
Replicating Persistent Memory Key-Value Stores
with Efficient RDMA Abstraction

Qing Wang, Youyou Lu, Jing Wang, Jiwu Shu

Tsinghua University

Replicated Distributed Key-Value Stores

2

Replicated distributed key-value stores (KVSs) support many apps
v Durability _ Storage devices (HDD、SSD)

v High availability _ Data replication

Replicated Distributed Key-Value Stores

2

Replicated distributed key-value stores (KVSs) support many apps
v Durability _ Storage devices (HDD、SSD)

v High availability _ Data replication

How to optimize the latency of replicated KVSs by leveraging modern hardware ?

Step 1: Persistent Memory

3

Using persistent memory (PM) for storage
v Byte-addressable via load/store instructions
v Low latency (~100ns for small I/O)
v High-bandwidth (2GB/s write and 6GB/s read per DIMM)

PM

CPU

TC
P/

IP
 S

ta
ck

PM

CPU
TC

P/
IP

 S
ta

ck
RPC

Put(K, V)

RPC: Replicate(K, V)

PM

CPU

TC
P/

IP
 S

ta
ck

Primary

Backup 1

Backup 2

Client

Step 2: RDMA Network

4

Using RDMA for network
v Bypass OS kernel: threads interact directly with NICs
v Hardware offloading: e.g., reliability (RC mode), packetization
v High performance: ~2μs RTT, 100-400Gbps

PM

CPU

PM

CPU

RPC

Put(K, V)

RPC: Replicate(K, V)

PM

CPU

Primary

Backup 1

Backup 2

Client
RNIC

RNIC

RNIC

Step 3: One-sided Replication

5

Using one-sided WRITE for replication
v RDMA provides one-sided RDMA WRITE/READ, bypassing remote CPUs
v Primary pushes replicated objects to backups’ PM via RDMA WRITE
v Eliminate RPC queueing and CPU execution of backups in the critical path
v E.g., Mu (OSDI’20, DRAM-based)

PM

CPU

PM

CPU

RPC

Put(K, V)

RDMA_WRITE(K, V)

Primary

Backup 1

Backup 2

Client
RNIC

RNIC

PM

CPU

RNIC

However, RDMA WRITE induces write amplification

6

Each server holds a number of backup logs and receives small RDMA WRITE

RDMA WRITE

A number of backup logs caused by sharding:
Each server acts as backups for many shards

Allocates lots of backup logs, each accommodating
RDMA WRITE from a remote thread (primaries)

backup
logs

RDMA WRITE

Server A
Thread 1

Server B
Thread 1

Server A
Thread 2

Server C
Thread 5

Server D
Thread 4

v FaRM has thousands of backup logs per server
v #log = (#server – 1) * #(threads per server)

However, RDMA WRITE induces write amplification

6

Each server holds a number of backup logs and receives small RDMA WRITE

RDMA WRITE

A number of backup logs caused by sharding:
Each server acts as backups for many shards

Allocates lots of backup logs, each accommodating
RDMA WRITE from a remote thread (primaries)

backup
logs

RDMA WRITE

Server A
Thread 1

Server B
Thread 1

Server A
Thread 2

Server C
Thread 5

Server D
Thread 4

RDMA WRITE

Small RDMA WRITE caused by small objects:
Small objects are prevalent

v In Meta’s largest KVS ZippyDB, the average
object size is 90.8B (FAST’20)

v At Twitter, the average tweet is less than 33
characters (Kangaroo, SOSP’21)

v ……

v FaRM has thousands of backup logs per server
v #log = (#server – 1) * #(threads per server)

However, RDMA WRITE induces write amplification

7

PM devices have byte interface with a block-level internal access granularity
v Optane PM: 256B XPLine; CXL-SSD: Flash Page
v Devices combine adjacent small writes to control device-level write amplification (DLWA)
v Implication: PM devices prefer large writes or sequential small writes

However, RDMA WRITE induces write amplification

7

PM devices have byte interface with a block-level internal access granularity
v Optane PM: 256B XPLine; CXL-SSD: Flash Page
v Devices combine adjacent small writes to control device-level write amplification (DLWA)
v Implication: PM devices prefer large writes or sequential small writes

One-sided Replication in KVS: random small writes

of backup logs
(In the PM server, 18 cores perform local sequential PM writes, DDIO disabled)

64B remote PM writes 128B remote PM writes

2.49X

Request Bandwidth Media Bandwidth

0

2

4

6

36 72 108 144

1.70X

0

2

4

6

36 72 108 144

远程写⼊流的数⽬ (即远程线程的数⽬)

Ba
nd

w
id

th
 (G

B/
s)

Severe
device-level

write amplification

How to mitigate device-level write amplification ?

