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How to optimize the latency of replicated KVSs by leveraging modern hardware ?



Step 1: Persistent Memory
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Using persistent memory (PM) for storage 
v Byte-addressable via load/store instructions
v Low latency (~100ns for small I/O)
v High-bandwidth (2GB/s write and 6GB/s read per DIMM)
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Step 2: RDMA Network
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Using RDMA for network 
v Bypass OS kernel: threads interact directly with NICs
v Hardware offloading: e.g., reliability (RC mode), packetization
v High performance: ~2μs RTT, 100-400Gbps

PM

CPU

PM

CPU

RPC

Put(K, V)

RPC: Replicate(K, V)

PM

CPU

Primary

Backup 1

Backup 2

Client
RNIC

RNIC

RNIC



Step 3: One-sided Replication
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Using one-sided WRITE for replication
v RDMA provides one-sided RDMA WRITE/READ, bypassing remote CPUs
v Primary pushes replicated objects to backups’ PM via RDMA WRITE
v Eliminate RPC queueing and CPU execution of backups in the critical path
v E.g., Mu (OSDI’20, DRAM-based)
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However, RDMA WRITE induces write amplification 
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Each server holds a number of backup logs and receives small RDMA WRITE

RDMA WRITE

A number of backup logs caused by sharding: 
Each server acts as backups for many shards

Allocates lots of backup logs, each accommodating 
RDMA WRITE from a remote thread (primaries)
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v FaRM has thousands of backup logs per server
v #log = (#server – 1) * #(threads per server)
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Small RDMA WRITE caused by small objects:
Small objects are prevalent

v In Meta’s largest KVS ZippyDB, the average  
object size is 90.8B (FAST’20)

v At Twitter, the average tweet is less than 33 
characters (Kangaroo, SOSP’21)

v ……

v FaRM has thousands of backup logs per server
v #log = (#server – 1) * #(threads per server)



However, RDMA WRITE induces write amplification 
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PM devices have byte interface with a block-level internal access granularity
v Optane PM: 256B XPLine; CXL-SSD: Flash Page
v Devices combine adjacent small writes to control device-level write amplification (DLWA)
v Implication: PM devices prefer large writes or sequential small writes 
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One-sided Replication in KVS: random small writes 
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How to mitigate device-level write amplification ?
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Using software batching ?
v Accumulate small writes within a timeout, then emit the batched writes to remote 

backup logs via one RDMA WRITE 
v Problem:
- Induce extra latency, remove benefits of extremely low-latency HW (PM、RDMA)
- GET operations and sharding reduce the opportunity of batching



How to mitigate device-level write amplification ?
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Using software batching ?
v Accumulate small writes within a timeout, then emit the batched writes to remote 

backup logs via one RDMA WRITE 
v Problem:
- Induce extra latency, remove benefits of extremely low-latency HW (PM、RDMA)
- GET operations and sharding reduce the opportunity of batching

Can we mitigate DLWA without inducing any software delay ?



Our Idea – New RDMA abstraction: Rowan
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Rowan (remote write aggregation):
v Receiver-side NICs land remote writes to PM sequentially, and return ACKs 
v Receiver-side NICs decide destination addresses
- Do not need per-remote-thread log area for RDMA WRITE

PM
Increasing address order

Writes from 
different threads

Rowan Abstraction (Receiver-side)
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Rowan (remote write aggregation):
v Receiver-side NICs land remote writes to PM sequentially, and return ACKs 
v Receiver-side NICs decide destination addresses
- Do not need per-remote-thread log area for RDMA WRITE

v Benefits
- Low latency: one-sided, no delay at sender/receiver
- Low DLWA: sequential small writes 
- High throughput:  NIC ASIC executes data path

PM
Increasing address order

Writes from 
different threads

Rowan Abstraction (Receiver-side)

Simple RDMA abstraction, but how to implement it using commodity RDMA NICs ? 



Observations 
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Observation 1:
v RDMA SEND in RC mode is one-sided on the data path
- Control path: receiver’s CPU prepares receive buffers via RDMA RECV
- Data path:  receiver’s NIC performs all tasks: DMA data, and return hardware ACKs

Observation 2:
v In a receive queue (RQ), receive buffers are consumed in order
- the receiver-side NIC pops the first buffer in the associated RQ and lands data to it

RQ

u pop the first buffer and DMA data to it

v return an ACK head tail



Rowan – Basic Architecture    
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Rowan Basic Architecture 
v RC Queue Pair (QP), enabling hardware ACKs
v A Shared Receive Queue (SRQ)

- SEND requests from different remote QPs use the same RQ
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- Pushes 64B PM buffers to SRQ in increasing address order
- Polls Completion Queue (CQ) of the SRQ

v Data path: NIC
- 1) Pops the first buffer in SRQ and DMAs data to it
- 2) Returns an ACK and generates a CQ entry

Writes from different senders can be 
combined into the same PM internal block

32B32B

32B56B

32B384B 384B > 64B
QPs turn into error state

How to handle it ? 

