Enso A Streaming Interface for NIC-Application Communication

Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S. Berger, James C. Hoe, Aurojit Panda, Justine Sherry, Ren Wang

NIC offloads

NIC offloads

Offloads operate at higher network layers

NIC offloads

Offloads operate at higher network layers

Efficient network stacks

NIC offloads

Offloads operate at higher network layers

Efficient network stacks

Often bypass the kernel and rely on batching

NIC offloads

Offloads operate at higher network layers

Efficient network stacks

Often bypass the kernel and rely on batching

This Talk:

Mismatch between how NICs are used and the interface that they provide (1)

Fixing this mismatch can significantly **improve performance** while paving the way for **higher-level offloads**

Existing NICs provide a packetized interface

Existing NICs provide a packetized interface

Existing NICs provide a packetized interface

Poor cache interaction due to chaotic memory access

Poor cache interaction due to chaotic memory access

Poor cache interaction due to chaotic memory access

Chaotic Memory Access

Poor cache interaction due to chaotic memory access

DPDK echo with E810 NIC

55% Miss Ratio for the L2 Cache

Chaotic Memory Access

Problem #3 Metadata Overhead Overhead (PCIe bandwidth and CPU cycles) due to per-packet metadata

Up to 39% of PCIe bandwidth consumed with metadata

Problem #3 Metadata Overhead Overhead (PCIe bandwidth and CPU cycles) due to per-packet metadata

Up to 39% of PCIe bandwidth consumed with metadata

Similar process to transmit packets

Mismatch between how NICs are used and their interface

#2 Poor Cache Interaction

#1 Packetized Abstraction

#3 Metadata Overhead

Enso New interface for NIC-Application Communication

Ensō New interface for NIC-Application Communication

Key Idea: Streaming abstraction

Ensō New interface for NIC-Application Communication

Key Idea: Streaming abstraction

Provide the illusion of an unbounded buffer

Packetized Abstraction

Provide the illusion of an unbounded buffer

Packetized Abstraction

Provide the illusion of an unbounded buffer

Unbounded Buffer

Packetized Abstraction

Provide the illusion of an unbounded buffer

Unbounded Buffer

Packetized Abstraction

Provide the illusion of an unbounded buffer

Unbounded Buffer

Packetized Abstraction

Provide the illusion of an unbounded buffer

Unbounded Buffer

Example 1: NIC with no offloads

Example 1: NIC with no offloads

Example 2: NIC that is aware of application-level messages

Example 3: NIC that implements a transport protocol

Example 3: NIC that implements a transport protocol

(1) How to implement a streaming abstraction?

(1) How to implement a streaming abstraction?

(2) How can a streaming abstraction improve performance?

1 How to implement a streaming abstraction?

1 How to implement a streaming abstraction?

Provide the illusion of an unbounded buffer

(1) How to implement a streaming abstraction? Provide the illusion of an unbounded buffer

Each pipe consists of a single contiguous buffer

Ensō Pipe

(1) How to implement a streaming abstraction?

Provide the illusion of an unbounded buffer

Ensō Pipe

(1) How to implement a streaming abstraction?

Provide the illusion of an unbounded buffer

(1) How to implement a streaming abstraction? Provide the illusion of an unbounded buffer

Poor Cache Interaction

Poor Cache Interaction

Poor Cache Interaction

Sequential Memory Access

Poor Cache Interaction

Sequential Memory Access

Reduces L1 misses by 95.9% and L2 misses by 99.5%

Poor Cache Interaction

Sequential Memory Access

Reduces L1 misses by 95.9% and L2 misses by 99.5%

Metadata Overhead

Notifying Batches

Poor Cache Interaction

Sequential Memory Access

Reduces L1 misses by 95.9% and L2 misses by 99.5%

Metadata Overhead

Notifying Batches

Reduces PCIe metadata traffic by 96.9%

Naïve strategy: send an update for every piece of data

Naïve strategy: send an update for every piece of data

Naïve strategy: send an update for every piece of data

RX Ensō Pipe

Problem: Per-packet overhead

Notification Pacing in Ensō

Ensō combines two techniques

(1) Reactive Notifications

2 Notification Prefetching

1 Reactive Notifications

The NIC updates its pointer in *reaction* to CPU pointer updates

1 Reactive Notifications

The NIC updates its pointer in *reaction* to CPU pointer updates

(1) Reactive Notifications

The NIC updates its pointer in *reaction* to CPU pointer updates

1) Reactive Notifications

The NIC updates its pointer in *reaction* to CPU pointer updates

RX Ensō Pipe

The NIC updates its pointer in *reaction* to CPU pointer updates

Only sends notifications that are strictly necessary

2 Notification Prefetching

(2) Notification Prefetching

(2) Notification Prefetching

2 Notification Prefetching

Notification Prefetching

Process Batch

2 Notification Prefetching

Software can explicitly request pointer updates from the NIC

Process Batch

Many other design challenges...

How to notify pointer updates efficiently?

How to deal with data that wrap around?

How to design a scalable hardware?

(e.g., Network Functions)?

- How to avoid copies in applications that send data back

Many other design challenges...

How to notify pointer updates efficiently?

How to deal with data that wrap around?

How to design a scalable hardware?

(e.g., Network Functions)?

Refer to the paper for details

- How to avoid copies in applications that send data back

Ensō Implementation

Hardware

Software

Ensō Implementation

Hardware

Software

Ensō Implementation

Hardware

Software

Evaluation

Machine 1 (Packet Generator)

Machine 2 (Design Under Test)

Ensō achieves 100 Gbps line rate (148.8 Mpps) using a single core

Number of cores

Ensō achieves 100 Gbps line rate (148.8 Mpps) using a single core

"Impressive results. Soundly destroys DPDK for many of the types of microbenchmark applications that are popular in the academic literature [...]" — Reviewer D

Number of cores

Ensō improves application throughput by up to 6x

Application

Maglev Load Balancer [NSDI '16]

Network Telemetry with NitroSketch [SIGCOMM '19]

MICA Key-Value Store [NSDI '14]

Log Monitor

Throughput Improvement

SDI '16 /ith / '19] SDI '14]

Up to 6x

Up to 3.5x

Up to 47%

Up to 95%

Reactive Notifications + Notification Prefetching improve throughput without impairing latency

Ensō achieves similar latency to the E810 NIC with DPDK, while sustaining a much greater load

Ensō outperforms the packetized interface even when copying data

Packet size (bytes)

Ensō is a streaming interface for NIC-Application communication

Improves application throughput by up to 6x even with no offloads

Enso is a **streaming interface** for NIC-Application communication

Improves application throughput by **up to 6x** even with no offloads

Allows easier and more efficient high-level offload implementations

Enso is a **streaming interface** for NIC-Application communication

Improves application throughput by up to 6x even with no offloads

Allows easier and more efficient high-level offload implementations

Contact: sadok@cmu.edu

Enso is a **streaming interface** for NIC-Application communication

Ensō is open source: enso.cs.cmu.edu

