
NCC: Natural Concurrency Control
for Strictly Serializable Datastores by

Avoiding the Timestamp-Inversion Pitfall

Haonan Lu,
Shuai Mu, Siddhartha Sen, Wyatt Lloyd

University at Buffalo Stony Brook University
Microsoft Research Princeton University

Transactional Datastores
Clients Servers

Tx Logic
Read A, B
Write C
Read D

User

User

Tx Logic
Read A, C
Write S

User Ops

User Ops

Results

Results

1

Request

Transactional Datastores
Clients Servers

User

User

User Ops

User Ops

Results

Results

2

Concurrency control

Determines consistency
guarantees of the system

By controlling how
requests are executed

Strict Serializability
•Transactions take effect in a total order
ØSerializable: requests do not interleave

•Respects the real-time ordering
ØIf tx1 ends before tx2 starts, then tx1 must

be ordered before tx2 in the total order

3

Strict Serializability Is Costly
•Expensive mechanisms
ØExtra messages, locking, excessive aborts

ØDegrade system performance

•These costs are unnecessary for
naturally consistent transactions

4

Natural Consistency
• Transaction requests arrive in an order that is already

strictly serializable

• Prevalent in datacenter workloads
Ø Many are reads: Interleaving is okay
Ø Many are short: Interleaving is less likely
Ø Many arrive in a real-time order: tx1 ends before tx2

starts, then tx1’s requests must arrive before tx2’s

5

6

Executing naturally consistent transactions
simply in the order they arrive at servers

naturally satisfies strict serializability

NCC: Natural Concurrency Control

•Guarantees strict serializability

•Leverages natural consistency

•Achieves minimal costs in common cases
Ø One-round latency, lock-free, non-blocking execution

7

Three Pillars of Design

•Non-blocking execution

•Timestamp-based consistency checking

•Decoupled response management

8

Non-blocking Execution
•Client pre-assigns timestamps, e.g., physical time

• Requests executed in the order they arrive

• Refine timestamps to match the arrival/execution order
• Immediately visible to subsequent transactions

• Responses are buffered, and sent when safe

9

Non-blocking Execution Example

10

CL1

CL2

0
B0

1 4

A0A

B
5

tw tr

tx1 = {read A, write B}
tx2 = {read B, write A}

Non-blocking Execution Example

11

CL1

CL2

0

B0
1 4 8

A0

B1
5 5

w1B

tx1
(t=4)

A

B
5

r1A

A1
8 8

w2A
tx2
(t=8)

r2B

Buffered responses:
tx1.r1A
tx1.w1B
tx2.r2B
tx2.w2A

A0, [0, 5]
“done”, [5, 5]
B1, [5, 8]
“done”, [8, 8]

<

<

tx1 = {read A, write B}
tx2 = {read B, write A}

Safeguard
•Timestamp-based consistency checking

•Ensures a total order
Ø [tw, tr] represents the time range where a request is valid
Ø [tw, tr] pairs represent the arrival/execution order
Ø The intersection of [tw, tr] pairs is a serialization point

12

Safeguard Example

13

Returned responses:

tx1.r1A ← A0, [0, 5]
tx1.w1B ← “done”, [5, 5]
tx1.tcommit = 5
tx2.r2B ← B1, [5, 8]
tx2.w2A ← “done”, [8, 8]
tx2.tcommit = 8

Commit

Commit

CL1

CL2

0

B0
1 4 8

A0

B1
5 5

w1B

tx1
(t=4)

A

B
5

r1A

A1
8 8

w2A
tx2
(t=8)

r2B

Timestamp-Inversion Pitfall (TIP)
•Fundamental correctness pitfall in timestamp-
based strictly serializable techniques

•Timestamps fail to guard against a total order
that violates the real-time ordering between
transactions in subtle cases

14

Example of Timestamp Inversion

15

Photo

ACL

Alice
tx3 (t=7)

tx2(t=5)

tx1(t=10)

BobAdmin

Call

r3ACL
(t=7)

r3Photo
(t=7)

