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Admission Control in Azure
Admission Control: Should a new request be accepted?

Available Resources = Total Resources   −  Allocated Resources

• Variability affecting supply and demand

Supply Demand

• Network and Machine Failures
• Scheduled Maintenance
• Unscheduled Maintenance

• VM Requests
• Capacity Reservations
• Customer Scale-Outs

Why is it hard?
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Admission Control in Azure

Why is it hard?

Admission Control: Should a new request be accepted?

• Fast and Scalable

• Throughput = 120,000+ requests/minute[1]

• Avg. Latency = 5 – 10 ms

• Resource Efficient

Goals

• 1% efficiency gain à $100+ M/year savings [1]

[1] Protean, OSDI ‘20

Solutionà Kerveros: Cloud admission control at scale

• Placement constraints

• Variability affecting supply and demand

• Hardware and VM type heterogeneity

à fragmentation



Kerveros

• High packing efficiency

• Accurate accounting

• Tracks across different VM types

• Flexible packing with low overhead

• Fast admission decision

• Unclaimed reserved resources reused as preemptable VMs (e.g., spot VMs) 

à maximize ROI

Main Idea: 
Late Binding of Reserved Capacity for Admission Control
Why Late Binding?
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Challenges with Late Binding

60

SLA Violation

Admission Control depends on shape (i.e., VM type) of the reserved capacity

Solution: Allocable VM (AV) 

Accept Request?

“Available Capacity” ≥ New Request
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Allocable VM (AV)
• Novel bookkeeping of available capacity
• For every VM type, count of additional VMs that can fit

VM Type AV count

S 27408

M 6724

L 1588



Allocable VM (AV)
• Novel bookkeeping of available capacity
• For every VM type, count of additional VMs that can fit

• Converts multi-dimensional demand to a single-dimension
• Develop two algorithms to adjust AV count for reserved capacity
• Conversion Ratio Algorithm (CRA)
• Linear Adjustment Algorithm (LAA)

VM Type Multi-dimensional Resource demand AV count

S { CPU: 1, RAM: 2 GB, Disk: 64 GB, … } 27408

M { CPU: 4, RAM: 8 GB, Disk: 256 GB, … } 6724

L { CPU: 16, RAM: 32 GB, Disk: 1024 GB, … } 1588
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Kerveros In Action

Load 
Balancer

Allocation Worker Instances

Client Services

Request 
Handlers

• Zonal admission control
• Considers all reserved capacity in zone
• Handles both VM and reservation requests

Request Handler Process
• Request arrives à check AV count
• If enough AV in system, Accept

• Update VM placement & reserved capacity state
• Else Reject

VM Type AV Count

S AVS

M AVM

L AVL

How do we get it?    

AV Count 
Estimator (CRA)

VM Placement & 
Reserved Capacity 
State Snapshot

Placement Store

VM Placement & 
Reserved Capacity State



Kerveros In Action

Load 
Balancer

Allocation Worker Instances

Client Services

Request 
Handlers

Placement Store
VM Type AV Count

S AVS

M AVM
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How do we get it?    

AV Count Estimation
• Initialize AV count in zone

• Uses in-memory state snapshot
• Counted independently for each VM type

• Subtracts AV count for reserved capacity
• Convert between VM types

Conversion Ratio Algorithm (CRA)
• Converts AV count between VM types
• Handles multi-dimensional conversion
• Frequent AV count estimation: 1 minute

AV Count 
Estimator (CRA)

VM Placement & 
Reserved Capacity 
State Snapshot

VM Placement & 
Reserved Capacity State



Kerveros In Action

Load 
Balancer

Allocation Worker Instances

Client Services

Request 
Handlers

Placement Store Fast and Scalable

Rounding Errors à Fragmentation

Conservative Estimation

AV Count 
Estimator (CRA)

VM Placement & 
Reserved Capacity State

VM Placement & 
Reserved Capacity 
State Snapshot

AV Count Estimation
• Initialize AV count in zone

• Uses in-memory state snapshot
• Counted independently for each VM type

• Subtracts AV count for reserved capacity
• Convert between VM types

• Converts AV count between VM types
• Handles multi-dimensional conversion
• Frequent AV count estimation: 1 minute

Conversion Ratio Algorithm (CRA)
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Accurate à Resource efficient

Slow, compute intensive
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Kerveros In Action

Load 
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Kerveros: Fast and Accurate



Alternate Solutions 

• Placeholder (PH)
• Approach: Allocate and reserve resources for reservations
• Pro: Simple and Guarantees SLA
• Con: Early binding to allocated resources à Low packing efficiency

• Partition (PT)[SOSP ‘21]

• Approach: Reserve capacity by partitioning machines
• Pro: Greater control over resources and isolation à Works on private cloud
• Con: Fragmentation with high heterogeneity à Wastes resources in public cloud



How Resource Efficient is Kerveros?

Kerveros ensures high resource utilization
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How does Kerveros Deal with Failures?

Kerveros achieves consistent fours 9s of availability
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How Scalable is Kerveros?

Kerveros scales well with inventory size
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Conclusion

• Kerveros : Admission control system in Microsoft Azure
• Variable supply and demand
• Hardware and VM type heterogeneity

• Scalable and resource efficient in cloud scale
• Achieves high resource utilization while maintaining SLA
• Late binding of reserved resources for admission control
• Allocable VM (AV)