8

Using software batching ?
v Accumulate small writes within a timeout, then emit the batched writes to remote

backup logs via one RDMA WRITE
v Problem:
- Induce extra latency, remove benefits of extremely low-latency HW (PM、RDMA)
- GET operations and sharding reduce the opportunity of batching

How to mitigate device-level write amplification ?

8

Using software batching ?
v Accumulate small writes within a timeout, then emit the batched writes to remote

backup logs via one RDMA WRITE
v Problem:
- Induce extra latency, remove benefits of extremely low-latency HW (PM、RDMA)
- GET operations and sharding reduce the opportunity of batching

Can we mitigate DLWA without inducing any software delay ?

Our Idea – New RDMA abstraction: Rowan

9

Rowan (remote write aggregation):
v Receiver-side NICs land remote writes to PM sequentially, and return ACKs
v Receiver-side NICs decide destination addresses
- Do not need per-remote-thread log area for RDMA WRITE

PM
Increasing address order

Writes from
different threads

Rowan Abstraction (Receiver-side)

Our Idea – New RDMA abstraction: Rowan

9

Rowan (remote write aggregation):
v Receiver-side NICs land remote writes to PM sequentially, and return ACKs
v Receiver-side NICs decide destination addresses
- Do not need per-remote-thread log area for RDMA WRITE

v Benefits
- Low latency: one-sided, no delay at sender/receiver
- Low DLWA: sequential small writes
- High throughput: NIC ASIC executes data path

PM
Increasing address order

Writes from
different threads

Rowan Abstraction (Receiver-side)

Our Idea – New RDMA abstraction: Rowan

9

Rowan (remote write aggregation):
v Receiver-side NICs land remote writes to PM sequentially, and return ACKs
v Receiver-side NICs decide destination addresses
- Do not need per-remote-thread log area for RDMA WRITE

v Benefits
- Low latency: one-sided, no delay at sender/receiver
- Low DLWA: sequential small writes
- High throughput: NIC ASIC executes data path

PM
Increasing address order

Writes from
different threads

Rowan Abstraction (Receiver-side)

Simple RDMA abstraction, but how to implement it using commodity RDMA NICs ?

Observations

10

Observation 1:
v RDMA SEND in RC mode is one-sided on the data path
- Control path: receiver’s CPU prepares receive buffers via RDMA RECV
- Data path: receiver’s NIC performs all tasks: DMA data, and return hardware ACKs

Observation 2:
v In a receive queue (RQ), receive buffers are consumed in order
- the receiver-side NIC pops the first buffer in the associated RQ and lands data to it

RQ

u pop the first buffer and DMA data to it

v return an ACK head tail

Rowan – Basic Architecture

11

Senders

Shared RQ Control
Thread

Receiver

CQ

addr: 0x040

addr: 0x080

addr: 0x120

RDMA NIC

Rowan Basic Architecture
v RC Queue Pair (QP), enabling hardware ACKs
v A Shared Receive Queue (SRQ)

- SEND requests from different remote QPs use the same RQ

32B32B 32B56B 32B384B

Rowan – Basic Architecture

11

Senders

Shared RQ Control
Thread

Receiver

push 64B PM bufs

poll
CQ

addr: 0x040

addr: 0x080

addr: 0x120

RDMA NIC

Rowan Basic Architecture
v RC Queue Pair (QP), enabling hardware ACKs
v A Shared Receive Queue (SRQ)

- SEND requests from different remote QPs use the same RQ

v Control path: a control thread
- Pushes 64B PM buffers to SRQ in increasing address order
- Polls Completion Queue (CQ) of the SRQ

