
Relational Debugging —
Pinpointing Root Causes of

Performance Problems

Xiang (Jenny) Ren, Sitao Wang, Zhuqi Jin,
David Lion, Adrian Chiu, Tianyin Xu, Ding Yuan

1

Performance issues are costly

2

“Google found a 0.5 seconds delay (in page load time)
caused a 20% decrease in repeat traffic”

“the Go process has been crashing every other hour … it was
such a memory hog”

3

0
1
2
3
4
5
6 Memory Usage (GB)

Performance is relative

Request rate changed?

- More requests/period

Request type changed?

- More allocation/request

Memory leak?

 - Fewer deallocation/allocation
Time

44

. .

5km/hr

!

Idea: locate most specific reference point to captures the root cause

35km/hr

Performance is relative

55

. .
5km/hr

5km/hr

Performance is relative

Idea: locate most specific reference point to captures the root cause

Overall RAM usage

Allocation/request

Request/period

Existing solutions are limited

Statistical debugging

• Identifies absolute predicates correlated with failure

• Requires labeling many executions as fail or success

6
Failure: throw(ex) Predicate: flag == true Correlation: 100%

…

flag = true;

…

if (flag) {

…

throw(ex);

…

flag = false;

…

if (flag) {

}

…

𝑹(malloc|request) = {20, 40}

7

Request#1

malloc()

…

malloc()

Relational Debugging
– pinpoints root causes of performance problems

Relations between events represents relative performance

& general representation of performance root causes.

Request#2

malloc()

…

malloc()

20 40

𝑹(malloc(size)|request)

 = {200MB, 400MB}
8

Request#1

Mem usage:

200MB

Request#2

Mem usage:

400MB

Relational Debugging
– pinpoints root causes of performance problems

Relations between events represents relative performance

& general representation of performance root causes.

Relations can represent:

- Memory usage

- CPU cyces

- Network bandwidth

- Disk usage

…

𝑹(malloc|request) =

9

Request#1

malloc()

…

malloc()

Relational Debugging
– pinpoints root causes of performance problems

Relations between events represents relative performance

& general representation of performance root causes.

Request#2

malloc()

…

malloc()

20 40

30

…

𝑹(B|A) =

10

Relational Debugging
– pinpoints root causes of performance problems

𝜇

Relations between events represents relative performance

& general representation of performance root causes.

“The # of event B’s that causally dependent on an event A.

1111

Challenges

• Possibles relations in an execution are combinatorial

• Which ones capture the root cause of performance bug?

./program

main() {

…

if (flag) {

…

else {

…

Relational Debugging
– pinpoints root causes of performance problems

𝑹(malloc|main()) = 2GB ➔ 6GB

1212

Relational Debugging
– pinpoints root causes of performance problems

Core idea:

locate most specific reference point to capture the root cause

handle_request mallocmain()

main() {
while (true) {

handle_request();
}

}

𝑹(malloc|main()) = 2GB ➔ 6GB

𝑹(handle_request|main()) = 10 ➔ 10

1313

Given

Relational Debugging
– pinpoints root causes of performance problems

Core idea:

locate most specific reference point to capture the root cause

handle_request mallocmain()

main() {
while (true) {

handle_request();
}

}

𝑹(malloc|main()) = 2GB ➔ 6GB

𝑹(malloc|hand_request) = 205MB ➔ 315MB

𝑹(handle_request|main()) = 10 ➔ 10

1414

Given

Refine to

Relational Debugging
– pinpoints root causes of performance problems

Core idea:

locate most specific reference point to capture the root cause

handle_request mallocmain()

main() {
while (true) {

handle_request();
}

}

15

good_run

bad_run

Perspect implements Relational Debugging

symptom #1

Perspect
𝑹 (… |. . .) impact 99% rank #1

𝑹 (… |. . .) impact 50% rank #2

…

Root cause candidates

symptom #2

…

16

Causal analysis

• Bootstrap with performance symptoms

• Identify causal predecessors of the symptoms

Relational debugging

Step1. Build relations at most general reference points

Step2. Filter relations that have not changed

Step3. Refine relations - move ref. points closer to symptom

Step4. Rank root cause candidates based on impact on perf.

Repeat

Perspect implements Relational Debugging

17

$./64bit_run

$ heap_size: 29MB

$./32bit_run

$ heap_size: 2075MB

Go-909 – A memory leak bug

Go-909 causes “Severe memory problems on 32bit Linux”

for i := 0; i < 1000; i++ {
r := make([]float64, 923521)

}

• Impacted many workloads & Extensively discussed

18

Diagnosing Go-909 was challenging

• Diagnosed through trial-and-error after more than a year

• Root cause breaks no program invariants/absolute predicates

void *p = malloc(…);

19

The root cause of Go-909

const int q = 0x8126890;

Live object Dead object

GC: reclaim

void *p = malloc(…);

GC: mark object as reachable

20

The root cause of Go-909

const int q = 0x8126890;

Live object Dead object

GC: mark object as reachable

void *p = malloc(…);

GC: mark object as reachable

21

The root cause of Go-909

const int q = 0x8126890;

Live object Dead object

GC: mark object as reachableGC: mark object as reachable

22

Perspect pinpoints the root cause of Go-909

Good run: 𝑹(malloc|mark_object) = 1, 1, 1, 1, … 1, 0
 Bad run: 𝑹(malloc|mark_object) = 0,0, 0, 0, … 0, 1

Root cause relation:

“The # of malloc events each mark event depends on.”

void *p = malloc(…); const int q = 0x8126890;

