
Kerveros:
Efficient and Scalable Cloud Admission Control

Sultan Mahmud Sajal,
Luke Marshall, Beibin Li, Shandan Zhou,

Abhisek Pan, Konstantina Mellou, Deepak Narayanan,
Timothy Zhu, David Dion, Thomas Moscibroda, Ishai Menache

65+
Azure

regions

200+
datacenters
worldwide

1K+
supported
VM types

3M+
machines

14M+
VM Requests

per hour

Azure

Cloud is Finite
Availability Zone

Capacity Reservation

Failure and Maintenance

Running VM

Cloud is Finite
Availability Zone

Running VM

Capacity Reservation

Failure and Maintenance

Failed VM

Cloud is Finite
Availability Zone

Running VM

Capacity Reservation

Failure and Maintenance

Failed VM

Admission Control: Should a new request be accepted?

VM Request

Admission Control in Azure
Admission Control: Should a new request be accepted?

Available Resources = Total Resources − Allocated Resources

• Variability affecting supply and demand

Supply Demand

• Network and Machine Failures
• Scheduled Maintenance
• Unscheduled Maintenance

• VM Requests
• Capacity Reservations
• Customer Scale-Outs

Why is it hard?

Admission Control in Azure
Admission Control: Should a new request be accepted?

Why is it hard?

• Variability affecting supply and demand

• Hardware and VM type heterogeneity

Admission Control in Azure
Admission Control: Should a new request be accepted?

0 20 40
0
5

10
15
20

hardware types

Fr
ac

tio
n

(%
)

400 600 800 1,000
0
5

10
15
20

supported VM types

Why is it hard?

• Variability affecting supply and demand

• Hardware and VM type heterogeneity

à fragmentation

Admission Control in Azure
Admission Control: Should a new request be accepted?

Why is it hard?

• Placement constraints

• Variability affecting supply and demand

• Hardware and VM type heterogeneity

à fragmentation

Admission Control in Azure

Why is it hard?

Admission Control: Should a new request be accepted?

• Fast and Scalable

• Throughput = 120,000+ requests/minute[1]

• Avg. Latency = 5 – 10 ms

• Resource Efficient

Goals

• 1% efficiency gain à $100+ M/year savings [1]

[1] Protean, OSDI ‘20

Solutionà Kerveros: Cloud admission control at scale

• Placement constraints

• Variability affecting supply and demand

• Hardware and VM type heterogeneity

à fragmentation

Kerveros

• High packing efficiency

• Accurate accounting

• Tracks across different VM types

• Flexible packing with low overhead

• Fast admission decision

• Unclaimed reserved resources reused as preemptable VMs (e.g., spot VMs)

à maximize ROI

Main Idea:
Late Binding of Reserved Capacity for Admission Control
Why Late Binding?

Challenges with Late Binding

System Capacity:
 2 x 100 = 200

Unclaimed
Reserved

Capacity: [120]

“Available Capacity” ≥ New Request
 200-120 = 80 ≥ 50

New Request

50 120100

Two machines

Accept Request?

Challenges with Late Binding

10050 120

20
20
20
20
20
20

Small VMs
[120]

Two machines

System Capacity:
 2 x 100 = 200

Accept Request?

“Available Capacity” ≥ New Request
 200-120 = 80 ≥ 50

Challenges with Late Binding

100

50

Two machines

System Capacity:
 2 x 100 = 200

Accept Request?

“Available Capacity” ≥ New Request
 200-120 = 80 ≥ 50

20
20
20
20
20
20

Claiming Small VM
Reservations

Challenges with Late Binding

100

50

20

20
20
20
20
20

Two machines

System Capacity:
 2 x 100 = 200

Accept Request?

“Available Capacity” ≥ New Request
 200-120 = 80 ≥ 50

Challenges with Late Binding

100

50

20
20 20

20
20
20

Two machines

System Capacity:
 2 x 100 = 200

Accept Request?

“Available Capacity” ≥ New Request
 200-120 = 80 ≥ 50

Challenges with Late Binding

100

50
120
60

60

Large VMs [120]
Two machines

System Capacity:
 2 x 100 = 200

Accept Request?