Continuous 128B



Rowan – Handling Variable-sized Writes 
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Senders

MP SRQ Control 
Thread
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push 4MB PM bufs

poll
CQ

4MB PM buf

RDMA NIC

pop and DMA generate CE

Leveraging Multi-Packet (MP) RQ
v A new type of RQ, supported by CX-4/5/6 NICs
v Each receive buffer can accommodate multiple SEND
v Define a stride (e.g., 64B in the right figure)

- Each message has a stride-aligned start address

32B32B 32B56B 32B384B

4MB PM buf
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Leveraging Multi-Packet (MP) RQ
v A new type of RQ, supported by CX-4/5/6 NICs
v Each receive buffer can accommodate multiple SEND
v Define a stride (e.g., 64B in the right figure)

- Each message has a stride-aligned start address
32B32B

32B56B
32B384B

4MB PM buf

Rowan supports variable-sized writes,
while combining small writes to mitigate DLWA

0x000000
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0x000080



Rowan – Control Path Optimization     
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Senders

MP SRQ Control 
Thread

Receiver

push a batch of 4MB 
PM bufs

CQ

4MB PM buf

RDMA NIC

pop and DMA generate CE

Avoid control thread become bottleneck
v Data path: > 50Mops/s
v Two tasks of control thread：

- � Push PM buffers to MP SRQ

- � Poll CQ (RDMA RECV cannot be unsignaled)
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pop and DMA generate CE

Avoid control thread become bottleneck
v Data path: > 50Mops/s
v Two tasks of control thread：

- � Push PM buffers to MP SRQ

- � Poll CQ (RDMA RECV cannot be unsignaled)

v Low overhead RDMA RECV
- Large recv buffer (e.g., 4MB) using MP features
- Post a batch of RDMA RECV at a time

v Eliminate CQ polling
- Like eRPC@NSDI’19
- Ring-structure CQ and NIC can overwrite CQ entries
- Flag: IBV_EXP_CQ_IGNORE_OVERRUN 

32B32B 32B56B 32B384B

4MB PM buf
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1）Low latency：One-sided replication
2）Low DLWA：Log-structured & Rowan merges replication writes into a single backup log
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Digest and Garbage Collection
vReserve dedicated threads, RAMCloud-style GC

Failover
v FaRM’s reconfiguration-style approach

Dynamic Resharding
v Shard-level migration

Fast Remote Persistency with disabled DDIO
v Prefetching、Reducing PCIe Txns

Replicating Persistent Memory Key-Value Stores
with E�cient RDMA Abstraction

Qing Wang, Youyou Lu, Jing Wang, and Jiwu Shu⇤

Tsinghua University

Abstract

Combining persistent memory (PM) with RDMA is a
promising approach to performant replicated distributed
key-value stores (KVSs). However, existing replication ap-
proaches do not work well when applied to PM KVSs: 1)
Using RPC induces software queueing and execution at back-
ups, increasing request latency; 2) Using one-sided RDMA
WRITE causes many streams of small PM writes, leading to
severe device-level write amplification (DLWA) on PM.

In this paper, we propose Rowan, an e�cient RDMA ab-
straction to handle replication writes in PM KVSs; it aggre-
gates concurrent remote writes from di↵erent servers, and
lands these writes to PM in a sequential (thus low DLWA)
and one-sided (thus low latency) manner. We realize Rowan
with o↵-the-shelf RDMA NICs. Further, we build Rowan-KV,
a log-structured PM KVS using Rowan for replication. Evalu-
ation shows that under write-intensive workloads, compared
with PM KVSs using RPC and RDMA WRITE for replication,
Rowan-KV boosts throughput by 1.22⇥ and 1.39⇥ as well as
lowers median PUT latency by 1.77⇥ and 2.11⇥, respectively,
while largely eliminating DLWA.

1 Introduction
Replicated distributed key-value stores (KVSs) support many
applications by providing durability and high availability [28,
56, 76]. The recent commercialization of persistent memory
(PM), e.g., Intel’s Optane DIMMs, enables local storage with
extremely low latency (e.g., ⇠100ns when persisting small
data [73]). When building replicated distributed KVSs with
such fast storage media, network and CPU will become de-
terminants of request latency, since replicating an object (i.e.,
key-value pair) involves multiple times of network communi-
cation and request queueing/execution.