“OK” Ph1

rtotx1 tx2Incorrectly inverts
“Alice incorrectly sees Ph1”

exetx2 tx3
exe tx1

Execution order is total:

TIP is subtle: tx3 interleaves
with non-conflicting tx1 & tx2

TIP is fundamental: affects
various types of transactions in
multiple prior systems

tx1: “Remove Alice” tx2: “Upload Ph1”

Response Timing Control (RTC)
•Control when to send decoupled responses

•Disentangle the subtle interleaving in
transactions’ real-time order

•No interference with non-blocking execution

16

RTC Avoiding TIP

17

Photo

ACL

Alice
tx3 (t=7)

tx2(t=5)

tx1(t=10)

Bob
tx2: “Upload Ph1”

Admin
tx1: “Remove Alice”

Call

r3ACL
(t=7)

r3Photo
(t=7)

“OK” Ph0

rtotx1 tx2Respects
“Alice sees Ph0, not Ph1”

exetx3 tx1
exe tx2

Execution order is total:

Commit

After r3ACL
commits

tx3 arrives before
tx1 is responded before
Bob is notified before
tx2 arrives

buffered

Server A

Resp Q (RTC)

Non-blocking
Execution

Architecture & Protocol Overview

18

Server B

Read A, t

Res, [tw, tr]

User

Client

Tx Logic
Execute Phase

Commit Phase
Safeguard

Read A, B
Write B

Timestamp t

Smart retry

Commit

Commit

Ops

Results

Replicated

Replicated

Backup
Coord.

Replicated

RO Protocol

Implementation and Evaluation
• Built on Janus’s framework [OSDI ’16]

• Baselines
Ø Strictly serializable techniques, e.g., OCC and 2PL
Ø Serializable protocols, e.g., MVTO (performance upper bound)

• Workloads
Ø Synthetic Facebook-TAO and Google-F1 (read-dominated, one-shot)
Ø TPC-C (many writes, multi-shot)
Ø Varying write fraction in Google-F1 (write-intensive, one-shot)

19

Latency-Throughput, Google-F1

20

1

10

100

1K

0 50 100 150 200 250

R
ea
d
La
te
nc
y
(m
s)
Lo
g

Throughput (K Txn/s)

O.P.
1

10

100

1K

0 50 100 150 200 250

O.P.

R
ea
d
La
te
nc
y
(m
s)
Lo
g

Throughput (K Txn/s)

d2PL-wound-wait
d2PL-no-wait

dOCC

NCC
MVTO

1

10

100

1K

0 50 100 150 200 250

O.P.

R
ea
d
La
te
nc
y
(m
s)
Lo
g

Throughput (K Txn/s)

d2PL-wound-wait
d2PL-no-wait

dOCC

NCC
MVTO

1

10

100

1K

0 50 100 150 200 250

O.P.

R
ea
d
La
te
nc
y
(m
s)
Lo
g

Throughput (K Txn/s)

d2PL-wound-wait
d2PL-no-wait

dOCC

NCC
MVTO

1

10

100

1K

0 50 100 150 200 250

O.P.

R
ea
d
La
te
nc
y
(m
s)
Lo
g

Throughput (K Txn/s)

d2PL-wound-wait
d2PL-no-wait

dOCC

NCC
MVTO

1

10

100

1K

0 50 100 150 200 250

O.P.

R
ea
d
La
te
nc
y
(m
s)
Lo
g

Throughput (K Txn/s)

d2PL-wound-wait
d2PL-no-wait

dOCC

NCC
MVTO

> 2x

Conclusion
• NCC: Natural Concurrency Control
Ø Minimal-cost, strictly serializable technique, leveraging natural consistency

• Timestamp-inversion pitfall
Ø Correctness violation in timestamp-based strictly serializable techniques

• Implementation and evaluation of NCC for datacenter workloads
Ø Significantly outperforms strictly serializable solutions

Ø Closely matches the performance of serializable techniques

21
Thank you

