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Transactional Datastores
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Transactional Datastores
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Strict Serializability

* Transactions take effect in a total order
» Serializable: requests do not interleave

*Respects the real-time ordering

» If tx, ends before tx, starts, then tx; must
be ordered before tx, in the total order



Strict Serializability Is Costly

*EXpensive mechanisms
» Extra messages, locking, excessive aborts

» Degrade system performance

* These costs are unnecessary for
naturally consistent transactions



Natural Consistency

 Transaction requests arrive in an order that is already
strictly serializable

* Prevalent in datacenter workloads

» Many are reads: Interleaving is okay
» Many are short: Interleaving is less likely

» Many arrive in a real-time order: tx4 ends before tx,
starts, then tx4’s requests must arrive before tx,’s



Executing naturally consistent transactions
simply in the order they arrive at servers
naturally satisfies strict serializability



NCC: Natural Concurrency Control

* Guarantees strict serializability
everages natural consistency

e Achieves minimal costs iIn common cases

» One-round latency, lock-free, non-blocking execution



Three Pillars of Design

*Non-blocking execution
* Timestamp-based consistency checking

*Decoupled response management



Non-blocking Execution

* Client pre-assigns timestamps, e.g., physical time
* Requests executed in the order they arrive

 Refine timestamps to match the arrival/execution order

* Immediately visible to subsequent transactions

* Responses are buffered, and sent when safe



Non-blocking Execution Example
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Non-blocking Execution Example
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Safeguard

* Timestamp-based consistency checking

 Ensures a total order

> [t,, t] represents the time range where a request is valid
> [t,, t] pairs represent the arrival/execution order

» The intersection of [t,, t,] pairs is a serialization point



Safeguard Example
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Timestamp-Inversion Pitfall (TIP)

* Fundamental correctness pitfall in timestamp-
based strictly serializable techniques

« Timestamps fail to guard against a total order
that violates the real-time ordering between
transactions in subtle cases



Example of Timestamp Inversion
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Response Timing Control (RTC)

« Control when to send decoupled responses

* Disentangle the subtle interleaving in
transactions’ real-time order

* No interference with non-blocking execution



RTC Avoiding TIP
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Architecture & Protocol Overview
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Implementation and Evaluation

 Built on Janus’s framework [OSDI ’16]

» Baselines
» Strictly serializable techniques, e.g., OCC and 2PL
» Serializable protocols, e.g., MVTO (performance upper bound)

» Workloads
» Synthetic Facebook-TAO and Google-F1 (read-dominated, one-shot)

» TPC-C (many writes, multi-shot)
» Varying write fraction in Google-F1 (write-intensive, one-shot)
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Conclusion

« NCC: Natural Concurrency Control

» Minimal-cost, strictly serializable technique, leveraging natural consistency

« Timestamp-inversion pitfall

» Correctness violation in timestamp-based strictly serializable techniques

* Implementation and evaluation of NCC for datacenter workloads
> Significantly outperforms strictly serializable solutions

» Closely matches the performance of serializable techniques

Thank you