32B32B 32B56B 32B384B

Rowan – Basic Architecture

11

Senders

Shared RQ Control
Thread

Receiver

push 64B PM bufs

poll
CQ

addr: 0x040

addr: 0x080

addr: 0x120

RDMA NIC

pop and DMA generate CE

Rowan Basic Architecture
v RC Queue Pair (QP), enabling hardware ACKs
v A Shared Receive Queue (SRQ)

- SEND requests from different remote QPs use the same RQ

v Control path: a control thread
- Pushes 64B PM buffers to SRQ in increasing address order
- Polls Completion Queue (CQ) of the SRQ

v Data path: NIC
- 1) Pops the first buffer in SRQ and DMAs data to it
- 2) Returns an ACK and generates a CQ entry

32B32B 32B56B 32B384B

Rowan – Basic Architecture

11

Senders

Shared RQ Control
Thread

Receiver

push 64B PM bufs

poll
CQ

addr: 0x040

addr: 0x080

addr: 0x120

RDMA NIC

pop and DMA generate CE

Rowan Basic Architecture
v RC Queue Pair (QP), enabling hardware ACKs
v A Shared Receive Queue (SRQ)

- SEND requests from different remote QPs use the same RQ

v Control path: a control thread
- Pushes 64B PM buffers to SRQ in increasing address order
- Polls Completion Queue (CQ) of the SRQ

v Data path: NIC
- 1) Pops the first buffer in SRQ and DMAs data to it
- 2) Returns an ACK and generates a CQ entry

Writes from different senders can be
combined into the same PM internal block

32B32B

32B56B

32B384B

Continuous 128B

Rowan – Basic Architecture

11

Senders

Shared RQ Control
Thread

Receiver

push 64B PM bufs

poll
CQ

addr: 0x040

addr: 0x080

addr: 0x120

RDMA NIC

pop and DMA generate CE

Rowan Basic Architecture
v RC Queue Pair (QP), enabling hardware ACKs
v A Shared Receive Queue (SRQ)

- SEND requests from different remote QPs use the same RQ

v Control path: a control thread
- Pushes 64B PM buffers to SRQ in increasing address order
- Polls Completion Queue (CQ) of the SRQ

v Data path: NIC
- 1) Pops the first buffer in SRQ and DMAs data to it
- 2) Returns an ACK and generates a CQ entry

Writes from different senders can be
combined into the same PM internal block

32B32B

32B56B

32B384B 384B > 64B
QPs turn into error state

How to handle it ?

Continuous 128B

Rowan – Handling Variable-sized Writes

12

Senders

MP SRQ Control
Thread

Receiver

push 4MB PM bufs

poll
CQ

4MB PM buf

RDMA NIC

pop and DMA generate CE

Leveraging Multi-Packet (MP) RQ
v A new type of RQ, supported by CX-4/5/6 NICs
v Each receive buffer can accommodate multiple SEND
v Define a stride (e.g., 64B in the right figure)

- Each message has a stride-aligned start address

32B32B 32B56B 32B384B

4MB PM buf

Rowan – Handling Variable-sized Writes

12

Senders

MP SRQ Control
Thread

Receiver

push 4MB PM bufs

poll
CQ

4MB PM buf

RDMA NIC

pop and DMA generate CE

Leveraging Multi-Packet (MP) RQ
v A new type of RQ, supported by CX-4/5/6 NICs
v Each receive buffer can accommodate multiple SEND
v Define a stride (e.g., 64B in the right figure)

- Each message has a stride-aligned start address
32B32B

32B56B
32B384B

4MB PM buf

Rowan supports variable-sized writes,
while combining small writes to mitigate DLWA

0x000000
0x000040
0x000080

Rowan – Control Path Optimization

13

Senders

MP SRQ Control
Thread

Receiver

push a batch of 4MB
PM bufs

CQ

4MB PM buf

RDMA NIC

pop and DMA generate CE

Avoid control thread become bottleneck
v Data path: > 50Mops/s
v Two tasks of control thread：

- � Push PM buffers to MP SRQ

- � Poll CQ (RDMA RECV cannot be unsignaled)

