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Concurrency control

Determines consistency
guarantees of the system 

By controlling how 
requests are executed



Strict Serializability
•Transactions take effect in a total order
ØSerializable: requests do not interleave

•Respects the real-time ordering
ØIf tx1 ends before tx2 starts, then tx1 must 

be ordered before tx2 in the total order
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Strict Serializability Is Costly
•Expensive mechanisms
ØExtra messages, locking, excessive aborts

ØDegrade system performance

•These costs are unnecessary for 
naturally consistent transactions
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Natural Consistency
• Transaction requests arrive in an order that is already 

strictly serializable

• Prevalent in datacenter workloads
Ø Many are reads: Interleaving is okay
Ø Many are short: Interleaving is less likely
Ø Many arrive in a real-time order: tx1 ends before tx2

starts, then tx1’s requests must arrive before tx2’s
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Executing naturally consistent transactions
simply in the order they arrive at servers 

naturally satisfies strict serializability



NCC: Natural Concurrency Control

•Guarantees strict serializability

•Leverages natural consistency

•Achieves minimal costs in common cases
Ø One-round latency, lock-free, non-blocking execution
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Three Pillars of Design

•Non-blocking execution

•Timestamp-based consistency checking

•Decoupled response management
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Non-blocking Execution
•Client pre-assigns timestamps, e.g., physical time

• Requests executed in the order they arrive

• Refine timestamps to match the arrival/execution order
• Immediately visible to subsequent transactions

• Responses are buffered, and sent when safe
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Non-blocking Execution Example
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Non-blocking Execution Example
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Safeguard
•Timestamp-based consistency checking

•Ensures a total order
Ø [tw, tr] represents the time range where a request is valid
Ø [tw, tr] pairs represent the arrival/execution order
Ø The intersection of [tw, tr] pairs is a serialization point
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Safeguard Example
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Timestamp-Inversion Pitfall (TIP)
•Fundamental correctness pitfall in timestamp-
based strictly serializable techniques

•Timestamps fail to guard against a total order 
that violates the real-time ordering between 
transactions in subtle cases
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Example of Timestamp Inversion
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Response Timing Control (RTC)
•Control when to send decoupled responses

•Disentangle the subtle interleaving in 
transactions’ real-time order 

•No interference with non-blocking execution

16



RTC Avoiding TIP
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Implementation and Evaluation
• Built on Janus’s framework [OSDI ’16]

• Baselines
Ø Strictly serializable techniques, e.g., OCC and 2PL
Ø Serializable protocols, e.g., MVTO (performance upper bound)

• Workloads
Ø Synthetic Facebook-TAO and Google-F1 (read-dominated, one-shot)
Ø TPC-C (many writes, multi-shot)
Ø Varying write fraction in Google-F1 (write-intensive, one-shot)
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Latency-Throughput, Google-F1
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Conclusion
• NCC: Natural Concurrency Control
Ø Minimal-cost, strictly serializable technique, leveraging natural consistency

• Timestamp-inversion pitfall
Ø Correctness violation in timestamp-based strictly serializable techniques

• Implementation and evaluation of NCC for datacenter workloads
Ø Significantly outperforms strictly serializable solutions

Ø Closely matches the performance of serializable techniques
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