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Problem: container startup is slow for ephemeral functions

E.g., docker run SOME_IMG python foobar.py

– The foorbar executes a simple program

– However, container startup causes 9,000X slower
to the program’s execution (18s)

MITOSIS: fast container startup with minimal resource usage

– Container startup < 5ms on a clean machine (fastest method) 

– Start more than 100,000 containers on 5 machines in one second 
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Why container (cold) start is slow?

Start containers to run the application code involve many steps:

– Download the container image from a registry 

– Containerization: setup cgroup and namespaces

– Runtime initialization: initialize Python runtime, import libraries (e.g., import torch) 
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docker run SOME_IMG python foobar.py

Network

① Download image

② Containerization ③ Runtime initialization

Where foobar runs: 



How to accelerate the startup?

Potential solutions to accelerate each step: 

– Download image: optimize the pull, but still has a cost ([1])

– Containerization: use cgroup and namespace pooling to hide its cost [2] 

– Runtime initialization:
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docker run SOME_IMG python foobar.py

Network

① Download image

② Containerization ③ Runtime initialization

Where foobar runs: 
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[1] FaaSNet: Scalable and Fast Provisioning of Custom Serverless Container Runtimes 
at Alibaba Cloud Function Compute, ATC’21 
[2] SOCK: Rapid Task Provisioning with Serverless-Optimized Containers, ATC’18
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…

Idea: reusing initialized state from other containers 

Observation: runtime initialization + image == initialize container virtual memory 
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③ Runtime initialization

VM

3.1 load the 
downloaded 

modules 

3.2 Translate to 
byte code

3.3 Execute module 
init routines



…

Idea: reusing initialized state from other containers 

Observation: runtime initialization + image == initialize container virtual memory 

– A new container can inherit the state from another initialized container 

– No need to download the image or initialize the runtime

6

③ Runtime initialization

In-memory 
state

docker run borrow SOME_IMG python foobar.py

…

…Inherit

How to inherit? 



Design requirement: no provisioned concurrency 

Suppose we have n containers to start, how many initialized states to store? 

– The required number of stored states is usually termed as provisioned concurrency 

Ideal case: no provisioned concurrency 

– The provisioned case is irrelevant to the started containers, e.g., O(1) 
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… n containers to start 

…

…

Clusters to run the containers 

We need minimal resources 



Existing solutions need provisioned concurrency 

Approach #1. Caching, a.k.a, warm start 

– E.g., docker pause + docker unpause

Docker pause

– Stop a container and store its state in DRAM 

Docker unpause

– Resume the container for execution 
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docker pause docker unpause



Existing solutions need provisioned concurrency 

Approach #1. Caching, a.k.a, warm start 

– E.g., docker pause + docker unpause

Docker pause

– Stop a container and store its state in DRAM 

Docker unpause

– Resume the container for execution 
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docker pause docker unpause

docker pause

What about starting one more? 

We need another paused container!

Cons: needs provisioned 
concurrency! 

O(n) containers provisioned, 
n: the number of concurrent 
invocations 



Existing solutions need provisioned concurrency 

Approach #2. Fork, a.k.a, start containers in a process forking manner [1,2] 

Pros: 

– Each machine only needs 1 parent to concurrently start many containers 

– Achieve O(1) resource provisioned on a single machine 
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docker pause Fork

Fork --- Create a new process from an existing one

Fork
Copy-on-write

[1] Catalyzer: Sub-millisecond Startup for Serverless Computing with Initialization-less Booting, ASPLOS’20
[2] SOCK: Rapid Task Provisioning with Serverless-Optimized Containers, ATC’18



Existing solutions need provisioned concurrency 

What if there is a load spike that applications want start many containers? 

– E.g., there is a load spike in the workload

– Fork still need provisioned concurrency (O(m)) : deploy one parent on each machine! 
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MITOSIS: remote fork no provisioned concurrency 

Remote fork is a primitive for no provisioned concurrency 

– Observation: one parent is sufficient for starting containers across machines 

– A generalization of fork to remote enabling no provisioned concurrency in a cluster
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Fork --- Create a new process from an existing one

docker prepare SOME_IMG

docker fork SOME_IMG 192.168.12.113

192.168.12.113

Finished initialization 



How to implement remote fork efficiently? 

