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Performance issues are costly
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“Google found a 0.5 seconds delay (in page load time) 
caused a 20% decrease in repeat traffic”

“the Go process has been crashing every other hour … it was 
such a memory hog”
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Performance is relative 

Request rate changed?

- More requests/period 

Request type changed?

- More allocation/request 

Memory leak?

 - Fewer deallocation/allocation                 
Time
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Idea: locate most specific reference point to captures the root cause

35km/hr

Performance is relative 
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Performance is relative 

Idea: locate most specific reference point to captures the root cause

Overall RAM usage

Allocation/request

Request/period



Existing solutions are limited

Statistical debugging

• Identifies absolute predicates correlated with failure

• Requires labeling many executions as fail or success
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Failure: throw(ex)  Predicate: flag == true  Correlation: 100% 

…

flag = true;

…

if (flag) {

…

throw(ex);

…

flag = false;

…

if (flag) {

}

…



𝑹(malloc|request) = {20, 40}
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Request#1

malloc()

…

malloc()

Relational Debugging 
– pinpoints root causes of performance problems

Relations between events represents relative performance 

& general representation of performance root causes.

Request#2

malloc()

…

malloc()

20 40



𝑹(malloc(size)|request) 

     = {200MB, 400MB}
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Request#1

Mem usage:

200MB

Request#2

Mem usage:

400MB

Relational Debugging 
– pinpoints root causes of performance problems

Relations between events represents relative performance 

& general representation of performance root causes.

Relations can represent:

- Memory usage

- CPU cyces

- Network bandwidth

- Disk usage

…



𝑹(malloc|request) =
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Request#1

malloc()

…

malloc()

Relational Debugging 
– pinpoints root causes of performance problems

Relations between events represents relative performance 

& general representation of performance root causes.

Request#2

malloc()

…

malloc()

20 40

30

…



𝑹(B|A) =
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Relational Debugging 
– pinpoints root causes of performance problems

𝜇

Relations between events represents relative performance 

& general representation of performance root causes.

“The # of event B’s that causally dependent on an event A.
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Challenges

• Possibles relations in an execution are combinatorial

• Which ones capture the root cause of performance bug? 

./program

main() {

…

if (flag) {

…

else {

…

Relational Debugging 
– pinpoints root causes of performance problems



𝑹(malloc|main())               = 2GB   ➔ 6GB 
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Relational Debugging 
– pinpoints root causes of performance problems

Core idea: 

locate most specific reference point to capture the root cause

handle_request mallocmain()

main() {
while (true) {

handle_request();
}

}



𝑹(malloc|main())               = 2GB   ➔ 6GB 

𝑹(handle_request|main()) = 10 ➔ 10
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Given

Relational Debugging 
– pinpoints root causes of performance problems

Core idea: 

locate most specific reference point to capture the root cause

handle_request mallocmain()

main() {
while (true) {

handle_request();
}

}



𝑹(malloc|main())               = 2GB   ➔ 6GB 

𝑹(malloc|hand_request)  = 205MB ➔ 315MB 

𝑹(handle_request|main()) = 10 ➔ 10
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Given

Refine to

Relational Debugging 
– pinpoints root causes of performance problems

Core idea: 

locate most specific reference point to capture the root cause

handle_request mallocmain()

main() {
while (true) {

handle_request();
}

}
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good_run

bad_run

Perspect implements Relational Debugging

symptom #1

Perspect
𝑹 (… |. . . )  impact 99% rank #1

𝑹 (… |. . . )  impact 50% rank #2

…

Root cause candidates

symptom #2

…
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Causal analysis

• Bootstrap with performance symptoms

• Identify causal predecessors of the symptoms

Relational debugging

Step1. Build relations at most general reference points

Step2. Filter relations that have not changed

Step3. Refine relations - move ref. points closer to symptom

Step4. Rank root cause candidates based on impact on perf.

Repeat

Perspect implements Relational Debugging
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$./64bit_run      

$ heap_size:   29MB

$./32bit_run      

$ heap_size:  2075MB 

Go-909 – A memory leak bug

Go-909 causes “Severe memory problems on 32bit Linux”

for i := 0; i < 1000; i++ { 
r := make([]float64, 923521) 

}

• Impacted many workloads & Extensively discussed
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Diagnosing Go-909 was challenging

• Diagnosed through trial-and-error after more than a year

• Root cause breaks no program invariants/absolute predicates



void *p = malloc(…);

19

The root cause of Go-909

const int q = 0x8126890;

Live object Dead object



GC: reclaim

void *p = malloc(…);

GC: mark object as reachable
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The root cause of Go-909

const int q = 0x8126890;

Live object Dead object



GC: mark object as reachable

void *p = malloc(…);

GC: mark object as reachable
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The root cause of Go-909

const int q = 0x8126890;

Live object Dead object



GC: mark object as reachableGC: mark object as reachable
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Perspect pinpoints the root cause of Go-909

Good run: 𝑹(malloc|mark_object) = 1, 1, 1, 1, … 1, 0
   Bad run: 𝑹(malloc|mark_object) = 0,0, 0, 0, … 0, 1

Root cause relation:

“The # of malloc events each mark event depends on.”

