
Vasily A. Sartakov
Imperial College London

http://lsds.doc.ic.ac.uk
<v.sartakov@imperial.ac.uk>

USENIX OSDI – July 2023

Large-Scale Data & Systems Group

Joint work with Lluís Vilanova1, Munir Geden1, David Eyers2, Takahiro Shinagawa3, Peter Pietzuch1

1Imperial College London, 2University of Otago, 3The University of Tokyo

ORC: Increasing Cloud Memory Density 
via Object Reuse with Capabilities



Duplicate Cloud Software Components

VMs/containers have similar memory content

• Virtual machines have their own guest OS kernel 
– Usually the same across VMs

• Virtual machines and containers run similar applications
– E.g. many users deploy the same NGINX web server

• Different applications are often built on top of the common frameworks
– E.g. use the same Python runtime
– E.g. many dynamic libraries will be the same (lib*.so)

Vasily A. Sartakov - Imperial College London



Duplicate Components in Microservices

3

Large binaries: 
518 MB total

148M Nov 5 2021 mongosh
104M Dec 19 2013 mongod
72M Dec 19 2013 mongos
56M Dec 19 2013 mongo
17M Oct 12 2021 mongofiles
17M Oct 12 2021 mongorestore
16M Oct 12 2021 mongodump
16M Oct 12 2021 mongoimport
16M Oct 12 2021 mongoexport
16M Oct 12 2021 mongostat
16M Oct 12 2021 mongotop
14M Oct 12 2021 bsondump
3.4M Oct 19 2020 perl
3.4M Oct 19 2020 perl5.30.0
1.2M Jun 18 2020 bash
1.1M Jan 6 2021 gpg
875K Jan 6 2021 gpgcompose
736K Aug 23 2021 openssl

Duplicate memory:
x7 of each execution à 85%source: Y. Gan et al., ASPLOS 2019

DeathStarBench microservice benchmark:
– Many duplicate mongoDB instances
– Each mongoDB instance uses 640 MB

Vasily A. Sartakov - Imperial College London



SOTA: Kernel Same Page Merging (KSM)

• Hypervisor-led memory deduplication done by 
Linux kernel

4

VM1 VM2

Hypervisor
KSM

1. KSM periodically scans memory pages and calculates their hashes
2. KSM removes duplicate pages by remapping pages for sharing

Merged pages

Many tuning parameters that govern KSM operation
Vasily A. Sartakov - Imperial College London



Issues with KSM

• KSM is probabilistic in nature
– Deduplication benefit unpredictable

Active KSM: 
100% CPU

First KSM run: 
memory reduces 
13 GB è 2.2 GB

Next KSM run: 
memory reduces
13 GB è 11 GB

KSM consumes CPU cycles
– Deduplication adds substantial overhead

Only cloud provider benefits from KSM
– Tenants unaware what is de-duplicated and when

5Vasily A. Sartakov - Imperial College London



Hypervisor and MMU Tax 

Hypervisor uses MMU to isolate VMs
– Page manipulation à performance and tail-latency overhead

Hypervisor emulates HW platform
– Lacks the visibility that an OS has in terms of application-level load-time 

semantics à page scanning 

MMU operates at page granularity
– COW mechanisms vulnerable to side-channel attacks

6

• Can we use another technology for isolation and deduplication?
• à CHERI: low-overhead capability-based compartments

Vasily A. Sartakov - Imperial College London



Background: CHERI Capabilities

Fat pointers protected by hardware:
– base + length, cursor
– permission, tag
– byte-granularity*

Fine-grained isolation
Limited dependency on OS kernel
Available: Arm CHERI Morello Boards (Armv8)

Capabilities can be created only from capabilities
– Using cap-aware instructions, but not a privileged intermediary

7

perms otype bounds

address

length

base

063



Background: Cap-based Compartments

8

Code

ld.cap

Cap-based 
compartment

X

ld/sd/jr

Capabilities with the same bounds create an isolated compartment

cVM1

Library OS

cVM2

Library OS

Intravisor

Analytics DB Storage DB

Lib C Lib C

Cloud stack built on top of cap-based compartments
− Lightweight isolation and sharing
− Shared single address space à Control over components