“Available Capacity” ≥ New Request
 200-120 = 80 ≥ 50

Challenges with Late Binding

60

SLA Violation

Admission Control depends on shape (i.e., VM type) of the reserved capacity

Solution: Allocable VM (AV)

Accept Request?

“Available Capacity” ≥ New Request
 200-120 = 80 ≥ 50

Claiming Large VM
Reservations

100

50
60

Allocable VM (AV)
• Novel bookkeeping of available capacity
• For every VM type, count of additional VMs that can fit

VM Type AV count

S 27408

M 6724

L 1588

Allocable VM (AV)
• Novel bookkeeping of available capacity
• For every VM type, count of additional VMs that can fit

• Converts multi-dimensional demand to a single-dimension
• Develop two algorithms to adjust AV count for reserved capacity
• Conversion Ratio Algorithm (CRA)
• Linear Adjustment Algorithm (LAA)

VM Type Multi-dimensional Resource demand AV count

S { CPU: 1, RAM: 2 GB, Disk: 64 GB, … } 27408

M { CPU: 4, RAM: 8 GB, Disk: 256 GB, … } 6724

L { CPU: 16, RAM: 32 GB, Disk: 1024 GB, … } 1588

Kerveros In Action
Client Services

Load
Balancer

Allocation Worker Instances

Request
Handlers VM Placement &

Reserved Capacity
State Snapshot

• Zonal admission control
• Considers all reserved capacity in zone
• Handles both VM and reservation requestsAV Count

Estimator (CRA)

Kerveros In Action

Load
Balancer

Allocation Worker Instances

Client Services

Request
Handlers

• Zonal admission control
• Considers all reserved capacity in zone
• Handles both VM and reservation requests

Request Handler Process
• Request arrives à check AV count
• If enough AV in system, Accept

• Update VM placement & reserved capacity state
• Else Reject

VM Type AV Count

S AVS

M AVM

L AVL

How do we get it?

AV Count
Estimator (CRA)

VM Placement &
Reserved Capacity
State Snapshot

Placement Store

VM Placement &
Reserved Capacity State

Kerveros In Action

Load
Balancer

Allocation Worker Instances

Client Services

Request
Handlers

Placement Store
VM Type AV Count

S AVS

M AVM

L AVL

How do we get it?

AV Count Estimation
• Initialize AV count in zone

• Uses in-memory state snapshot
• Counted independently for each VM type

• Subtracts AV count for reserved capacity
• Convert between VM types

Conversion Ratio Algorithm (CRA)
• Converts AV count between VM types
• Handles multi-dimensional conversion
• Frequent AV count estimation: 1 minute

AV Count
Estimator (CRA)

VM Placement &
Reserved Capacity
State Snapshot

VM Placement &
Reserved Capacity State

Kerveros In Action

Load
Balancer

Allocation Worker Instances

Client Services

Request
Handlers

Placement Store Fast and Scalable

Rounding Errors à Fragmentation

Conservative Estimation

AV Count
Estimator (CRA)

VM Placement &
Reserved Capacity State

VM Placement &
Reserved Capacity
State Snapshot

AV Count Estimation
• Initialize AV count in zone

• Uses in-memory state snapshot
• Counted independently for each VM type

• Subtracts AV count for reserved capacity
• Convert between VM types

• Converts AV count between VM types
• Handles multi-dimensional conversion
• Frequent AV count estimation: 1 minute

Conversion Ratio Algorithm (CRA)

Kerveros In Action

Load
Balancer

Allocation Worker Instances

Client Services

Request
Handlers

Placement Store

• Common components
with allocatorAV Count

Estimator (CRA)

Request
Generator

Request
Handlers

Linear Adjustment Estimator

AV Count
Estimator (CRA)