void *p = malloc(…); const int q = 0x8126890;

Live object Dead object



GC: mark object as reachableGC: mark object as reachable

mark() {… if points_to_heap(ptr) {mark(*ptr)}}
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Perspect pinpoints the root cause of Go-909

Good run: 𝑹(malloc|mark_object) = 1, 1, 1, 1, … 1, 0
   Bad run: 𝑹(malloc|mark_object) = 0,0, 0, 0, … 0, 1

Root cause relation:

“The # of malloc events each mark event depends on.”

void *p = malloc(…); const int q = 0x8126890;

Live object Dead object
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Perspect pinpoints the root cause of Go-909

Good run: 𝑹(malloc|mark_object) = 0.99
   Bad run: 𝑹(malloc|mark_object) = 0.01

Root cause relation:

Impact: 99% rank: 1/1

GC: mark object as reachableGC: mark object as reachable

mark() {… if points_to_heap(ptr) {mark(*ptr)}}

void *p = malloc(…); const int q = 0x8126890;

Live object Dead object
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Perspect on Go-909

Causal analysis

• Bootstrap with performance symptoms

• Identify causal predecessors of the symptoms

Relational debugging

Step1. Build relations

Step2. Filter relations 

Step3. Refine relations

Step4. Rank root cause candidates

Repeat
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Bootstrap with performance symptoms

reclaim(obj)

malloc()

heap_size -= obj.size;

heap_size 
+= obj.size;
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Identify causal dependencies of the symptoms

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

heap_size 
+= obj.size; if(!obj.marked)if(points_to_heap(ptr))
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Perspect automates relational debugging

Causal analysis

• Bootstrap with performance symptoms

• Identify causal predecessors of the symptoms

Relational debugging

Step1. Build relations

Step2. Filter relations 

Step3. Refine relations

Step4. Rank root cause candidates

Repeat
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Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

heap_size 
+= obj.size; if(!obj.marked)if(points_to_heap(ptr))
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Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

if(!obj.marked)if(points_to_heap(ptr))

reclaim(obj)
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Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

if(!obj.marked)if(points_to_heap(ptr))

reclaim(obj)
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𝑹 reclaim|malloc() 𝑹 reclaim|sweep()𝑹 reclaim|mark()

Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

heap_size 
+= obj.size; if(!obj.marked)if(points_to_heap(ptr))

reclaim(obj)
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𝑹 reclaim|malloc() 𝑹 reclaim|sweep()𝑹 reclaim|mark()

Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

heap_size 
+= obj.size; if(!obj.marked)if(points_to_heap(ptr))

reclaim(obj)
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𝑹 reclaim|sweep()

Refine relations – rule #1

sweep()

if(!obj.marked)

reclaim(obj)

for (obj in heap_span)
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𝑹 reclaim|sweep()

𝑹 reclaim|if(! obj. marked)

Refine

Refine relations – rule #1

sweep()

if(!obj.marked)

reclaim(obj)

for (obj in heap_span)
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𝑹 reclaim|sweep()

𝑹 reclaim|if(! obj. marked)

𝑹 if(! obj. marked)|sweep()

OK since

Refine

Refine relations – rule #1

sweep()

if(!obj.marked)

reclaim(obj)

for (obj in heap_span)
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𝑹 reclaim|sweep()

Step2. Refine relations to capture root cause

heap_size -= obj.size;

reclaim(obj)

sweep()

heap_size -= obj.size;

if(!obj.marked)

reclaim(obj)mark(*ptr)

mark()malloc()

if(points_to_heap(ptr))
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𝑹 reclaim|sweep()

Step2. Refine relations to capture root cause

heap_size -= obj.size;

reclaim(obj)

sweep()

heap_size -= obj.size;

if(!obj.marked)

reclaim(obj)

𝑹 malloc|mark

Refine

ROOT CAUSE

mark(*ptr)

mark()malloc()

if(points_to_heap(ptr))



• Evaluated on 12 bugs from Golang, Mongodb, Redis, Coreutils:

  10 bugs: Perspect diagnosed the root cause successfully

    1 bug: root cause in kernel, excluded from go system

    1 bug: unsuccessful due to significant code change

• Diagnosed two open bugs

39

Evaluating Perspect’s effectiveness

“[Perspect’s result] ties all the pieces together into a nice 
explanation.”

—MongoDB developer’s comment



• Partcipants diagnose 2 cases 10.87 X faster with Perspect:

Go-909 and Mongodb-44991

• Perspect takes an average of 8 minutes to run on most cases

40

Perspect’s usability and scalability



Related work

Statistical debugging

• Identifies absolute predicates correlated with failure

• Requires labeling many executions as fail or success

X-Ray

• Captures root causes in input parameters & configurations

Other solutions

• Designed for specific patterns of bad performance 

41



Relational Debugging

• Relation btw. events captures relativeness of performance bugs

• Refine relations to narrow down to most specific root causes

Perspect (implements relational debugging)

• Pinpoints root causes of complex real-world bugs efficiently

• Helped diagnose two open bugs
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Conclusion

https://gitlab.dsrg.utoronto.ca/dsrg/perspect

https://gitlab.dsrg.utoronto.ca/dsrg/perspect
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