OS

borders



ORC: Object Reuse with Capabilities

9

• Key idea: Decompose into components with binary sharing

cVM1

Library OS

cVM2

Library OS

Intravisor

Analytics DB Storage DB

Lib C Lib C

Intravisor

cVM#OS
Library OS

cVM#LibC
Lib C

cVM#DB
DB

cVM1
Analytics

cVM2
Storage

Vasily A. Sartakov - Imperial College London



Challenges: ORC

10

1. Safe sharing of immutable & 
integrity-protected objects

2. Keep Intravisor TCB small 
when loading shared objects

Intravisor

cVM#OS
Library OS

cVM#LibC
Lib C

cVM#DB
DB

cVM1
Analytics

cVM2
Storage

Vasily A. Sartakov - Imperial College London



1. Safe Sharing of Immutable Objects

• Shared components have state, e.g. global variables

11

cVM#DBcVM1 Analytics

init_db(“data.db”);
db = db_instance();

char* db_file; 

init_db(name):
db_file = name;

db_instance:
open_db(db_file);
…
return db;

cVM2 Storage

init_db(“store.db”);
db = db_instance();

Need to duplicate global variables to make shared objects immutable 

“data.db”

Vasily A. Sartakov - Imperial College London



cVM1 Analytics

Compartment-Local Storage (CLS)

12

• CAP-VMs have private copy of globals of shared objects

cVM#DB
.ddata:
char* db_file;

.rodata

.code:
init_db(name):
db_file@CLS = name;

db_instance: 
open_db(db_file@CLS);
…
return db;

cVM2 Storage

Implemented as LLVM compiler pass using memory capabilities
– Similar to thread-local storage (TLS)
– Compiler adds calls to __cls_get_addr() function

CLS CLS
init_db(“data.db”);
db = db_instance();

.ddata:
char* db_file;

init_db(“store.db”);
db = db_instance();

Vasily A. Sartakov - Imperial College London



cVM1 cVM2

2. Small TCB with Shared Objects

13

Idea: Shared object loading is done by an untrusted loader

Intravisor

cVM#DB
DB

Analytics Storage

DB

orc_register(DB)

load & link DB 
(e.g. ld.so for ELF)

orc_request(hash(DB))

hash(DB)

DB

create
compartment

Vasily A. Sartakov - Imperial College London



Evaluation: Video Transcoding Service

• Cloud-based video transcoding service:
ffmpeg video transcoder + libraries + library OS

14

cVM FFmpeg 1

libAV/libC/libOS

ffmpeg ...With 
KSM

Memory per 
ffmpeg worker: 
110 MB 

Launches new ffmpeg instance per request
– Limited by memory or CPU time 

cVM FFmpeg 2

libAV/libC/libOS

ffmpeg
cVM FFmpeg N

libAV/libC/libOS

ffmpeg

With
ORCs

ORC-shareable 
memory: 11 MB

cVM FFmpeg 1
ffmpeg ...cVM FFmpeg 2

ffmpeg
cVM FFmpeg N

ffmpeg

cVM#ORC
libAV/libC/libOS

Vasily A. Sartakov - Imperial College London



0
20
40
60
80

100
120
140
160
180

0 50 100 150 200 250 300
Time (secs)

ORC vs. KSM on Arm Morello

15

Perfect memory sharing: 
180 workers

ORC:
143 workers 
in 11 secs

à ORC deduplicates immediately while finding less duplicate memory

143

176

128 KSM (auto-tuned):
128–176 workers 
in 120–290 secsNumber of

ffmpeg
instances

Vasily A. Sartakov - Imperial College London

Maximum before OOM



Conclusions: Object Reuse With Capabilities

Many VMs/containers have similar memory content
MMU and hypervisor-based solution is not efficient

– Scanning/deduplication overhead
– Not controlled by a tenant
– Probabilistic in nature 

ORC: Memory de-duplication with semantic object reuse and capabilities
– Sharing by design
– Object reuse with preserved state
– Deprivileged policy/mechanisms fully controlled by a tenant 

16

Thank you! – Any Questions?
Vasily A. Sartakov v.sartakov@imperial.ac.uk

Source code: http://github.com/lsds/intravisor
This work was funded by the Technology Innovation Institute through its Secure Systems Research Center, and the UK Government’s Industrial Strategy Challenge Fund under the Digital Security 
by Design Programme (UKRI grant EP/V000365 “CloudCAP”). This work was also supported by JSPS KAK- ENHI grant number 18KK0310 and JST CREST grant number JPMJCR22M3. 

mailto:v.sartakov@imperial.ac.uk

