NCC: Natural Concurrency Control
for Strictly Serializable Datastores by
Avoiding the Timestamp-Inversion Pitfall

Haonan LuX*
Shuai Mu® Siddhartha Sen® Wyatt Lioyd®

*University at Buffalo ’Stony Brook University
* Microsoft Research ®Princeton University

Transactional Datastores

-
[Clients Servers
. _UserOps =) Tx Logic Request (I
“— : Read A, B —> =
! Results N —
User . . Write C o
' Z|| ¢ Read D

| —
& Userops - [TxLogic / :
& -

— :» Read A, C LR
User Results | ¥ WriteS < e

Transactional Datastores

Q’?

User

)

User

[Clients Servers
User Ops (=]

T P - = E~j3

R.eSUItS . Determines -

I B3| guarantees of the system (e

| ° —

. o By controlling how o
User Ops . requests are executed .

N ; * E: ‘ .]
Results =

Strict Serializability

* Transactions take effect in a total order
» Serializable: requests do not interleave

*Respects the real-time ordering

» If tx, ends before tx, starts, then tx; must
be ordered before tx, in the total order

Strict Serializability Is Costly

*EXpensive mechanisms
» Extra messages, locking, excessive aborts

» Degrade system performance

* These costs are unnecessary for
naturally consistent transactions

Natural Consistency

 Transaction requests arrive in an order that is already
strictly serializable

* Prevalent in datacenter workloads

» Many are reads: Interleaving is okay
» Many are short: Interleaving is less likely

» Many arrive in a real-time order: tx4 ends before tx,
starts, then tx4’s requests must arrive before tx,’s

Executing naturally consistent transactions
simply in the order they arrive at servers
naturally satisfies strict serializability

NCC: Natural Concurrency Control

* Guarantees strict serializability
everages natural consistency

e Achieves minimal costs iIn common cases

» One-round latency, lock-free, non-blocking execution

Three Pillars of Design

*Non-blocking execution
* Timestamp-based consistency checking

*Decoupled response management

Non-blocking Execution

* Client pre-assigns timestamps, e.g., physical time
* Requests executed in the order they arrive

 Refine timestamps to match the arrival/execution order

* Immediately visible to subsequent transactions

* Responses are buffered, and sent when safe

Non-blocking Execution Example

tx; = {read A, write B}
CL,

A Ao

B {5,

-[w
0
.[
1

= N __l;-gH

CL,

Non-blocking Execution Example

tx; = {read A, write B} tx;
(t=4)
CL4 v 4
r1i V\Lﬂé '
Buffered responses: A A A e —
tX1.I’1A <+-- Ao, [0, 5] 0 ? r‘IK
B B
tx,.wB <-- “done”, [5, 5] L e N
<-- B1, [57 8] CL2 -

<+-- “done’, [8, 8]

11

Safeguard

* Timestamp-based consistency checking

 Ensures a total order

> [t,, t] represents the time range where a request is valid
> [t,, t] pairs represent the arrival/execution order

» The intersection of [t,, t,] pairs is a serialization point

Safeguard Example

tX-|
Returned responses: Commlt

tx,.w,B « “done”, [5] 5] A '[A°

tX‘I -tcommit B

B0 B1 \

«B, [5, I 1 4 5 i
A |
« “done”, [8) 8] CL

=8

Timestamp-Inversion Pitfall (TIP)

* Fundamental correctness pitfall in timestamp-
based strictly serializable techniques

« Timestamps fail to guard against a total order
that violates the real-time ordering between
transactions in subtle cases

Example of Timestamp Inversion

& &

6 -S4, A
Admin Bob
“Remove Alice” : “Upload Ph,”

O / \

4
tx4(t=10) rsPhoto
(t=7
Photo) >
o(t=)
Alice
tx; (t=7) “OK” Ph,

Execution order is total:

tx, £X€5 tx; £XE5 tx,

Incorrectly inverts tx; 12y tx,

“Alice incorrectly sees Ph,”

TIP is subtle: tx; interleaves
with non-conflicting tx; & tx,

TIP is fundamental: affects
various types of transactions in
multiple prior systems

Response Timing Control (RTC)

« Control when to send decoupled responses

* Disentangle the subtle interleaving in
transactions’ real-time order

* No interference with non-blocking execution

RTC Avoiding TIP

I‘Gﬂ Call I‘Oﬂ tx5 arrives before
- - tx, is responded before

Admin Bob

tx,: “Remove Alice” tx,: “Upload Ph,» BOD is notified before
Aftdr rRCL tx, arrives
ACL (- cdmmit ' i
(t=7) “buffered ~ Execution order is total:

ACL

f\ tx4(t=10) r3Photof§ \ / tx, SXC exe tx, Xy exe tx,
Photo M

o
x,(t=5) Respects tx; — X,

Alice » “Alice sees Phg, not Ph,”
tx (t=7) “OK” Ph, Commit

Architecture & Protocol Overview

>

Ops
User
Results

Replicated

J

Client Server A
Execute Phase Non-block
. Read A, t on-nDIoCKINg
TX Logic Execution
Timestamp t]
RO Protocol] < R
es, [t,, t]
Read A, B [X X |
Write B Resp Q (RTC)
Commit Phase
Safeguard 7 _
Smart retry] e Replicated
, 7/
7’
~ ~ -

Implementation and Evaluation

 Built on Janus’s framework [OSDI ’16]

» Baselines
» Strictly serializable techniques, e.g., OCC and 2PL
» Serializable protocols, e.g., MVTO (performance upper bound)

» Workloads
» Synthetic Facebook-TAO and Google-F1 (read-dominated, one-shot)

» TPC-C (many writes, multi-shot)
» Varying write fraction in Google-F1 (write-intensive, one-shot)

Latency-Throughput, Google-F1

Read Latency (ms) Log

A

100

—
- O

2PL-wound-wait NCC
2PL-no-wait —+— MVTO
OCC —¢—

— . =

0 50 100 150 200 250
Throughput (K Txn/s)

20

Conclusion

« NCC: Natural Concurrency Control

» Minimal-cost, strictly serializable technique, leveraging natural consistency

« Timestamp-inversion pitfall

» Correctness violation in timestamp-based strictly serializable techniques

* Implementation and evaluation of NCC for datacenter workloads
> Significantly outperforms strictly serializable solutions

» Closely matches the performance of serializable techniques

Thank you