32B32B 32B56B 32B384B

4MB PM buf

Rowan – Control Path Optimization

13

Senders

MP SRQ Control
Thread

Receiver

push a batch of 4MB
PM bufs

CQ

4MB PM buf

RDMA NIC

pop and DMA generate CE

Avoid control thread become bottleneck
v Data path: > 50Mops/s
v Two tasks of control thread：

- � Push PM buffers to MP SRQ

- � Poll CQ (RDMA RECV cannot be unsignaled)

v Low overhead RDMA RECV
- Large recv buffer (e.g., 4MB) using MP features
- Post a batch of RDMA RECV at a time

32B32B 32B56B 32B384B

4MB PM buf

Rowan – Control Path Optimization

13

Senders

MP SRQ Control
Thread

Receiver

push a batch of 4MB
PM bufs

CQ

4MB PM buf

RDMA NIC

pop and DMA generate CE

Avoid control thread become bottleneck
v Data path: > 50Mops/s
v Two tasks of control thread：

- � Push PM buffers to MP SRQ

- � Poll CQ (RDMA RECV cannot be unsignaled)

v Low overhead RDMA RECV
- Large recv buffer (e.g., 4MB) using MP features
- Post a batch of RDMA RECV at a time

v Eliminate CQ polling
- Like eRPC@NSDI’19
- Ring-structure CQ and NIC can overwrite CQ entries
- Flag: IBV_EXP_CQ_IGNORE_OVERRUN

32B32B 32B56B 32B384B

4MB PM buf

Rowan-KV

14

A

Primary log

Hash Index

BD E F

Backup log

Server 1

Shard ID Primary Backup
A, B 1 {2,3}

… … …

Server 2

A B

Server 2

A B

Configuration ManagerClient

DR
AM

PM

v Log-structured data layout
v Primary-backup replication

Rowan-KV

14

A

Primary log

Hash Index

BD E F

Backup log

Server 1

Shard ID Primary Backup
A, B 1 {2,3}

… … …

Server 2

A B

Server 2

A B

Configuration ManagerClient

DR
AM

PM

v Log-structured data layout
v Primary-backup replication
v Three components per server
- A single backup log managed by one Rowan instance
- Per-thread primary logs
- Per-shard DRAM hash indexes

Rowan-KV

14

A

Primary log

Hash Index

BD E F

Backup log

Server 1

Shard ID Primary Backup
A, B 1 {2,3}

… … …

Server 2

A B

Server 2

A B

Configuration ManagerClient

DR
AM

PM

v Log-structured data layout
v Primary-backup replication
v Three components per server
- A single backup log managed by one Rowan instance
- Per-thread primary logs
- Per-shard DRAM hash indexes
v Workflow of a PUT operation
- � Client sends an RPC to the primary (P)

KV

Rowan-KV

14

A

Primary log

Hash Index

BD E F

Backup log

Server 1

Shard ID Primary Backup
A, B 1 {2,3}

… … …

Server 2

A B

Server 2

A B

Configuration ManagerClient

DR
AM

PM

v Log-structured data layout
v Primary-backup replication
v Three components per server
- A single backup log managed by one Rowan instance
- Per-thread primary logs
- Per-shard DRAM hash indexes
v Workflow of a PUT operation
- � Client sends an RPC to the primary (P)
- v P appends an entry E to the local primary log KV

KV

Rowan-KV

14

A

Primary log

Hash Index

BD E F

Backup log

Server 1

Shard ID Primary Backup
A, B 1 {2,3}

… … …

Server 2

A B

Server 2

A B

Configuration ManagerClient

DR
AM

PM

v Log-structured data layout
v Primary-backup replication
v Three components per server
- A single backup log managed by one Rowan instance
- Per-thread primary logs
- Per-shard DRAM hash indexes
v Workflow of a PUT operation
- � Client sends an RPC to the primary (P)
- v P appends an entry E to the local primary log
- w P writes E to backup logs of all backups via Rowan

KV

KV

KV

Rowan-KV

14

A

Primary log

Hash Index

BD E F

Backup log

Server 1

Shard ID Primary Backup
A, B 1 {2,3}

… … …

Server 2

A B

Server 2

A B

Configuration ManagerClient

DR
AM

PM

v Log-structured data layout
v Primary-backup replication
v Three components per server
- A single backup log managed by one Rowan instance
- Per-thread primary logs
- Per-shard DRAM hash indexes
v Workflow of a PUT operation
- � Client sends an RPC to the primary (P)
- v P appends an entry E to the local primary log
- w P writes E to backup logs of all backups via Rowan
- x P waits for hardware ACKs from backups’ NICs