VM Placement &
Reserved Capacity State

VM Placement &
Reserved Capacity
State Snapshot

VM Placement &
Reserved Capacity
State Snapshot

Kerveros In Action

Load
Balancer

Allocation Worker Instances

Client Services

Request
Handlers

Placement Store

• Common components
with allocator

• Synthetic request for
emulation

AV Count
Estimator (CRA)

Request
Generator

Request
Handlers

Linear Adjustment Estimator

AV Count
Estimator (CRA)

VM Placement &
Reserved Capacity State

VM Placement &
Reserved Capacity
State Snapshot

VM Placement &
Reserved Capacity
State Snapshot

Kerveros In Action

Load
Balancer

Allocation Worker Instances

Client Services

Request
Handlers

Placement Store ML Platform

• Common components
with allocator

• Synthetic request for
emulation

• Update: 30 minutes

AV Count
Estimator (CRA)

Request
Generator

Request
Handlers

Linear Adjustment Estimator

AV Count
Estimator (CRA)

VM Placement &
Reserved Capacity State

VM Placement &
Reserved Capacity
State Snapshot

VM Placement &
Reserved Capacity
State Snapshot

• Common components
with allocator

• Synthetic request for
emulation

• Update: 30 minutes

Kerveros In Action

Load
Balancer

Allocation Worker Instances

Client Services

Request
Handlers

AV Count
Estimator (CRA)

VM Placement &
Reserved Capacity
State Snapshot

Placement Store

VM Placement &
Reserved Capacity State

ML Platform

Request
Generator

Request
Handlers

Linear Adjustment Estimator

VM Placement &
Reserved Capacity
State Snapshot

AV Count
Estimator (CRA)

Linear Adjustment Algorithm (LAA)

Accurate à Resource efficient

Slow, compute intensive

Kerveros In Action

Load
Balancer

Allocation Worker Instances

Client Services

Request
Handlers

Placement Store ML Platform

Pub/Sub
AV Count
Estimator (CRA)

Request
Generator

Request
Handlers

Linear Adjustment Estimator

AV Count
Estimator (CRA)

VM Placement &
Reserved Capacity State

VM Placement &
Reserved Capacity
State Snapshot

VM Placement &
Reserved Capacity
State Snapshot

Kerveros In Action

Load
Balancer

Allocation Worker Instances

Client Services

Request
Handlers

AV Count
Estimator (CRA)

VM Placement &
Reserved Capacity
State Snapshot

Request
Generator

Request
Handlers

AV Count
Estimator (CRA)

Linear Adjustment Estimator

VM Placement &
Reserved Capacity
State Snapshot

Placement Store

VM Placement &
Reserved Capacity State

ML Platform

Pub/Sub

Fast but
Conservative Slow but Accurate

Kerveros: Fast and Accurate

Alternate Solutions

• Placeholder (PH)
• Approach: Allocate and reserve resources for reservations
• Pro: Simple and Guarantees SLA
• Con: Early binding to allocated resources à Low packing efficiency

• Partition (PT)[SOSP ‘21]

• Approach: Reserve capacity by partitioning machines
• Pro: Greater control over resources and isolation à Works on private cloud
• Con: Fragmentation with high heterogeneity à Wastes resources in public cloud

How Resource Efficient is Kerveros?

Kerveros ensures high resource utilization

60

70

80

90

100

0 20 40 60 80

Ef
fic

ie
nc

y
(%

)

Days

PT PH CRA Kerveros (CRA + LAA)

How does Kerveros Deal with Failures?

Kerveros achieves consistent fours 9s of availability

99.99

99.992

99.994

99.996

99.998

100

0 10 20 30

Av
ai

la
bi

lit
y

(%
)

Day

How Scalable is Kerveros?

Kerveros scales well with inventory size

0

20

40

60

80

100

Ru
nt

im
e

(m
s)

Machines

Allocation AV Count Computation

1,000 10,000 100,000

Conclusion

• Kerveros : Admission control system in Microsoft Azure
• Variable supply and demand
• Hardware and VM type heterogeneity

• Scalable and resource efficient in cloud scale
• Achieves high resource utilization while maintaining SLA
• Late binding of reserved resources for admission control
• Allocable VM (AV)