Live object Dead object

GC: mark object as reachableGC: mark object as reachable

mark() {… if points_to_heap(ptr) {mark(*ptr)}}

23

Perspect pinpoints the root cause of Go-909

Good run: 𝑹(malloc|mark_object) = 1, 1, 1, 1, … 1, 0
 Bad run: 𝑹(malloc|mark_object) = 0,0, 0, 0, … 0, 1

Root cause relation:

“The # of malloc events each mark event depends on.”

void *p = malloc(…); const int q = 0x8126890;

Live object Dead object

24

Perspect pinpoints the root cause of Go-909

Good run: 𝑹(malloc|mark_object) = 0.99
 Bad run: 𝑹(malloc|mark_object) = 0.01

Root cause relation:

Impact: 99% rank: 1/1

GC: mark object as reachableGC: mark object as reachable

mark() {… if points_to_heap(ptr) {mark(*ptr)}}

void *p = malloc(…); const int q = 0x8126890;

Live object Dead object

25

Perspect on Go-909

Causal analysis

• Bootstrap with performance symptoms

• Identify causal predecessors of the symptoms

Relational debugging

Step1. Build relations

Step2. Filter relations

Step3. Refine relations

Step4. Rank root cause candidates

Repeat

26

Bootstrap with performance symptoms

reclaim(obj)

malloc()

heap_size -= obj.size;

heap_size
+= obj.size;

27

Identify causal dependencies of the symptoms

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

heap_size
+= obj.size; if(!obj.marked)if(points_to_heap(ptr))

28

Perspect automates relational debugging

Causal analysis

• Bootstrap with performance symptoms

• Identify causal predecessors of the symptoms

Relational debugging

Step1. Build relations

Step2. Filter relations

Step3. Refine relations

Step4. Rank root cause candidates

Repeat

29

Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

heap_size
+= obj.size; if(!obj.marked)if(points_to_heap(ptr))

30

Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

if(!obj.marked)if(points_to_heap(ptr))

reclaim(obj)

31

Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

if(!obj.marked)if(points_to_heap(ptr))

reclaim(obj)

32

𝑹 reclaim|malloc() 𝑹 reclaim|sweep()𝑹 reclaim|mark()

Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

heap_size
+= obj.size; if(!obj.marked)if(points_to_heap(ptr))

reclaim(obj)

33

𝑹 reclaim|malloc() 𝑹 reclaim|sweep()𝑹 reclaim|mark()

Step1. Build relations at most general reference points

heap_size -= obj.size;

reclaim(obj)mark(*ptr)

mark() sweep()malloc()

heap_size -= obj.size;

heap_size
+= obj.size; if(!obj.marked)if(points_to_heap(ptr))

reclaim(obj)

34

𝑹 reclaim|sweep()

Refine relations – rule #1

sweep()

if(!obj.marked)

reclaim(obj)

for (obj in heap_span)

35

𝑹 reclaim|sweep()

𝑹 reclaim|if(! obj. marked)

Refine

Refine relations – rule #1

sweep()

if(!obj.marked)

reclaim(obj)

for (obj in heap_span)

36

𝑹 reclaim|sweep()

𝑹 reclaim|if(! obj. marked)

𝑹 if(! obj. marked)|sweep()

OK since

Refine

Refine relations – rule #1

sweep()

if(!obj.marked)

reclaim(obj)

for (obj in heap_span)

37

𝑹 reclaim|sweep()

Step2. Refine relations to capture root cause

heap_size -= obj.size;

reclaim(obj)

sweep()

heap_size -= obj.size;

if(!obj.marked)

reclaim(obj)mark(*ptr)

mark()malloc()

if(points_to_heap(ptr))

38

𝑹 reclaim|sweep()

Step2. Refine relations to capture root cause

heap_size -= obj.size;

reclaim(obj)

sweep()

heap_size -= obj.size;

if(!obj.marked)

reclaim(obj)

𝑹 malloc|mark

Refine

ROOT CAUSE

mark(*ptr)

mark()malloc()

if(points_to_heap(ptr))

• Evaluated on 12 bugs from Golang, Mongodb, Redis, Coreutils:

 10 bugs: Perspect diagnosed the root cause successfully

 1 bug: root cause in kernel, excluded from go system

 1 bug: unsuccessful due to significant code change

• Diagnosed two open bugs

39

Evaluating Perspect’s effectiveness

“[Perspect’s result] ties all the pieces together into a nice
explanation.”

—MongoDB developer’s comment

• Partcipants diagnose 2 cases 10.87 X faster with Perspect:

Go-909 and Mongodb-44991

• Perspect takes an average of 8 minutes to run on most cases

40

Perspect’s usability and scalability

Related work

Statistical debugging

• Identifies absolute predicates correlated with failure

• Requires labeling many executions as fail or success

X-Ray

• Captures root causes in input parameters & configurations

Other solutions

• Designed for specific patterns of bad performance

41

Relational Debugging

• Relation btw. events captures relativeness of performance bugs

• Refine relations to narrow down to most specific root causes

Perspect (implements relational debugging)

• Pinpoints root causes of complex real-world bugs efficiently

• Helped diagnose two open bugs

42

Conclusion

https://gitlab.dsrg.utoronto.ca/dsrg/perspect

https://gitlab.dsrg.utoronto.ca/dsrg/perspect

	Slide 1: Relational Debugging — Pinpointing Root Causes of Performance Problems
	Slide 2: Performance issues are costly
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Existing solutions are limited
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Evaluating Perspect’s effectiveness
	Slide 40: Perspect’s usability and scalability
	Slide 41: Related work
	Slide 42: Conclusion