KV

KV

KV

Rowan-KV

14

A

Primary log

Hash Index

BD E F

Backup log

Server 1

Shard ID Primary Backup
A, B 1 {2,3}

… … …

Server 2

A B

Server 2

A B

Configuration ManagerClient

DR
AM

PM

v Log-structured data layout
v Primary-backup replication
v Three components per server
- A single backup log managed by one Rowan instance
- Per-thread primary logs
- Per-shard DRAM hash indexes
v Workflow of a PUT operation
- � Client sends an RPC to the primary (P)
- v P appends an entry E to the local primary log
- w P writes E to backup logs of all backups via Rowan
- x P waits for hardware ACKs from backups’ NICs
- � P updates index, pointing to E in primary log

KV

KV

KV

Rowan-KV

14

A

Primary log

Hash Index

BD E F

Backup log

Server 1

Shard ID Primary Backup
A, B 1 {2,3}

… … …

Server 2

A B

Server 2

A B

Configuration ManagerClient

DR
AM

PM

v Log-structured data layout
v Primary-backup replication
v Three components per server
- A single backup log managed by one Rowan instance
- Per-thread primary logs
- Per-shard DRAM hash indexes
v Workflow of a PUT operation
- � Client sends an RPC to the primary (P)
- v P appends an entry E to the local primary log
- w P writes E to backup logs of all backups via Rowan
- x P waits for hardware ACKs from backups’ NICs
- � P updates index, pointing to E in primary log
- � P returns a response

KV

KV

KV

OK

Rowan-KV

14

A

Primary log

Hash Index

BD E F

Backup log

Server 1

Shard ID Primary Backup
A, B 1 {2,3}

… … …

Server 2

A B

Server 2

A B

Configuration ManagerClient

DR
AM

PM

v Log-structured data layout
v Primary-backup replication
v Three components per server
- A single backup log managed by one Rowan instance
- Per-thread primary logs
- Per-shard DRAM hash indexes
v Workflow of a PUT operation
- � Client sends an RPC to the primary (P)
- v P appends an entry E to the local primary log
- w P writes E to backup logs of all backups via Rowan
- x P waits for hardware ACKs from backups’ NICs
- � P updates index, pointing to E in primary log
- � P returns a response

KV

KV

KV

OK

1）Low latency：One-sided replication
2）Low DLWA：Log-structured & Rowan merges replication writes into a single backup log

More Design Details : Check Our Paper

15

Digest and Garbage Collection
vReserve dedicated threads, RAMCloud-style GC

Failover
v FaRM’s reconfiguration-style approach

Dynamic Resharding
v Shard-level migration

Fast Remote Persistency with disabled DDIO
v Prefetching、Reducing PCIe Txns

Replicating Persistent Memory Key-Value Stores
with E�cient RDMA Abstraction

Qing Wang, Youyou Lu, Jing Wang, and Jiwu Shu⇤

Tsinghua University

Abstract

Combining persistent memory (PM) with RDMA is a
promising approach to performant replicated distributed
key-value stores (KVSs). However, existing replication ap-
proaches do not work well when applied to PM KVSs: 1)
Using RPC induces software queueing and execution at back-
ups, increasing request latency; 2) Using one-sided RDMA
WRITE causes many streams of small PM writes, leading to
severe device-level write amplification (DLWA) on PM.

In this paper, we propose Rowan, an e�cient RDMA ab-
straction to handle replication writes in PM KVSs; it aggre-
gates concurrent remote writes from di↵erent servers, and
lands these writes to PM in a sequential (thus low DLWA)
and one-sided (thus low latency) manner. We realize Rowan
with o↵-the-shelf RDMA NICs. Further, we build Rowan-KV,
a log-structured PM KVS using Rowan for replication. Evalu-
ation shows that under write-intensive workloads, compared
with PM KVSs using RPC and RDMA WRITE for replication,
Rowan-KV boosts throughput by 1.22⇥ and 1.39⇥ as well as
lowers median PUT latency by 1.77⇥ and 2.11⇥, respectively,
while largely eliminating DLWA.