RDMA, a widely-deployed network technology [34,37,53],
is promising to mitigate the network and CPU overhead. First,
RDMA delivers low latency (⇠2µs) due to protocol-o✏oad
RDMA NICs (RNICs) and kernel-bypass software. Second,
RDMA provides one-sided WRITE and READ, allowing remote
memory accesses without involvement of remote CPUs. Re-
cent work have leveraged WRITE to replicate data in DRAM
(i.e., WRITE-enabled replication) [17, 30, 31, 69]. This elimi-
nates software queueing/execution of backups in the critical

⇤Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn)

path, thus significantly cutting the replication latency com-
pared with RPC-enabled replication.

Yet, in the context of PM KVSs, WRITE-enabled replication
approach does not work well: it induces severe device-level
write amplification (DLWA) on PM. Specifically, a KVS is
typically finely sharded for load balancing and fast recovery,
so every server acts as backups for many shards, receiving
numerous concurrent replication writes from many remote
threads; besides, these replication writes are typically small
(⇠100B) due to prevalent tiny objects in real-world work-
loads [24, 52]. In WRITE-enabled replication approaches (e.g.,
FaRM [31]), each server allocates an exclusive backup log
for every remote thread, to accommodate remote WRITE from
primaries. When adopting WRITE-enabled replication to PM
KVSs, these backup logs generate a huge number of PM write
streams1, which contain lots of small-sized writes. These nu-
merous write streams lead to severe DLWA, since PM has
block access granularity at media level (e.g., 256B in Optane
DIMMs) and its hardware combining capacity is bounded.
In our experiments, with 128B RDMA WRITE, 144 remote
PM write streams cause 1.58⇥ DLWA (§2.4). DLWA wastes
limited PM write bandwidth, shortens PM lifetime, and harms
PM’s persistence e�ciency.

In this paper, we propose Rowan, an e�cient RDMA ab-
straction to handle replication writes on PM KVSs. Rowan
can aggregate numerous concurrent remote writes from dif-
ferent servers, and land these writes to PM sequentially, so
as to largely eliminate DLWA. Besides, it is one-sided as
RDMA WRITE, enabling backup-passive replication with low
latency and high CPU e�ciency. We realize Rowan with o↵-
the-shelf RNICs based on two observations: 1) RDMA SEND
is two-sided on the control path but one-sided on the data
path; 2) RNICs consume receive bu↵ers in order. Thus, we let
a control thread at the receiver side push PM-resident bu↵ers
into receive queues in increasing address order. Senders only
need to issue SEND for remote PM writes and wait for ACKs
generated by receiver-side RNICs. We leverage two RNIC
hardware features, shared receive queue (SRQ) [11] and multi-
packet receive queue (MP RQ) [7, 9], to merge writes from
di↵erent connections and support variable-sized writes, re-
spectively. We also streamline Rowan’s control path by min-
imizing the control thread’s tasks. A Rowan instance can

1A write stream is a group of writes targeting contiguous addresses, e.g.,
writes that perform log appending.



Experimental Setup

Hardware Platform
v 6 machines as servers
v Intel Xeon Gold 6240M CPU (18 physical/36 logical cores)
v 3 Í 256GB Optane DIMMs (6GB/s writes, 18 GB/s reads)
v 100Gbps Mellanox ConnectX-5 NIC
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Software Setting 
v 24 cores for worker threads; 5/6/1 cores for digest/GC/control
v Replication factor: 3
v Each server holds 48 shards 
v Disable DDIO and send 1B RDMA READ for persistency of RDMA WRITE or Rowan
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Performance of Rowan

v Remote threads concurrently perform PM writes to a PM server via one Rowan instance
v In the PM server, 18 cores perform local sequential PM writes
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Rowan can largely eliminate device-level write amplification (DLWA), and 
thus has higher (1.85X) throughput than RDMA WRITE
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Performance of Rowan-KV
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Performance of Rowan-KV
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Under write-intensive workloads (i.e., 50% PUT), Rowan-KV outperforms Clover and 
HermesKV significantly (24.5X and 1.98X) when objects are small

24.5×

1.98× Rowan-KV still has performance advantages 
when objects are large (e.g., 4KB)
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Conclusion

v One-sided replication can achieve extreme low latency
- Remove software latency of backups (RPC queueing, CPU execution) from the critical path

v RDMA WRITE for replication induces severe device-level write amplification on PM
- Pre-allocate many logs for remote threads 
- Small objects in workloads vs. block-level internal access granularity in PM devices

v We propose Rowan, a one-sided RDMA abstraction
- Translating concurrent remote small writes into a single write stream
- Rowan-based KVS achieves high performance, while largely eliminating DLWA

vTakeaway
- For one-sided writes, receiver-side NIC is good at managing storage/memory devices 

1) It can coordinate requests from different senders
2) It can allocate addresses according to features of storage/memory devices
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