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Underutilized 
Computation

Memory 
Bottleneck

• Increasing needs to process higher fidelity data
• E.g., larger images, longer sentences, high-definition graphics

• Memory throughput increased much slower than compute core
• E.g., TensorCore could impose larger pressure on memory

~96% memory bandwidth utilization, while only ~51% for computing core

Modern DNNs Being Increasingly Memory Intensive
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• Call for a systematic inter-operator co-schedule approach to reuse 
intermediate results.

• Place element-wise on Registers & regional operators (e.g., Normalization) 
on Shared memory

Device Memory hierarchy
GPU (CUDA) Global memory -> Shared memory -> Registers

GPU (ROCM) Global memory -> LDS -> vGPR
GraphCore / SambaNova Global memory -> Local buffer
Multi-GPUs Host memory -> Device memory

• Memory-intensive operators: Element-wise, Normalization, Softmax, DW/PW-
conv … A lot of memory access on intermediate results.

• Memory hierarchy in DNN accelerators (high-speed cache)

Call For Extreme Data Reuse Optimization
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Current Practice: Focus on Intra-operator Data Reuse

• High performance kernels use multi-level tiling to evenly partition the workload 
onto computation cores. (e.g., CUTLASS, Triton, TVM, Roller …)

• Improves intra-operator memory reuse by caching data tiles on each memory layer.

• No Inter-operator memory reuse.
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• Tile-graph: a tile-level abstraction to enable graph-level data tiling.

• By default, all operators are connected on the lowest memory layer.

• Tile-graph allows two operators to be connected at a higher memory layer

Fig. Left :Original, Right: Connect Relu on Register layer and connect second Dot on shared memory layer.

Opportunity: Explore Inter-operator Data Reuse
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• Huge optimization space
• Collectively schedule connection-layer and the tile-shape of 

multiple connected operators

• Conflict tile shape across operators
• Operators require different tile shape and cannot be directly 

connected

What’s the Challenges?
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Welder System Overview

• Frontend
• DNN models -> Tile-graph

• Tile-graph Scheduler
• Graph-connecting
• Sub-graph scheduling

• Code Generation
• Schedule -> Fused kernel code

Fig. Welder Overview



• Dependent Regions are inferred by analyzing the node’s Tensor Expression.
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• Within a subgraph, tile can be propagated with regard to the output node’s tile shape.

Out[N, C, H, W] = ReduceMax(In[N, C, H*2+KH, W*2+KW]) 
where KH in 2, KW in 2

Tile shape iterator:
[1, N]
[2, N]
…

Design I: Resolve Conflict by Tile Propagation
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• Tile graph’s execution can be 
viewed as data tiles moving 
vertically (LOAD/STORE) and 
horizontally (COMPUTE).

• Memory intensive workloads 
can be optimized by minimizing 
the data tile’s vertical movement 
(Traffic). 

Design II: Lightweight Traffic Cost Model
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• (different layers) Traffic on L2->L1 is 
only dependent on L1 tiles, and is not 
related to L0 tiles.

• (different operators) Traffic on L1->L0 
can be optimized independently as 
they are not directly connected on that 
layer.

Design III: Decouple Optimization Space
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Follows the “first 
connect then schedule” 
method. 

• Graph Connecting: 
• Try connecting on a higher memory 

level 
• Try lower memory layer if scheduling 

fails
• Continue if potential fusion gain 

observed

Welder’s Workflow (I)
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• Tile shape Iterator: try out 
different tile shape

• Tile Propagation: By 
analyzing the expression, 
Welder deduces read/write 
dependent region regarding 
to the given tile.

• Footprint & Traffic, 
Device Cost Model: static 
information used to roughly 
score and rank the tile.

Welder’s Workflow (II)
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• Device profiler: Only a 
few tile config (top k from 
the device cost model) will 
be profiled. 

• Connect decision: 
Connect if latency gain can 
be observed against 
unconnected case.

Welder’s Workflow (III)
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What About Compute-intensive Operators?

• Generating high-performance MMA 
kernels (while preserving the Tile-graph 
connection features)
• Tensorized with high-performance 

block/warp level micro-kernel from expert 
libraries (e.g., CUTLASS)

• Other adopted optimizations: Multi-stage 
software pipeline, layout swizzle …

IR: C[N, M] += A[N, K] * B[K, M]
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Speedup Compilation

Tile-graph Initialization:
• Initialize some element-wise connection to register-level, saving 

additional cost to search for them. 

Subgraph Cache:
• Generate a hash string for each subgraph
• Best schedule plan will be cached after tuning. 
• For models like BERT, only one layer will be tuned.

Multi-process Support:
• Support parallel build and compile for each generated config.
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Evaluation Setup

• Benchmarks:
Model Type Task Year

MobileNet CNN Image Classification 2018
BERT Transformer NLP 2018
ViT Transformer Image Classification 2020

Conformer CNN+Transformer Speech Recognition 2020
MobileViT CNN+Transformer Image Classification 2021

Swin-Transformer Transformer Image Classification 2021
NeRF MLP 3D-scene Generation 2021

NAFNet CNN Image Restoration 2022
Restormer CNN+Transformer Image Restoration 2022

BSRN CNN Image Super-resolution 2022

• Evaluated Baselines:
• Pytorch v1.12.0
• onnx_runtime v1.12
• TensorRT v8.4
• Ansor v0.9 (tuned 800 steps each task)
• Astitch (Implemented in BladeDISC v0.3)
• Rammer
• Nimble
• Welder (ours)

• Hardware:
• NVIDIA V100
• NVIDIA RTX-3090
• AMD MI50
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Performance on V100 (float+SIMT)

Performance on V100 (half+TensorCore) On average: ~1.4x to TensorRT
~ 2x to onnxruntime ~1.5x to Ansor 
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Other devices (AMD-MI50 & RTX-3090)

Fig : AMD ROCm MI50 
GPU performance

Fig : RTX-3090 performance
(Compared with TensorRT) 
(1.402x speedup averaged)
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Other Metrics

Compilation time:

Model Ansor Time(s) Ansor Trials Welder Time(s) Welder Trials
BERT 15285 8000 244 651

Mobilenet 45527 25600 561 927

Memory Access Analysis:
• Welder can effectively save kernel 

counts, memory transactions, 
intermediate results as well as 
latency.

Welder-none : disable all tile connection
Welder-base :  only enable element-wise kernel fusion

~5 min for a model
~100x faster than Ansor
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Conclusion

• Increasing memory challenge is observed in modern DNN inference workloads

• Welder proposes a Tile-graph abstraction that 
• Optimizes both inter- and intra-operator data reuses in a holistic space
• Provides a general operator fusion mechanism

• Welder is exploring a systematic approach to take advantage of emerging trends in 

future model and accelerators

Thank you
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