1 Introduction
Replicated distributed key-value stores (KVSs) support many
applications by providing durability and high availability [28,
56, 76]. The recent commercialization of persistent memory
(PM), e.g., Intel’s Optane DIMMs, enables local storage with
extremely low latency (e.g., ⇠100ns when persisting small
data [73]). When building replicated distributed KVSs with
such fast storage media, network and CPU will become de-
terminants of request latency, since replicating an object (i.e.,
key-value pair) involves multiple times of network communi-
cation and request queueing/execution.

RDMA, a widely-deployed network technology [34,37,53],
is promising to mitigate the network and CPU overhead. First,
RDMA delivers low latency (⇠2µs) due to protocol-o✏oad
RDMA NICs (RNICs) and kernel-bypass software. Second,
RDMA provides one-sided WRITE and READ, allowing remote
memory accesses without involvement of remote CPUs. Re-
cent work have leveraged WRITE to replicate data in DRAM
(i.e., WRITE-enabled replication) [17, 30, 31, 69]. This elimi-
nates software queueing/execution of backups in the critical

⇤Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn)

path, thus significantly cutting the replication latency com-
pared with RPC-enabled replication.

Yet, in the context of PM KVSs, WRITE-enabled replication
approach does not work well: it induces severe device-level
write amplification (DLWA) on PM. Specifically, a KVS is
typically finely sharded for load balancing and fast recovery,
so every server acts as backups for many shards, receiving
numerous concurrent replication writes from many remote
threads; besides, these replication writes are typically small
(⇠100B) due to prevalent tiny objects in real-world work-
loads [24, 52]. In WRITE-enabled replication approaches (e.g.,
FaRM [31]), each server allocates an exclusive backup log
for every remote thread, to accommodate remote WRITE from
primaries. When adopting WRITE-enabled replication to PM
KVSs, these backup logs generate a huge number of PM write
streams1, which contain lots of small-sized writes. These nu-
merous write streams lead to severe DLWA, since PM has
block access granularity at media level (e.g., 256B in Optane
DIMMs) and its hardware combining capacity is bounded.
In our experiments, with 128B RDMA WRITE, 144 remote
PM write streams cause 1.58⇥ DLWA (§2.4). DLWA wastes
limited PM write bandwidth, shortens PM lifetime, and harms
PM’s persistence e�ciency.

In this paper, we propose Rowan, an e�cient RDMA ab-
straction to handle replication writes on PM KVSs. Rowan
can aggregate numerous concurrent remote writes from dif-
ferent servers, and land these writes to PM sequentially, so
as to largely eliminate DLWA. Besides, it is one-sided as
RDMA WRITE, enabling backup-passive replication with low
latency and high CPU e�ciency. We realize Rowan with o↵-
the-shelf RNICs based on two observations: 1) RDMA SEND
is two-sided on the control path but one-sided on the data
path; 2) RNICs consume receive bu↵ers in order. Thus, we let
a control thread at the receiver side push PM-resident bu↵ers
into receive queues in increasing address order. Senders only
need to issue SEND for remote PM writes and wait for ACKs
generated by receiver-side RNICs. We leverage two RNIC
hardware features, shared receive queue (SRQ) [11] and multi-
packet receive queue (MP RQ) [7, 9], to merge writes from
di↵erent connections and support variable-sized writes, re-
spectively. We also streamline Rowan’s control path by min-
imizing the control thread’s tasks. A Rowan instance can

1A write stream is a group of writes targeting contiguous addresses, e.g.,
writes that perform log appending.