Current solution—Checkpoint & Restore (CRIU) is not efficient enough 

– Checkpoint: stop and dump the memory to a file

– Restore: reconstruct the VM according to the file and resume the process
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Distributed file system

VM checkpoint

Restore

① Checkpoint ② Transfer file ③ Restore

Parent

Child



Current remote fork is not designed for RDMA
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Evaluation setup: CRIU for C/R,  file is transferred via RDMA and is stored in-memory 
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Opportunity: Remote Direct Memory Access (RDMA) 

A fast datacenter networking feature that allows direct remote memory access 

– High bandwidth (400Gbps) & low latency (600ns)  

– CPU bypassing: the memory read/writes are offloaded to the NIC hardware 
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TCP/IP RDMA READ

Read page at 0xdeadbeaf
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We can imitate local fork w/ RDMA!



MITOSIS co-designs remote fork with RDMA

Upon fork, we first use RDMA-based RPC to read the page table to the child

– One-sided RDMA is not efficient at this step due to network amplification 

Afterward, the child retrieves memory pages in a RDMA-on-access manner (on demand)
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Fork

prepare

1. Mark as copy-on-write 2. RPC 3. RDMA

3. Create a container w/ the read page table 

Parent

Child



MITOSIS co-designs remote fork with RDMA

44—80%  faster than basic C/R[1] not  co-designed with RDMA

– The C/R implementation has used RDMA-based DFS to restore states
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MITOSIS vs. The state of the arts 
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Killer application of MITOSIS: Serverless Computing 

A new paradigm on building cloud applications 

– Users upload application as functions

– Each function is executed in a container for the ease of deployment 

Two key attributes to serverless computing 

1. Fast container startup for resource-efficient auto-scaling 

2. Fast state transfer between serverless functions---no (de)serialization !
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AWS Lambda Microsoft Azure Google Functions Huawei cloud functions Opensoruce platforms



Case study #1.  Resource-efficient auto-scaling 

For elasticity, each serverless function invocation will start a new container 
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Case study #1.  Resource-efficient auto-scaling 

For elasticity, each serverless function invocation will start a new container 

– The container can be cached for a short period (e.g., 30 secs) to prevent cold start 
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Results: handling load spikes in a more resource efficient way 

Workloads: trace from the Azure function [1] (Instance #660323)

– Concurrent function invocations in a load spike manner 

– Setup: Fn , a local cluster w/ 24 machines; function: image processing   
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[1] Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider. ATC’20 
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Case study #2: accelerate state transfer between functions 

Serverless function can compose multiple functions together 

– The functions are typically organized into a DAG (Direct acyclic graph) 
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def produce():
data = pd.read_csv(some_csv)
return data

def consumer_1(data):
process_data_1(data)

...

p c_1

c_2

c_3

...DAG DAG request

Run the function



Case study #2: accelerate state transfer between functions 

Serverless function can compose multiple functions together 

– The functions are typically organized into a DAG (Direct acyclic graph) 

– Problem: Transferring states are costly due to (de)serialization + memory copies 
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def produce():
data = pd.read_csv(some_csv)
return data

def consumer_1(data):
process_data_1(data)

...

p c_1

c_2

c_3

...DAG DAG request

Data serialization, deserialization + memory copies 



Case study #2: accelerate state transfer between functions 

Remote fork can completely address the costs of (de)serialization + memory copies 

– The data has been pre-materialized in the parent memory 

– Which is directly inherited by the child containers w/ the help of remote fork 
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def produce():
data = pd.read_csv(some_csv)
return data

def consumer_1(data):
process_data_1(data)

...

p c_1

c_2

c_3

...DAG DAG request

DAG execution accelerated 

Remote 
fork



Transfer state has a high cost, MITOSIS can accelerate it! 

Workloads: FINRA---a real-world serverless application

– Validate trades concurrently with serverless functions 

– Setup: Fn, baseline adopts pickle for (de)serialization 
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[1] https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/
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Many technical challenges to bring RDMA to remote fork  

1. Detailed implementation w/ RDMA 

n On-demand vs. eager state inherit

n Performance optimizations, e.g., caching or prefetch  

2. Memory management w/ RDMA 

n A co-design with advanced RDMA technologies 

3. Integration w/ serverless framework

n A strong cooperation is needed so as to fully utilize the power of MITOSIS  

4. More detailed evaluations

n Where the performance improvement comes, & the bottleneck of approach, etc. 
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Please check our paper if you have interests! 



Conclusion, Thanks & QA 

MITOSIS: Fast remote fork design & implementation for starting containers 

– With a codesign between OS and RDMA 

Achieve no provisioned concurrency

– O(1) resource usage for starting serverless containers 

Killer application: serverless computing 

– Achieve resource—performance—efficient coldstart mitigation 

– Achieve (de)serialization-free state transfer between serverless functions  

Publicly available at: 

28https://github.com/ProjectMitosisOS/ProjectMitosisOS


