: basic approaches

Using one-sided RDMA to optimize KVS

– Client directly execute the Get with the help of remote memory READ 

– NIC can process READ much faster than server CPU 
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From RNIC         SmartNIC: larger offloading design spaces 

The central processing unit RDMA-capable NIC (RNIC) are NIC cores
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From one-sided RDMA to SmartNIC, does it help? 

SmartNIC: RNIC equip with a programmable SoC (RNIC + SoC)

Back to our initial case study: Get(K) -> V in key-value storage 

– We can use the programmability of SmartNIC to execute the Get() w/o amplification 
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From one-sided RDMA to SmartNIC, does it help? 

Our (naïve) SmartNIC-KVS is 14% of the RDMA-KVS !! (workload: YCSB-C (100% Get))

– RDMA-KVS: DrTM-KV [SOSP’15]

– SmartNIC-KVS: leverage SEND/RECV to offload Get to the NIC SoC
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We decide to first characterize the 
SmartNIC before using it! 



SmartNIC is more complex than we have thought 

Many SmartNIC architectures exist (More complex than we thought)

We focus on off-path SmartNIC, a widely used SmartNIC architecture  

– Representative example: NVIDIA Bluefield-2 SmartNIC
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Our work: the most comprehensive characterization on SmartNIC

Existing studies exist[1][2][3], which provides valuable insights 

– The mostly focus on the offloading computation power of the SmartNIC

– A known takeaway is that: SmartNIC’s SoC cores are wimpier than the host 
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[1] Offloading distributed applications onto smartnics using ipipe. SIGCOMM’19
[2] Performance characteristics of the bluefield-2 smartnic, arXiv
[3] A dbms-centric evaluation of bluefield dpus on fast networks. ADMS’22 13
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Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs
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Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs
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Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs
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Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs
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Our work: the most comprehensive characterization on SmartNIC

An important (and basic) component of NIC: communication, is not well explored

– The communication paths of SmartNIC are more complex than other NICs
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What do we characterize ? 

1. SmartNIC hardware implication to the communication performance 

2. Design guideline on building systems with SmartNICs
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Finding 2. Path #2 is fast except for S/R

Communication with the SoC is faster except for 

the SEND/RECV (S/R)

– Due to the reduced PCIe pass (i.e., PCIe0)

– SEND/RECV is bottlenecked by the SoC cores
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Finding 3. Anomalies exist paths involving SoC

Example. Degraded bandwidth (for READ) with large data transfer 

– Observation: SoC supports a smaller PCIe MTU than host 

– Result: more PCIe packets processed, may cause HoL

Advice: proactively segmented large READ
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Finding 4. Path #3 has trade-offs 

Many alternatives to implement Path #3 

– The simplest (& easiest to use one): RDMA 

Yet, RDMA needs to pass RNICs & PCIes

– For networking support 
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Finding 4. Path #3 has trade-offs 

RDMA, though simple,  has two problems for Path #3

– High latency due to additionally passes hardware units 

– Bandwidth interference to the others  
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Finding 4. Path #3 has trade-offs 

RDMA, though simple,  has two problems for Path #3

– High latency due to additionally passes hardware units 

– Bandwidth interference to the others  
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Finding 4. Path #3 has trade-offs 

DMA: another alternative for path #3 

– Unlike RDMA, the SoC has a DMA engine for path #3 (i.e., DOCA DMA)

– DMA bypasses PCIe for communication between SoC and host  
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Finding 4. Path #3 has trade-offs 

The engine capabilities of RDMA and DMA is different 

– RDMA engine (NIC) is more powerful than DMA engine (SoC)

– So RDMA is faster for transferring small data 
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Key takeaway of the above findings 

Each communication path of SmartNIC is not perfect 

– Inferior performance or performance anomalies needs to take care 
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Key takeaway of the above findings 

Each communication path of SmartNIC is not perfect 

– Inferior performance or performance anomalies needs to take care 
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Key takeaway of the above findings 

Each communication path of SmartNIC is not perfect 

– Inferior performance or performance anomalies needs to take care 
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Back to our key-value store example

Our characterization explains why naïve KVS on SmartNIC is slow 

1. SoC has wimpy cores (known)

2. Path #3 is slow in terms of latency (RDMA) and throughput (DMA)

NIC cores are under-utilized on the SmartNIC

Which are much faster than the SoC
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Observation: a single path is not optimal, but concurrency can help!

A single alternative does not utilize the full power of SmartNIC

– E.g., Bottlenecked by slow SoC–DMA  and SoC in our naïve KVS design 

Observation: concurrently utilize the SmartNIC power 

– E.g., we can utilize the unused RNIC!
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More findings: concurrent path can better utilize SmartNIC

Concurrent usage of Path #1 + Path #3

– Typically, can achieve a higher bandwidth 

But, we should take care of interference !

– RDMA is not a good primitive for path #3 
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A guideline on building systems with SnartNIC

Recap the key takeaways from our characterization 

– Single path: Inferior performance or performance anomalies 

– Concurrent paths: better performance

Our suggested guideline when given a user networked request (e.g., KVS get()) 

A#1

1. Derive alternatives

Request 

A#2 

…
…

1.1 Optimize 

Opt. A#1 Opt. A#2 

With the help of our characterization 

2. Evaluate + Rank

A1  A2  A3

3. Select + Combine

SmartNIC

A#2 
A#1 



Distributed key-value storage Get() revisit

System requirements

– Low host CPU usage, low latency & high throughput 

– Low host CPU utilization 

1 + 2. Design alternatives (A1—A5) & optimize! : 
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Evaluate different alternatives: throughput 

The goal: low latency (when there is not so much client) 
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Evaluate different alternatives: throughput 

The goal: high throughput (for a single SmartNIC-powered key-value  store)

38

C
lie

nt

RNIC

Se
rv

er

Host DRAM

RNIC
SoC

READ READ

A1

READ

A2

SEND RECV SEND RECV

READ

A3

READ READ

A4

READ READ

A5

SEND/RECV

0
20
40
60
80

Pe
ak

 T
hp

t
(M

r/s
se

c)



Rank, select and then combine 

None of the approaches achieve both low latency & high throughput 

– A5(SEND/RECV) has the lowest latency, while A5(RDMA) has the highest throughput

– Note that A5 is not always possible due to memory constraint of SoC 

Whenever possible, choose A5 (SEND/RECV) for the lowest latency 

– If the SoC has been saturated, switch to A4 & A5 (RDMA) 

Evaluation setup:  YCSB-C 100% Get( ) 
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More results & case studies in our paper

More findings and advices from our characterization

– e.g., Different communication path may access the cache or memory differently 

More characterization on the concurrent combination of different paths 

– A combination of different paths can yield better performance on microbenchmarks 

More case studies 

– How we improved LineFS [SOSP’21] by 1.3X with a combination of improved 

alternative design & optimization on each alternative 
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Conclusion

Before using the SmartNIC, we must first characterize it! 

– More complicated than traditional network card 

– Many design details need to take care

This work: a comprehensive study on off-path SmartNIC (i.e., Bluefield-2) 

– Reveal anomalies (& solutions to them) + guidelines on how to better utilize it 

– Our methodology may also apply to other NICs 
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