Experimental Setup

Hardware Platform
v 6 machines as servers
v Intel Xeon Gold 6240M CPU (18 physical/36 logical cores)
v 3 Í 256GB Optane DIMMs (6GB/s writes, 18 GB/s reads)
v 100Gbps Mellanox ConnectX-5 NIC

16

Software Setting
v 24 cores for worker threads; 5/6/1 cores for digest/GC/control
v Replication factor: 3
v Each server holds 48 shards
v Disable DDIO and send 1B RDMA READ for persistency of RDMA WRITE or Rowan

17

Performance of Rowan

v Remote threads concurrently perform PM writes to a PM server via one Rowan instance
v In the PM server, 18 cores perform local sequential PM writes

Request Bandwidth Media Bandwidth

0

2

4

6

36 72 108 144 0

2

4

6

36 72 108 144

128B remote PM write

17

Performance of Rowan
Ba

nd
w

id
th

 (G
B/

s)

64B remote PM write

of remote thread

v Remote threads concurrently perform PM writes to a PM server via one Rowan instance
v In the PM server, 18 cores perform local sequential PM writes

RDMA write Rowan

0

20

40

60

128B64B

Th
ro

ug
hp

ut
 (M

op
s/

s)

1.85×

1.78×

Request Bandwidth Media Bandwidth

0

2

4

6

36 72 108 144 0

2

4

6

36 72 108 144

128B remote PM write

17

Performance of Rowan
Ba

nd
w

id
th

 (G
B/

s)

64B remote PM write

of remote thread

v Remote threads concurrently perform PM writes to a PM server via one Rowan instance
v In the PM server, 18 cores perform local sequential PM writes

Rowan can largely eliminate device-level write amplification (DLWA), and
thus has higher (1.85X) throughput than RDMA WRITE

RDMA write Rowan

0

20

40

60

128B64B

Th
ro

ug
hp

ut
 (M

op
s/

s)

1.85×

1.78×

18

Performance of Rowan-KV

Rowan
RPC

RDMA write
Batched RDMA write

0
5

10
15
20
25

20 40 60
0

2

4

6

8

20 40 60

v Compare it with KVSs using different replication approaches (6 severs, 8 clients)
v PUT/GET: 50%/50%; Object size: Facebook ZippyDB (avg. 90.8B)
v Batched RDMA write: 5us timeout or 256B batched writes

La
te

nc
y

(u
s)

Throughput (Mops/s)
(a) Throughout vs. Latency

PUT Latency GET Latency

18

Performance of Rowan-KV

Rowan
RPC

RDMA write
Batched RDMA write

0
5

10
15
20
25

20 40 60
0

2

4

6

8

20 40 60

v Compare it with KVSs using different replication approaches (6 severs, 8 clients)
v PUT/GET: 50%/50%; Object size: Facebook ZippyDB (avg. 90.8B)
v Batched RDMA write: 5us timeout or 256B batched writes

La
te

nc
y

(u
s)

Throughput (Mops/s)

Under write-intensive workloads, compared with RPC and RDMA WRITE, Rowan boosts KVS’s
throughput (by 1.2X and 1.4X) & reduces PUT latency (by 1.8X and 2.1X)

(a) Throughout vs. Latency

PUT Latency GET Latency

18

Performance of Rowan-KV

Rowan
RPC

RDMA write
Batched RDMA write

0
5

10
15
20
25

20 40 60
0

2

4

6

8

20 40 60

v Compare it with KVSs using different replication approaches (6 severs, 8 clients)
v PUT/GET: 50%/50%; Object size: Facebook ZippyDB (avg. 90.8B)
v Batched RDMA write: 5us timeout or 256B batched writes

La
te

nc
y

(u
s)

Throughput (Mops/s)
(a) Throughout vs. Latency

PUT Latency GET Latency

Software batching suffers the highest (50% more) PUT latency

18

Performance of Rowan-KV

Rowan
RPC

RDMA write
Batched RDMA write

0
5

10
15
20
25

20 40 60
0

2

4

6

8

20 40 60

Request BW Media BW

0

10

20

Rowan
RPC RDMA write

Batching

v Compare it with KVSs using different replication approaches (6 severs, 8 clients)
v PUT/GET: 50%/50%; Object size: Facebook ZippyDB (avg. 90.8B)
v Batched RDMA write: 5us timeout or 256B batched writes

La
te

nc
y

(u
s)

Throughput (Mops/s)
(a) Throughout vs. Latency (b) DLWA

PUT Latency GET Latency

18

Performance of Rowan-KV

Rowan
RPC

RDMA write
Batched RDMA write

0
5

10
15
20
25

20 40 60
0

2

4

6

8

20 40 60

Request BW Media BW

0

10

20

Rowan
RPC RDMA write

Batching

v Compare it with KVSs using different replication approaches (6 severs, 8 clients)
v PUT/GET: 50%/50%; Object size: Facebook ZippyDB (avg. 90.8B)
v Batched RDMA write: 5us timeout or 256B batched writes

La
te

nc
y

(u
s)

Throughput (Mops/s)
(a) Throughout vs. Latency (b) DLWA

PUT Latency GET Latency Rowan largely eliminates DLWA, like RPC

19

Performance Comparison with Other KVSs

0

5

10

50% Put 5% Put

Rowan-KV Clover HermesKV

0

50

100

50% Put 5% Put

v Clover [ATC’20]: one-sided READ/WRITE for replication
v HermesKV [ASPLOS’20]: broadcast replication protocol via RPC
v 6 Servers

(a) ZippyDB Obj (b) 4KB Obj

Th
ro

ug
hp

ut
 (M

op
s/

s)

19

Performance Comparison with Other KVSs

0

5

10

50% Put 5% Put

Rowan-KV Clover HermesKV

0

50

100

50% Put 5% Put

v Clover [ATC’20]: one-sided READ/WRITE for replication
v HermesKV [ASPLOS’20]: broadcast replication protocol via RPC
v 6 Servers

(a) ZippyDB Obj (b) 4KB Obj

Th
ro

ug
hp

ut
 (M

op
s/

s)

Under write-intensive workloads (i.e., 50% PUT), Rowan-KV outperforms Clover and
HermesKV significantly (24.5X and 1.98X) when objects are small

24.5×

1.98×

19

Performance Comparison with Other KVSs

0

5

10

50% Put 5% Put

Rowan-KV Clover HermesKV

0

50

100

50% Put 5% Put

v Clover [ATC’20]: one-sided READ/WRITE for replication
v HermesKV [ASPLOS’20]: broadcast replication protocol via RPC
v 6 Servers

(a) ZippyDB Obj (b) 4KB Obj

Th
ro

ug
hp

ut
 (M

op
s/

s)

Under write-intensive workloads (i.e., 50% PUT), Rowan-KV outperforms Clover and
HermesKV significantly (24.5X and 1.98X) when objects are small

24.5×

1.98× Rowan-KV still has performance advantages
when objects are large (e.g., 4KB)

20

Conclusion

v One-sided replication can achieve extreme low latency
- Remove software latency of backups (RPC queueing, CPU execution) from the critical path

20

Conclusion

v One-sided replication can achieve extreme low latency
- Remove software latency of backups (RPC queueing, CPU execution) from the critical path

v RDMA WRITE for replication induces severe device-level write amplification on PM
- Pre-allocate many logs for remote threads
- Small objects in workloads vs. block-level internal access granularity in PM devices

20

Conclusion

v One-sided replication can achieve extreme low latency
- Remove software latency of backups (RPC queueing, CPU execution) from the critical path

v RDMA WRITE for replication induces severe device-level write amplification on PM
- Pre-allocate many logs for remote threads
- Small objects in workloads vs. block-level internal access granularity in PM devices

v We propose Rowan, a one-sided RDMA abstraction
- Translating concurrent remote small writes into a single write stream
- Rowan-based KVS achieves high performance, while largely eliminating DLWA

20

Conclusion

v One-sided replication can achieve extreme low latency
- Remove software latency of backups (RPC queueing, CPU execution) from the critical path

v RDMA WRITE for replication induces severe device-level write amplification on PM
- Pre-allocate many logs for remote threads
- Small objects in workloads vs. block-level internal access granularity in PM devices

v We propose Rowan, a one-sided RDMA abstraction
- Translating concurrent remote small writes into a single write stream
- Rowan-based KVS achieves high performance, while largely eliminating DLWA

vTakeaway
- For one-sided writes, receiver-side NIC is good at managing storage/memory devices

1) It can coordinate requests from different senders
2) It can allocate addresses according to features of storage/memory devices

Thanks & QA

Contact Information: wq1997@tsinghua.edu.cn

Replicating Persistent Memory Key-Value Stores
with Efficient RDMA Abstraction

21

